
ARM
®

Developer Suite
Version 1.1

Getting Started
Copyright © 1999, 2000 ARM Limited. All rights reserved.
ARM DUI 0064C

Getting Started
Version 1.1

Copyright © 1999 and 2000 ARM Limited. All rights reserved.

Release Information

The following changes have been made to this book.

Proprietary Notice

Words and logos marked with ® or ™ are registered trademarks or trademarks owned by ARM Limited. Other
brands and names mentioned herein may be the trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document
may be adapted or reproduced in any material form except with the prior written permission of the copyright
holder.

The product described in this document is subject to continuous developments and improvements. All
particulars of the product and its use contained in this document are given by ARM in good faith. However,
all warranties implied or expressed, including but not limited to implied warranties of merchantability, or
fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM Limited shall not be liable
for any loss or damage arising from the use of any information in this document, or any error or omission in
such information, or any incorrect use of the product.

Change History

Date Issue Change

October 1999 A Release 1.0

March 2000 B Release 1.0.1

October 2000 C Release 1.1
ii Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0064C

Contents
Getting Started

Preface
About this book .. vi
Feedback ... ix

Chapter 1 Introduction
1.1 About the ARM Developer Suite ... 1-2
1.2 Printed documentation .. 1-6
1.3 Online documentation ... 1-8
1.4 Online help .. 1-15

Chapter 2 Differences
2.1 Overview ... 2-2
2.2 Changes between ADS 1.1 and ADS 1.0 ... 2-4
2.3 Changes between ADS 1.0 and SDT 2.50/2.51 2-23

Chapter 3 Creating an Application
3.1 Using the CodeWarrior IDE ... 3-2
3.2 Building from the command line .. 3-14
3.3 Using ARM libraries .. 3-22
3.4 Using your own libraries .. 3-25
3.5 Debugging the application with AXD ... 3-26
ARM DUI 0064C Copyright © 1999, 2000 ARM Limited. All rights reserved. iii

Contents
Chapter 4 Migrating Projects from SDT to ADS
4.1 Converting makefiles and APM project files ... 4-2
4.2 Moving your development project from SDT to ADS 4-4
iv Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0064C

Preface

This preface introduces the ARM Developer Suite (ADS) and its user documentation. It
contains the following sections:

• About this book on page vi

• Feedback on page ix.
ARM DUI 0064C Copyright © 1999, 2000 ARM Limited. All rights reserved. v

Preface
About this book

This book provides an overview of the ADS tools and documentation.

Intended audience

This book is written for all developers who are producing applications using ADS. It
assumes that you are an experienced software developer.

Using this book

This book is organized into the following chapters:

Chapter 1 Introduction

Read this chapter for an introduction to ADS. The components of ADS
and the printed and online documentation are described.

Chapter 2 Differences

Read this chapter for details of the differences between versions of ADS
and the ARM Software Development Toolkit.

Chapter 3 Creating an application

Read this chapter for a brief overview of how to create an application
using the command-line tools or the CodeWarrior IDE.

Chapter 4 Migrating Projects from SDT to ADS

Read this chapter for information on converting an SDT 2.50/2.51 project
to ADS.
vi Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0064C

Preface
Typographical conventions

The following typographical conventions are used in this book:

typewriter Denotes text that can be entered at the keyboard, such as commands, file
and program names, and source code.

typewriter italic

Denotes arguments to commands and functions where the argument is to
be replaced by a specific value.

italic Highlights important notes, introduces special terminology, denotes
internal cross-references, and citations.

bold Highlights interface elements, such as menu names. Also used for
emphasis in descriptive lists, where appropriate, and for ARM processor
signal names.

typewriter bold

Denotes language keywords when used outside example code.

Further reading

This section lists publications from ARM Limited that provide additional information
on developing code for the ARM family of processors.

ARM periodically provides updates and corrections to its documentation. See
http://www.arm.com for current errata sheets and addenda.

See also the ARM Frequently Asked Questions list at
http://www.arm.com/DevSupp/Sales+Support/faq.html

ARM publications

Refer to the following books in the ADS document suite for information on other
components of ADS 1.1:

• ADS Installation and License Management Guide (ARM DUI 0139)

• ADS Assembler Guide (ARM DUI 0068)

• CodeWarrior IDE Guide (ARM DUI 0065)

• ADS Compiler, Linker, and Utilities Guide (ARM DUI 0067)

• ADS Debuggers Guide (ARM DUI 0066)
ARM DUI 0064C Copyright © 1999, 2000 ARM Limited. All rights reserved. vii

Preface
• ADS Debug Target Guide (ARM DUI 0058)

• ADS Developer Guide (ARM DUI 0056).

The following additional documentation is provided with the ARM Developer Suite:

• ARM Architecture Reference Manual (ARM DDI 0100). This is supplied in
DynaText and PDF format.

• ARM Applications Library Programmer’s Guide. This is supplied in DynaText
and PDF format.

• ARM ELF specification (SWS ESPC 0003). This is supplied in PDF format in
install_directory\PDF\specs\ARMELF.pdf.

• TIS DWARF 2 specification. This is supplied in PDF format in
install_directory\PDF\specs\TIS-DWARF2.pdf.

• ARM/Thumb® Procedure Call Standard specification. This is supplied in PDF
format in install_directory\PDF\specs\ATPCS.pdf.

In addition, refer to the following documentation for specific information relating to
ARM products:

• ARM Reference Peripheral Specification (ARM DDI 0062)

• the ARM datasheet or technical reference manual for your hardware device.
viii Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0064C

Preface
Feedback

ARM Limited welcomes feedback on both the ARM Developer Suite and its
documentation.

Feedback on the ARM Developer Suite

If you have any problems with the ARM Developer Suite, please contact your supplier.
To help them provide a rapid and useful response, please give:

• details of the release you are using

• details of the platform you are running on, such as the hardware platform,
operating system type and version

• a small standalone sample of code that reproduces the problem

• a clear explanation of what you expected to happen, and what actually happened

• the commands you used, including any command-line options

• sample output illustrating the problem

• the version string of the tool, including the version number and date.

Feedback on this book

If you have any problems with this book, please send email to errata@arm.com giving:

• the document title

• the document number

• the page number(s) to which your comments apply

• a concise explanation of the problem.

General suggestions for additions and improvements are also welcome.
ARM DUI 0064C Copyright © 1999, 2000 ARM Limited. All rights reserved. ix

Preface
x Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0064C

Chapter 1-
Introduction

This chapter introduces the ARM Developer Suite version 1.1 (ADS 1.1) and describes
its software components and documentation. It contains the following sections:

• About the ARM Developer Suite on page 1-2

• Printed documentation on page 1-6

• Online help on page 1-15.
ARM DUI 0064C Copyright © 1999, 2000 ARM Limited. All rights reserved. 1-1

Introduction
1.1 About the ARM Developer Suite

ADS consists of a suite of applications, together with supporting documentation and
examples, that enable you to write and debug applications for the ARM family of RISC
processors.

You can use ADS to develop, build, and debug C, C++, or ARM assembly language
programs.

1.1.1 Components of ADS

ADS consists of the following major components:

• Command-line development tools

• GUI development tools on page 1-3

• Utilities on page 1-3

• Supporting software on page 1-4.

Command-line development tools

The following command-line development tools are provided:

armcc The ARM C compiler. The compiler is tested against the Plum Hall C
Validation Suite for ANSI conformance. It compiles ANSI source into
32-bit ARM code.

armcpp This is the ARM C++ compiler. It compiles ISO C++ or EC++ source
into 32-bit ARM code.

tcc The Thumb C compiler. The compiler is tested against the Plum Hall C
Validation Suite for ANSI conformance. It compiles ANSI source into
16-bit Thumb code.

tcpp This is the Thumb C++ compiler. It compiles ISO C++ or EC++ source
into 16-bit Thumb code.

armasm The ARM and Thumb assembler. This assembles both ARM assembly
language and Thumb assembly language source.

armlink The ARM linker. This combines the contents of one or more object files
with selected parts of one or more object libraries to produce an
executable program. The ARM linker creates ELF executable images.
1-2 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0064C

Introduction
armsd The ARM and Thumb symbolic debugger. This enables source level
debugging of programs. You can single-step through C or assembly
language source, set breakpoints and watchpoints, and examine program
variables or memory.

Rogue Wave C++ library

The Rogue Wave library provides an implementation of the standard C++
library as defined in the ISO/IEC 14822:1998 International Standard for
C++. For more information on the Rogue Wave library, see the online
HTML documentation on the CD ROM.

support libraries

The ARM C libraries provide additional components to enable support
for C++ and to compile code for different architectures and processors.

GUI development tools

The following Graphical User Interface (GUI) development tools are provided:

AXD The ARM Debugger for Windows and UNIX. This provides a full
Windows and UNIX environment for debugging your C, C++, and
assembly language source.

ADW The ARM Debugger for Windows. This provides a full Windows
environment for debugging your C, C++, and assembly language source.

ADU The ARM Debugger for UNIX. This provides a full GUI environment for
debugging your C, C++, and assembly language source.

CodeWarrior IDE

The project management tool for Windows. This automates the routine
operations of managing source files and building your software
development projects. The CodeWarrior IDE is not available for UNIX.

Utilities

The following utility tools are provided to support the main development tools:

fromELF The ARM image conversion utility. This accepts ELF format input files
and converts them to a variety of output formats, including plain binary,
Extended Intellec Hex (IHF) format, Motorola 32-bit S-record format,
Intel Hex 32 format, and Verilog Hex format. fromELF can also generate
text information about the input image, such as code and data size.
ARM DUI 0064C Copyright © 1999, 2000 ARM Limited. All rights reserved. 1-3

Introduction
armprof The ARM profiler displays an execution profile of a simple program from
a profile data file generated by an ARM debugger.

armar The ARM librarian enables sets of ELF format object files to be collected
together and maintained in libraries. You can pass such a library to the
linker in place of several ELF files.

Flash downloader

Utility for downloading binary images to Flash memory on an ARM
Development board (PID7T) or an ARM Integrator™ board.

Supporting software

The following support software is provided to enable you to debug your programs,
either under simulation, or on ARM-based hardware:

ARMulator® The ARM core simulator. This provides instruction-accurate simulation
of ARM processors, and enables ARM and Thumb executable programs
to be run on non-native hardware. The ARMulator is integrated with the
ARM debuggers.

Supported standards

The industry standards supported by ADS include:

ar UNIX-style archive files are supported by armar.

DWARF2 DWARF2 debug tables are supported by the compilers, linker, and
debuggers. The deprecated format DWARF1 is supported in the
debuggers only.

ANSI C The ARM and Thumb compilers accept ANSI C as input. The option
-strict can be used to enforce strict acceptance.

C++ The ARM and Thumb C++ compilers support a subset of the ISO C++
language.

EC++ The ARM and Thumb C++ compilers support the Embedded C++
(EC++) informal standard that is a subset of C++.

ELF The ARM tools produce ELF format files. The FromELF utility can
translate ELF files into other formats.
1-4 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0064C

Introduction
RDI All debug agents and targets within ADS support version 1.5.1 of the
Remote Debug Interface (RDI). The debuggers support all the debug
agents (for example ARMulator and Remote_A) that are released as part
of ADS. They also support Multi-ICE®.
ARM DUI 0064C Copyright © 1999, 2000 ARM Limited. All rights reserved. 1-5

Introduction
1.2 Printed documentation

This section lists publications from both ARM Limited and third parties that provide
additional information on developing code for the ARM family of processors.

ARM periodically provides updates and corrections to its documentation. See
http://www.arm.com for current errata sheets, addenda, and the ARM Frequently Asked
Questions list.

1.2.1 ADS publications

This book contains general information about ADS. Other publications included in the
suite are:

• ADS Installation and License Management Guide (ARM DUI 0139). This book
gives detailed installation and license management information. It describes how
to install ADS, how to install license files for ADS, and how to work with the
FLEXlm license management system.

• ADS Assembler Guide (ARM DUI 0068). This book provides reference and
tutorial information on the ARM assembler.

• ADS Compiler, Linker, and Utilities Guide (ARM DUI 0067). This book provides
reference information for ADS. It describes the command-line options to the
assembler, linker, compilers, and other ARM tools in ADS. The book also gives
reference material on the ARM implementation of the C and C++ compilers and
the C libraries.

• ADS Developer Guide (ARM DUI 0056). This book provides tutorial information
on writing code targeted at the ARM family of processors

• ADS Debuggers Guide (ARM DUI 0066). This book has three main parts in
which all the currently supported ARM debuggers are described:

— Part A describes the graphical user interface components of ARM eXtended
Debugger (AXD), the most recent ARM debugger and part of the ARM
Developer Suite of software. Tutorial information is included to
demonstrate the main features of AXD.

— Part B describes the ARM Debugger for Windows (ADW) and the ARM
Debugger for UNIX (ADU). These are provided for backwards
compatibility and will not be supported in future releases.

— Part C describes the ARM Symbolic Debugger (armsd).
1-6 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0064C

Introduction
• ADS Debug Target Guide (ARM DUI 0058). This book provides reference and
tutorial information on the debug targets that can be used with the ARM
debuggers. In particular, it describes the ARMulator, the ARM instruction set
simulator, in detail.

• CodeWarrior IDE Guide (ARM DUI 0065). This book provides tutorial and
reference information on the CodeWarrior Integrated Development Environment.
The CodeWarrior IDE is used to manage C, C++, and assembly language projects
in ADS. The CodeWarrior IDE and guide are available only on Windows.

See also the Further Reading sections in each book for related publications from ARM,
and from third parties.

Additional documentation is supplied as PDF files in the PDF subdirectory of your ADS
installation directory.
ARM DUI 0064C Copyright © 1999, 2000 ARM Limited. All rights reserved. 1-7

Introduction
1.3 Online documentation

The ADS printed documentation is also available online as DynaText electronic books.
The content of the DynaText manuals is identical to that of the printed and PDF
documentation.

In addition, documentation for the Rogue Wave C++ library is available in HTML
format. See HTML on page 1-14 for more information.

PDFs of the ADS manuals are installed only for a Full installation. The Typical
installation only installs PDFs of related documentation that is not available in the
printed books or DynaText online books.

1.3.1 DynaText

The manuals for ADS are provided on the CD-ROM as DynaText electronic books. The
DynaText browser is installed by default for a Typical or Full installation.

To display the online documentation, either:

• select Online Books from the ARM Developer Suite v1.1 program group

• execute install_directory\dtext41\bin\Dtext.exe.

The DynaText browser displays a list of available collections and books (Figure 1-1).

Figure 1-1 DynaText browser with list of available books
1-8 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0064C

Introduction
Opening a book

Double-click on a title in the book list to open the book. The table of contents for the
book is displayed in the left panel and the text is displayed in the right panel (see
Figure 1-2).

Figure 1-2 Opening a book

Navigating through the book

Click on a section in the table of contents to display the text for that section. For
example, selecting C and C++ libraries displays the text for that section (see
Figure 1-3).
ARM DUI 0064C Copyright © 1999, 2000 ARM Limited. All rights reserved. 1-9

Introduction
Figure 1-3 Selecting a section from the table of contents

Navigating using hyperlinks

Text in blue indicates a link that displays a different section of a book, or a different
book. Plain blue text indicates that the link is within the current chapter. Underlined
blue text indicates that the link is either to another chapter within the current book, or
to a different book. Hyperlinks behave differently depending on their target:

• if the link is within the current chapter (plain blue text), DynaText scrolls the
current window to display the target

• if the link is to another chapter in the current book, DynaText opens a new window
without a Table of Contents

• if the link is to another book, DynaText opens a new window with a Table of
Contents.

Figure 1-4 shows the browser displaying the text for the linked text.
1-10 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0064C

Introduction
Figure 1-4 Using text links

Displaying graphics

Graphics are not displayed inline in the DynaText browser. If a graphic symbol is
displayed, select it to display the linked graphic in its own window (see Figure 1-5).

Figure 1-5 Link to a figure

Clicking on the figure icon displays the figure in its own window (see Figure 1-6).
ARM DUI 0064C Copyright © 1999, 2000 ARM Limited. All rights reserved. 1-11

Introduction
Figure 1-6 Graphic displayed

Navigating to a different book

If the blue link text refers to a different book, clicking on the link text displays the linked
book in its own window (see Figure 1-7 on page 1-13).
1-12 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0064C

Introduction
Figure 1-7 Navigating to a different book

Displaying help for DynaText

Select Help → Reader Guide to display help on how to use DynaText.
ARM DUI 0064C Copyright © 1999, 2000 ARM Limited. All rights reserved. 1-13

Introduction
1.3.2 HTML

The manuals for the Rogue Wave C++ library for ADS are provided on the CD-ROM
in HTML files. Use a web browser, such as Netscape Communicator or Internet
Explorer, to view these files. For example, select
install_directory\Html\stdref\index.htm to display the HTML documentation for
Rogue Wave (see Figure 1-8).

Figure 1-8 HTML browser
1-14 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0064C

Introduction
1.4 Online help

Additional information for ADS is available online. The online documentation consists
of online help, DynaText files, PDF files, and HTML files.

The printed documentation for ADS is also available in DynaText and PDF files. There
is also additional documentation available online that is not part of the printed
documentation.

1.4.1 Online help

A Help menu is available for the Graphical User Interface components of ADS.

Select Help → Contents to see a display of the main help topics available. The
CodeWarrior IDE does not have a Contents menu item. Use the How to menu item
instead.

You can navigate to a particular page of help in any one of the following ways:

• From the Contents tab of the Help Topics screen, do any of the following:

— click on a main topic to select it

— click on the Open button

— click on a subtopic.

• From the Contents tab of the Help Topics screen either:

— double-click on a main topic book to open it (single-clicking toggles the
open or closed status)

— click on a subtopic.

• From the Index tab of the Help Topics screen, do any of the following:

— type the first few characters of a likely index entry

— scroll down the displayed list of index entries until the entry you want is
visible

— click on the required index entry.

• From the Find tab of the Help Topics screen, do any of the following:

— type or select key words that might occur anywhere in the help text

— select a topic from the displayed list of topics that contain the specified
words.

• From any page of help that has a hypertext link to the page you want, click on the
highlighted hypertext link.
ARM DUI 0064C Copyright © 1999, 2000 ARM Limited. All rights reserved. 1-15

Introduction
• Most pages of online help contain help links that can be clicked on:

— highlighted hot spots with dashed underlining display brief explanations in
pop-up boxes

— highlighted hot spots with solid underlining jump to other related pages of
help

— browse buttons display related pages of help.

Note

Most help selections can be done by key presses or mouse clicks.

Context-sensitive help

Context-sensitive help is available where appropriate. With the ADS component
running, position the cursor on any field or button for which you need help and press
the F1 key on the keyboard. If relevant online help is available it is displayed.

An alternative method of invoking context-sensitive help is to click on the question
mark tool in the toolbar, then click on the field or button for which you need help.
1-16 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0064C

Chapter 2-
Differences

This chapter describes the major differences between the SDT 2.50/2.51, ADS 1.0, and
ADS 1.1. It contains the following sections:

• Overview on page 2-2

• Changes between ADS 1.1 and ADS 1.0 on page 2-4

• Changes between ADS 1.0 and SDT 2.50/2.51 on page 2-23.
ARM DUI 0064C Copyright © 1999, 2000 ARM Limited. All rights reserved. 2-1

Differences
2.1 Overview

This chapter describes the changes that have been made between SDT 2.50/2.51 and
ADS 1.0, and between ADS 1.0 and ADS 1.1.

Note
Changes made for the ADS 1.0.1 maintenance release are described in the ADS 1.0.1
Addenda. The functional changes made for ADS 1.0.1 are minor. The most important
are:

• improvements to the AXD user interface

• the default stack checking option for the assembler was changed to /noswst, to
match the compilers.

Changes made to the ARMulator for ADS 1.0.1 are superseded by changes for ADS 1.1.

The most important differences between ADS 1.1 and ADS 1.0 are:

• The ATPCS now requires 8-byte alignment of the stack.

• Full support for ARM9E™ and ARM10™

• Support for ARM architecture v5TE processors, including the Intel XScale.

• Improved code size for compiled code.

• Improved debug view for compiled code.

• Support for RealMonitor.

• Angel™ has been moved to the ARM Firmware Suite.

• The ARMulator rebuild kit is no longer supplied. It is replaced with a new
ARMulator extension kit. The ARMulator has been integrated into a single DLL
(shared object under UNIX) and its configuration has been simplified. A new
interface enables addition of memory models.

• Limited support for GNU images in AXD.

• More components are license-managed, including the CodeWarrior IDE,
fromELF, and armsd.

The most important differences between ADS 1.0 and SDT 2.50/2.51 are:

• C and C++ libraries are supplied as binaries only. Selection of the appropriate
library for the build option is automatic. No rebuild kit or source code is supplied.
2-2 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0064C

Differences
The C libraries are suitable for embedded applications.

• The CodeWarrior IDE is used for project management instead of APM.

• AXD is a new debugger for Windows and UNIX. ADW for Windows and ADU
for UNIX are still supported.

• AXD supports the new RDI 1.51 release.

• armar replaces armlib as library manager and ar format replaces ALF as the
library format.

• The image format is now ELF.

• The preferred and default debug table format is DWARF2.

• Support for ARM9E™ and preliminary support for ARM10™.

• Major components are licence managed.

• Manuals are provided in DynaText form for easy browsing.

• A new ARM/Thumb Procedure Call Standard (ATPCS) encompasses ARM and
Thumb on an equal basis.

• The included C++ compilers are fully integrated with ADS, and include support
for Embedded C++.

• ARMulator supports RPS Interrupt Controller and Timer peripheral models.

• Clearer messages have been provided in many of the tools.
ARM DUI 0064C Copyright © 1999, 2000 ARM Limited. All rights reserved. 2-3

Differences
2.2 Changes between ADS 1.1 and ADS 1.0

This section describes changes between ADS 1.1 and ADS 1.0. It contains the following
subsections:

• Functionality enhancements and new functionality on page 2-4

• Differences in default behavior on page 2-10

• Changes to the compilers and libraries on page 2-10

• Changes to the assembler on page 2-14

• Changes to the linker on page 2-16

• Changes to fromELF on page 2-17

• Changes to the debuggers on page 2-18

• Changes to ARMulator on page 2-20.

• Changes to the CodeWarrior IDE on page 2-22.

2.2.1 Functionality enhancements and new functionality

This section gives a summary of the major functionality enhancements in ADS 1.1. See
the sections for the individual tools for a more detailed description of changes and
enhancements for each component of ADS.

ADS 1.1 introduces the following functionality enhancements and new functionality:

• Support for ARM architecture v5TE on page 2-4

• Improved debug view on page 2-4

• Code size improvements and improved optimization on page 2-7

• Support for RealMonitor on page 2-7

• Changes to memory alignment on page 2-8

• Angel moved to AFS on page 2-9.

Support for ARM architecture v5TE

ADS 1.1 fully supports ARM architecture v5TE.

Improved debug view

The reliability of the debug view in the ADS debuggers has been substantially
improved, especially for optimization level -O1. Improvements to DWARF2 support
enable you to:

• Debug inline functions.

• View return values for functions.
2-4 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0064C

Differences
• Reliably examine the contents of variables. Where the value of a variable is
unavailable, it is described as such in the debugger.

• Reliably set watchpoints on local variables.

• Set breakpoints on closing parentheses to functions.

• Set breakpoints on multiple statements on the same source line.

Note

The debug view is dependent on the optimization level selected. In addition, there are
some restrictions to the debug view for ADW/ADU and armsd.

Improved support for debugging third party images

AXD can now load and, with limitations, debug ELF/DWARF images built with the
GNU toolchain. The following restrictions apply to using AXD with gcc 2.95.2 and
binutils 2.10:

• Binutils does not set the ELF flag to indicate that an entry point has been set. You
must manually set the PC to the entry point for the image. This is commonly
0x00008000 or 0x0.

• Binutils does not generate the ARM mapping symbols that distinguish between
ARM code ($a), Thumb code ($t), and data ($d). This means that:

— You must manually select the disassembly mode in the disassembly
window.

— Interleaved source and code is not disassembled. It is treated as word-sized
data.

— You cannot single step, because AXD cannot determine whether to set an
ARM breakpoint or a Thumb breakpoint.

Note

You can manually set an ARM breakpoint, however the debugger requests
that you confirm the action because it interprets the code as being a literal
pool.

You can manually add a mapping symbol to mark ARM or Thumb state code by
linking the following assembly language at the start of your image. If you are
using the ARM assembler:
 CODE32 ; or CODE16 for Thumb
 AREA ||.text||, CODE, READONLY
 NOP
 END

If you are using the GNU assembler:
ARM DUI 0064C Copyright © 1999, 2000 ARM Limited. All rights reserved. 2-5

Differences
 .text
 .type $a,function @ or $t for Thumb
$a:
 nop

The mapping symbol is in effect for the rest of the image, or until another
mapping symbol is encountered.

This provides a workaround for the disassembly and stepping restrictions listed
above for images that contain only ARM code or only Thumb code. However, it
means that literal pools are not detected and are disassembled as code, instead of
being displayed as data.

• GCC does not generate call frame information. This means actions that rely on
knowing the stack frame layout do not work. Specifically:

— No stack backtrace is available. Only the current function is shown in the
stack backtrace.

— Step out does not work.

Local variables and parameters are available in the variable view, however you
must step over the function prologue code that sets up the stack frame before they
show the correct values.

Line number information is available, so the source view correctly displays the
current source line.

IRQ and FIQ debugger internal variables

The ARM debuggers now support debug targets that create their own variables. These
are named $<proc_name>$<variable_name>, where:

<proc_name> Is the name of the processor, as shown in the Target panel of the Control
system view (for example, ARM1020E).

<variable_name>

Is the name of the variable, and can include:

irq (For example, $ARM1020E$irq.) A target can export this variable
to provide a means of asserting the interrupt request pin. To
trigger an interrupt manually, set the value to 1. To clear the
interrupt, set it to 0. The processor CPSR must not be
configured to disable interrupts.

fiq (For example, $ARM1020E$fiq.) A target can export this variable
to provide a means of asserting the fast interrupt request pin.
To trigger a fast interrupt manually, set the value to 1. To clear
the fast interrupt, set it to 0. The processor CPSR must not be
configured to disable fast interrupts.

Your debug target might create other variables (for example, ARM1020E$other). See the
target documentation for details.
2-6 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0064C

Differences
Code size improvements and improved optimization

ADS 1.1 optimization improvements have improved code density for compiled code
over ADS 1.0.1. A number of additional optimizations have been introduced. In
particular the compilers now reorder top-level data items when this will save space. For
example, if the following global variables are defined:

char a = 0x11;
short b = 0x2222;
char c = 0x33;
int d = 0x44444444;

the ADS 1.1 compilers optimizes the order and stores them in memory as:

char a;
char c;
short b;
int d;

Impact

You cannot rely on the order of global variables in memory being the same as the order
in which they are declared. If, for example, you have used a sequence of volatile global
variables to map peripheral registers, you must rewrite your code to use structures.

Extensions to RDI support

AXD supports the following extensions to RDI 1.5.1:

• real-time extensions, required for RealMonitor (RDI 1.5.1rt)

• trace extensions required for Trace support (RDI 1.5.1tx)

• self-describing module extensions, required to support self-describing targets
(RDI 1.5.1sdm).

Support for RealMonitor

RealMonitor is the ARM real-time debug solution. AXD has been enhanced to provide
support for RealMonitor. AXD can now connect to a running target without halting the
processor. RealMonitor requires the real-time extensions to RDI 1.5.1. In addition, the
Gateway DLL now supports RealMonitor.

Support for self-describing modules

Self-describing modules are an extension to RDI 1.5.1 that enable a target to describe
its capabilities and requirements to a debugger that supports RDI 1.5.1sdm. AXD
supports RDI 1.5.1sdm, and can modify its interface to suit the target to which it is
ARM DUI 0064C Copyright © 1999, 2000 ARM Limited. All rights reserved. 2-7

Differences
connected. For example, the target can describe the number, name, and formatting
requirements of its coprocessor registers to AXD, and AXD modifies its interface to
represent the capabilities of the target.

Note

This means that AXD interface elements can change, depending on the target to which
it is connected.

Changes to memory alignment

ADS 1.1 ensures that stack data is always 8-byte aligned. The new ATPCS requires that
sp always points to 8-byte boundaries. Your assembly language code must preserve
8-byte alignment of the stack at all external interfaces.

In addition, the default implementations of __user_initial_stackheap(), malloc(),
calloc(), realloc(), and alloca() now ensure that heap data is 8-byte aligned.

Impact

If you access stack data from assembly language you must ensure that you maintain
8-byte alignment of the stack at external interfaces.

If you have re-implemented the ARM C library default memory model, you must ensure
that you maintain 8-byte alignment of the heap. In particular, you must ensure that your
implementations of __rt_heap_extend(), __user_heap_extend() return 8-byte aligned
blocks of memory. __HeapProvideMemory() is allowed to assume 8-byte alignment. It is
recommended that your implementations of __user_initial_stackheap(),
__Heap_Alloc() and __Heap_Realloc() maintain 8-byte alignment of heap memory.

If you use the LDRD or STRD instructions, you must ensure that the location accessed is
8-byte aligned. In ARM assembly language:

• you must set the alignment of any data section, or code section that contains data,
using the ALIGN attribute to the AREA directive.

• you must use the ALIGN directive to ensure that data structures are 8-byte aligned.

For example:

 AREA example,CODE,ALIGN=3
 ;code
 ;code
my_struct DATA
 ALIGN 8 ;aligned on 8 byte boundary
 DCB 1,2,3,4,5,6,7,8
2-8 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0064C

Differences
The ADS 1.1 assembler supports two new directives to mark assembly units that contain
functions that require, or preserve 8-byte alignment of the stack. This enables the linker
to detect calls between code that does maintain 8-byte alignment, and code that does not
maintain 8-byte alignment.

PRESERVE8 Use this directive to mark assembly files that contain only functions that
preserve 8-byte alignment of the stack.

REQUIRE8 Use this directive to mark assembly files that contain at least one function
that requires 8-byte alignment of the stack (for example, the stack is
accessed with LDRD/STRD instructions.)

If you are using LDRD/STRD to access data objects defined in C or C++, you must use
__align(8) to ensure that the data objects are properly aligned. __align(8) is a storage
class modifier. This means that it can be used only on top-level objects. You can not use
it on:

• types, such as typedefs, structure definitions

• function parameters.

It can be used in conjunction with extern and static. __align(8) only ensures that the
object is 8-byte aligned. This means, for example, that you must explicitly pad
structures if required.

Note

Output objects from a compilation or assembly are marked as requiring 8-byte
alignment in the following circumstances:

• you specify the REQUIRE8 directive, because you are using LDRD and STRD

instructions in your assembly language code

• you allow the compiler to generate LDRD and STRD instructions by specifying the
-Oldrd option

• you use the __align(8) qualifier to set the alignment of an object to an eight byte
boundary.

These objects are unlikely to link with objects built with versions of ADS earlier than
1.1.

Angel moved to AFS

Angel is no longer shipped as part of ADS. Angel is now available as part of the ARM
Firmware Suite.
ARM DUI 0064C Copyright © 1999, 2000 ARM Limited. All rights reserved. 2-9

Differences
2.2.2 Differences in default behavior

This section describes how the default behavior of ADS 1.1 differs from that of ADS
1.0. The major changes are:

• The CodeWarrior IDE, fromELF, and armsd are now license-managed in the
same way as other components of ADS.

• The linker now unmangles C++ symbol names when generating diagnostic
messages or listings. This is the default. You can use the -mangled option to
change the behavior.

• The byte order of an ARMulator target can now be set in the target configuration
dialog in AXD and ADW.

• The ARM compilers now require the stack to be 8-byte aligned.

• AXD now starts up with much more of its state reproduced from the last session.

• The compilers now perform auto-inlining by default for optimization level -O2.

• The compilers now perform range-splitting optimization at optimization level -O1
(previously only done for -O2).

• The default filename for binary output from the compiler is now __image.axf.
That is, armcc sourcename.c, with no output name specified by the -o option, now
generates __image.axf, not sourcename.

• The ARMulator default behavior has changed. Branches to address zero are now
trapped only if you are running the FPE.

2.2.3 Changes to the compilers and libraries

This section describes:

• New compiler options and pragmas on page 2-11

• Obsolete compiler options on page 2-12

• Changed behavior on page 2-12

• Changes to the inline assemblers on page 2-14

• Changes to the libraries on page 2-14.
2-10 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0064C

Differences
New compiler options and pragmas

This section gives a brief summary of new compiler options for ADS 1.1. Refer to the
Compilers chapter of the ADS Compiler, Linker, and Utilities Guide for detailed
information. The following compiler options are new for ADS 1.1:

-split_ldm This option reduces the maximum number of registers transferred by LDM

and STM instructions generated by the compiler.

-O[no_]autoinline

This option disables automatic inlining. It can be enabled with
-Oautoinline.

-O[no]ldrd This option controls optimizations specific to ARM Architecture v5TE
processors. The default is -Ono_ldrd. If you select -Oldrd, and select an
Architecture v5TE -cpu option such as -cpu xscale, the compiler:

• Generates LDRD and STRD instructions where appropriate.

• Sets the natural alignment of double and long long variables to
eight. This is equivalent to specifying __align(8) for each variable.

Note

If you select this option, the output object is marked as requiring
8-byte alignment. This means that it is unlikely to link with objects
built with versions of ADS earlier than 1.1.

-auto_float_constants

This option changes the default handling of unsuffixed floating-point
constants.

-Wk This option turns off warnings that are given when the
-auto_float_constants option is used.

-O[no_]known_library

The -Oknown_library option enables specific optimizations that are
dependent on the supplied ARM C library. -Ono_known_library is the
default, and is required if you re-implement any part of the C library.

-fpu softvfp+vfp

This option selects a floating-point library with pure-endian doubles and
software floating-point linkage that uses the VFP hardware. Select this
option if you are interworking Thumb code with ARM code on a system
that implements a VFP unit.
ARM DUI 0064C Copyright © 1999, 2000 ARM Limited. All rights reserved. 2-11

Differences
-fpu vfpv1 Selects hardware Vector Floating Point unit conforming to architecture
VFPv1. This option is a synonym for -fpu vfp. It is not available for
Thumb.

-fpu vfpv2 Selects hardware Vector Floating Point unit conforming to architecture
VFPv2. This option is not available for Thumb.

#pragma import(symbol_name)

This pragma generates an importing reference to symbol_name. This is the
same as the assembler directive:

 IMPORT symbol_name

New predefined macros

The following predefined macros are new for ADS 1.1:

__TARGET_FEATURE_DOUBLEWORD

Set if the target architecture supports the PLD, LDRD, STRD, MCRR, and MRRC

instructions.

__TARGET_FPU_SOFTVFP_VFP

Set by the -fpu softvfp+vfp option.

Obsolete compiler options

The following compiler option, deprecated in ADS 1.0, is not supported in ADS 1.1:

-dwarf1 This option specifies DWARF1 debug table format. Specify -dwarf2

instead of -dwarf1.

Impact

You must modify existing makefiles that use this option.

Changed behavior

ADS 1.1 introduces the following changes to the behavior of the compilers:

• The default filename for binary output from the compiler is now __image.axf.
That is, armcc sourcename.c, with no output name specified by the -o option, now
generates __image.axf, not sourcename.

• Range splitting optimizations are turned on for -O1.
2-12 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0064C

Differences
• Output from the -S and -S -fs options now displays standard register names, such
as r0-r3, instead of their ATPCS equivalents (a1-a4). The output from -S -fs is
now written to filename.txt, instead of filename.s.

• When compiling with -zo, output sections now use the same name as the function
that generates the section. For example:

int f(int x) { return x+1; }

compiled with -zo gives:

 AREA ||i.f||, CODE, READONLY
f PROC
 ADD r0,r0,#1
 MOV pc,lr

• When compiling for ARM architecture v5TE, the compilers now use the
one-cycle 16-bit multiply instruction when multiplying two16-bit (short)
operands to produce a single 32-bit result.

• The compilers now support out of order inlining. This means you can call an
inline function before it is defined. In accordance with standard C, you must still
declare the function prototype before it is called.

• Additional optimizations have been introduced. The compilers do not generate:

— Unused static functions for optimization levels -O1 and -O2.

— Unused inline functions for all optimization levels. (This is unchanged
behavior.)

— Unused static RW data for -O1 and above.

— Unused static const data for all optimization levels.

In addition:

• The compilers now reorder top-level data items when this will save space. For
example, if the following global variables are defined:

char a = 0x11;
short b = 0x2222;
char c = 0x33;
int d = 0x44444444;

the ADS 1.1 compilers optimizes the order and stores them in memory as:

char a;
char c;
short b;
int d;

• the compilers now place zero initialized global and static definitions such as:

int a=0;
ARM DUI 0064C Copyright © 1999, 2000 ARM Limited. All rights reserved. 2-13

Differences
in the ZI data area. The variables are initialized by the C libraries at run time.
Previously such variables were placed in the RW area.

Changes to the inline assemblers

The inline assemblers support the ARMv5TE instructions. The inline assemblers do not
support VFP floating-point instructions.

Changes to the libraries

The ARM C libraries are now compiled with the -split_ldm compiler option. The
libraries preserve 8-byte alignment of the stack, and the default memory model
functions preserve 8-byte alignment of the heap. In addition:

• floating-point exceptions are disabled by default

• the ANSI C and C++ run-time support libraries are now combined

• a number of additional minor library variants are provided.

2.2.4 Changes to the assembler

This section describes:

• New instructions and directives on page 2-14

• New assembler options on page 2-15

• Obsolete assembler options on page 2-15

• Changed behavior on page 2-16.

New instructions and directives

The assembler provides support for new ARM architecture v5TE processors, including
the Intel XScale. The instruction set is now documented in the new ADS Assembler
Guide.

The ADS 1.1 assembler provides the following new directives:

PRESERVE8 Use this directive to mark assembly files that contain only functions that
preserve 8-byte alignment of the stack.

REQUIRE8 Use this directive to mark assembly files that contain at least one function
that requires 8-byte alignment of the stack

The assembler also supports the XScale coprocessor instructions MAR, MRA, MIA, MIAPH,
and MIAxy
2-14 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0064C

Differences
New assembler options

This section gives a brief summary of new assembler options for ADS 1.1. Refer to the
the ADS Assembler Guide for detailed information. The following assembler options
are new for ADS 1.1:

-fpu softvfp+vfp

This option selects software floating-point library with pure-endian
doubles, software floating-point linkage, and requiring a VFP unit. Select
this option if you are interworking Thumb code with ARM code on a
system that implements a VFP unit.

-fpu vfpv1 Selects hardware Vector Floating Point unit conforming to architecture
VFPv1. This option is a synonym for -fpu vfp. It is not available for
Thumb.

-fpu vfpv2 Selects hardware Vector Floating Point unit conforming to architecture
VFPv2. This option is not available for Thumb.

-split_ldm This option instructs the assembler to fault LDM and STM instructions if the
maximum number of registers transferred exceeds:

• five, for all STMs, and for LDMs that do not load the PC

• four, for LDMs that load the PC.

New predefined register names

ADS 1.1 predefines the following floating-point register names:

• s0-s31

• S0-S31

• d0-d15

• D0-D15.

Impact

You cannot use these names as user-defined label or symbol names in your assembly
language code.

Obsolete assembler options

The following assembler options, deprecated in ADS 1.0, are not supported in ADS 1.1:

-dwarf1 and -dwarf

This option specifies DWARF1 debug table format. Specify -dwarf2

instead of -dwarf1. -dwarf was a synonym for -dwarf1.
ARM DUI 0064C Copyright © 1999, 2000 ARM Limited. All rights reserved. 2-15

Differences
Impact

You must modify existing makefiles that use these options.

Changed behavior

ADS 1.1 introduces the following changes to the behavior of the assembler:

• The assembler now faults a call to a GET directive from within a macro.

• The assembler now faults the use of built-in variable names or predefined symbol
names as a user symbol, such as a macro name. In ADS 1.0 the assembler silently
ignored such usage.

• The assembler is now much stricter and more consistent in faulting usage that
does not conform to the ARM Architecture Reference manual. For example:

 CMP ip,a3,ASL #0
; Generates Warning: A1484E: Obsolete shift name ‘ASL’, use LSL instead

and:

 SWP r0,r1,[r0]
; Generates Warning: A1477W: This register combination results
; in UNPREDICTABLE behavior

2.2.5 Changes to the linker

This section describes:

• New linker options on page 2-16

• Changed linker behavior on page 2-17.

New linker options

This section gives a brief summary of new linker options for ADS 1.1. Refer to the ADS
Compiler, Linker, and Utilities Guide for detailed information. The following linker
options are new for ADS 1.1:

-callgraph This option creates a static callgraph of functions in HTML format. The
callgraph gives stack usage, definition, and reference information for all
functions in the image.

-edit file This option enables you to specify a steering file containing commands
to edit the symbol tables in the output binary.

-unmangled This option instructs the linker to display unmangled C++ symbol names
in diagnostic messages and listings.
2-16 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0064C

Differences
-mangled This option instructs the linker to display mangled C++ symbol names in
diagnostic messages and listings.

New scatter loading attributes

The scatter load syntax has been extended to include a new attribute for execution
regions:

FIXED Fixed address. Both the load address and execution address of the region
is specified by the base address (the region is a root region.)

Changed linker behavior

The following changes have been made to the linker behavior:

• The linker now unmangles C++ symbol names by default, in all listings and
diagnostic messages.

• The linker generates two new region-related symbols:

Image$$region_name$$Limit

Address of the byte beyond the end of the execution region.

Image$$region_name$$ZI$$Limit

Address of the byte beyond the end of the ZI output section in the
execution region.

See the description of linker-defined symbols in the ADS Compiler, Linker, and
Utilities Guide for more information, including a description of how to use the
Image$$region_name$$ZI$$Limit symbol to place a heap directly after the ZI
region. For new projects it is recommended that you use the region-related
symbols rather than section-related symbols.

• The linker no longer generates a warning message if there is a duplicate definition
of a symbol:

Both ARM & Thumb versions of symbol present in image

• The linker options -split and -rwpi now assume -rw-base 0 if no -rw-base value
is specified.

2.2.6 Changes to fromELF

This section describes:

• New fromELF options on page 2-18

• Changed behavior on page 2-18.
ARM DUI 0064C Copyright © 1999, 2000 ARM Limited. All rights reserved. 2-17

Differences
New fromELF options

This section gives a brief summary of new fromELF options for ADS 1.1. Refer to the
ADS Compiler, Linker, and Utilities Guide for detailed information. The following
fromELF options are new for ADS 1.1:

-vhx This option outputs Verilog Hex Format.

-base n This option specifies the base address of the output for Motorola S-record
(-m32), Intel Hex (-i32), and Extended Intellec Hex (-ihf) hex formats.

memory_config

This option outputs multiple files for multiple memory banks. This
option is available only if -vhx or -bin is specified as the output format.

Changed behavior

The following changes have been made to fromELF:

• fromELF can now disassemble ARMv5TE instructions.

• fromELF is now license-managed through FLEXlm

• fromELF now issues a warning for the -aif and -aifbin output options. These
formats are no longer supported.

• the fromELF -S option now prints size information.

2.2.7 Changes to the Flash downloader

The default flash.li Flash download utility is now targeted at the ARM Integrator
board. Source code for the Integrator flash.li is not supplied.

Source code for the ARM Development (PID) board is supplied in
install_directory\Examples\flashload.

2.2.8 Changes to the debuggers

This section describes:

• Changes to AXD on page 2-18

• Changes to armsd on page 2-20

• Changes to ADW and ADU on page 2-20.

Changes to AXD

The AXD interface has been significantly enhanced, including:

• AXD disassembles ARMv5TE instructions.
2-18 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0064C

Differences
• AXD displays the XScale coprocessors CP0, CP13, CP14, and CP15 in
appropriate formats.

• AXD data display has been enhanced to allow display in a choice of many
different formats.

• AXD now displays breakpoints and watchpoints in separate lists.

• AXD persistence has been improved so that more of the previous GUI state can
be restored at the start of a new session.

• AXD can load standard ELF/DWARF2 images produced by the GNU toolchain.
See Improved support for debugging third party images on page 2-5 for more
information.

• AXD adds support for RealMonitor. AXD can now connect to a running target
without stopping the processor.

• The debug view is improved. See Improved debug view on page 2-4 for more
information.

• AXD supports RDI self-describing modules. This means that AXD can
reconfigure itself to suit the capabilities of the target if the target supports
self-describing modules.

• AXD now allows targets to export their own debugger internal variables. See IRQ
and FIQ debugger internal variables on page 2-6 for more information.

The AXD command-line interface has been improved. This has introduced some
incompatibilities with ADS 1.0.1:

• Inputbase as a CLI property has been removed from both the properties dialog and
from the format command. In addition, you must use a prefix to specify a
nondecimal format:

0x/0X specifies a hexadecimal value.

o/O specifies an octal value.

b/B specifies a binary value

No prefix specifies a decimal value.

• The asd command is replaced by the sdir (source directory) and ssd (set source
directory) commands.

• The format command has changed. The parameters have new meanings, and
format is no longer used to set up current input base from the command line. If
the old style format command is used, an error message is displayed.
ARM DUI 0064C Copyright © 1999, 2000 ARM Limited. All rights reserved. 2-19

Differences
Changes to armsd

The armsd debugger has been enhanced in the following ways:

• armsd disassembles ARMv5TE instructions.

• armsd is now license-managed through FLEXlm.

• armsd can set and display the 40-bit XScale CP0 register, in a similar way to
current ARM usage. The following example shows how to use armsd to write the
40-bit value 0x9876543210 to register CP0, and read CP0 again:

armsd: cw 0 0 0x76543210 0x98
armsd: cr 0
c0 = 0x76543210 FFFFFF98

armsd reads the register as two 32-bit words, and sign extends bit 39 into the
upper 24 bits.

• armsd now accepts -cpu [name] list to list the available processors in a target:

armsd -cpu list

lists available processors of standard targets (ARMulator and
Remote_A).

armsd -armul -cpu list

lists available processors of ARMulator.

armsd -target dllname -cpu list

lists available processors of the specified target.

• armsd on UNIX loads its RDI targets dynamically.

• the armsd return command is no longer supported.

Obsolete armsd options

The -proc option is obsolete. Use -cpu instead.

Changes to ADW and ADU

ADW and ADU now disassemble ARMv5TE instructions.

2.2.9 Changes to ARMulator

This section describes changes to the ARMulator, including:

• License management on page 2-21

• Integrated ARMulator and new processor models on page 2-21

• New API for memory models on page 2-21
2-20 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0064C

Differences
• New configuration mechanism on page 2-21

• ARMulator byte order set from the debuggers on page 2-22

• Changes to default behavior on page 2-22.

License management

The ARMulator is now license-managed at the model level, through FLEXlm.

Integrated ARMulator and new processor models

The ARMulator has been restructured to provide a single interface to all processor
models that is easier to use and modify. All ARMulator models are accessible through
a single target DLL (armulate.dll). The BATS DLL is not supplied with ADS 1.1. The
ARMulator is now supplied as a shared object under UNIX.

The ARMulator has been upgraded to support the latest processors. It provides new
models of:

• the ARM9 (ARM946E and ARM966E)

• ARM10, including VFP10

• XScale.

New API for memory models

The ARMulator provides a new memory model interface that enables you to add
memory and peripheral models without rebuilding the complete ARMulator. The
ARMulator rebuild kit has been replaced with the ARMulator Extension Kit.

New configuration mechanism

The armul.cnf configuration mechanism has been split to separate features that can be
edited and those that cannot. The ARMulator recognizes two file extensions:

• Files ending .dsc, such as armulate.dsc, are supplied with ARMulator DLLs.
They describe the cores and peripherals the DLL can emulate. They are not
intended to be edited.

• Files ending .ami are intended to be edited. A .ami file can define one or more
named systems, for selection by the -cpu option in armsd or a dialog box in a GUI
debugger.

The armulate.dll model looks at environment variables ARMDLL and ARMCONF for paths to
search for its configuration files. It loads all the files with those extensions it can find
(on the paths specified by the ARMDLL and ARMCONF environment variables). If it cannot
find any, it issues an error message and fails to initialize.
ARM DUI 0064C Copyright © 1999, 2000 ARM Limited. All rights reserved. 2-21

Differences
In order to avoid loading files that are not meant for the armulate.dll product, it
examines each file and checks that it starts with:

;; ARMulator configuration file type 3

ARMulator byte order set from the debuggers

The ARMulator configuration dialog can now set the byte order of the simulated
processor from within the debugger. Also, there are additional radio buttons in the
configuration dialog to set the default startup behavior for ARMulator models that have
a CP 15. See the ADS Debuggers Guide for detailed information.

Changes to default behavior

The ARMulator default behavior has changed. Branches to address zero are now
trapped only if you are running the FPE.

2.2.10 Changes to the CodeWarrior IDE

The CodeWarrior IDE is now license-managed using FLEXlm.

CodeWarrior IDE project files are stored in a slightly different format to those of ADS
1.0.1. The CodeWarrior IDE automatically converts existing project files to the new
format and displays a dialogue box to inform you.

CodeWarrior configuration dialogs have been updated to support the changed tool
options.

The ARM Features configuration panel has been added to support license-restricted
license-managed features.

On Windows 95 it is recommended that you have a minimum patch level of OSR_2, or
that you have Internet Explorer 5 installed, to ensure that you have the latest OLE DLLs.

2.2.11 Changes to the examples

The example code supplied with ADS in install_directory\Examples has been
supplemented with the following additional examples:

• The rom_integrator directory contains a version of the rom example that is
targeted at the ARM Integrator board.

• The mmugen directory contains the source and documentation for the MMUgen
utility. This utility can generate MMU pagetable data from a rules file that
describes the virtual to physical address translation required.
2-22 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0064C

Differences
2.3 Changes between ADS 1.0 and SDT 2.50/2.51

This section describes the changes between ADS 1.0 and SDT 2.50/2.51. It contains the
following subsections:

• Functionality enhancements and new functionality on page 2-23

• Differences in default behavior on page 2-33

• Changed compiler behavior on page 2-38

• Changed assembler behavior on page 2-44

• Changed linker behavior on page 2-47

• Obsolete components and standards on page 2-48.

2.3.1 Functionality enhancements and new functionality

The ADS 1.0 release of the ADS introduced numerous enhancements and new features.
The major changes are described in:

• Support for new processors (ARM9E and ARM10)

• New ARM/Thumb procedure call standard on page 2-24

• Floating-point support on page 2-24

• Byte order of long long and double on page 2-25

• Remote Debug Interface on page 2-26

• Debuggers on page 2-26

• ARMulator on page 2-27

• Angel and Remote_A on page 2-27

• Libraries on page 2-28

• Library manager on page 2-28

• CodeWarrior IDE on page 2-29

• Linker on page 2-29

• Compilers on page 2-30

• Assembler on page 2-31

• License management on page 2-32.

Support for new processors (ARM9E and ARM10)

ADS introduces support for the new ARM9E and ARM10 processors.

The new ARM9E instructions are supported by the assembler, the inline assembler of
the C and C++ compilers, the debuggers, and the ARMulator.

The new ARM10 instructions are supported by the assembler, the inline assembler of
the C and C++ compilers, the debuggers, and the Basic ARM Ten System (BATS)
ARMulator model.
ARM DUI 0064C Copyright © 1999, 2000 ARM Limited. All rights reserved. 2-23

Differences
Note
BATS is no longer shipped with ADS 1.1.

The compiler performs instruction scheduling for ARM10 code by re-ordering machine
instructions to gain maximum speed and minimize wait states. The linker uses BLX in
interworking veneers when the underlying architecture (the ARM9E and ARM10, for
example, have architecture 5) supports it.

New ARM/Thumb procedure call standard

The Procedure Call Standard has been redesigned to:

• give equal emphasis to ARM and Thumb

• interwork between ARM-state and Thumb-state for all variants

• reduce the number of variants

• support position-independence

• produce compact code (especially with Thumb)

• be binary compatible with the previous most commonly used APCS variant.

The new ARM/Thumb Procedure Call Standard (ATPCS) enables a consistent ARM
and Thumb definition of Read Only Position Independence (also called Position
Independent Code), and Read Write Position Independence (also called Position
Independent Data) for both ARM and Thumb.

Floating-point support

Enhanced floating-point support is available in the compiler, assembler, and debugger:

• The compiler, assembler, and debugger support the new VFP floating-point
architecture in scalar mode.

• The compiler can generate VFP instructions for double and float operations. (The
inline assembler, however, does not support VFP.)

• The assembler supports VFP in vector mode. (New register names and directives
are available.)

• The compiler and assembler command-line option -fpu specifies the FPA
hardware, VFP hardware, or software variants.

Choose -fpu FPA or -fpu softFPA to retain the old SDT 2.50/2.51 format.
2-24 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0064C

Differences
Note
The order of the words in a little-endian double is different for FPA and VFP. If you
select -fpu FPA or -fpu softFPA the SDT 2.50/2.51 format is used. If you select -fpu VFP
or -fpu softVFP the new format is used.

There is no functional difference between SoftFPA and SoftVFP. Both implement IEEE
floating-point arithmetic by subroutine call, and both use the IEEE encoding of
floating-point values into 32-bit words. However, the ordering of the two halves of a
double is different for little-endian code. See Byte order of long long and double for
details.

Byte order of long long and double

The compilers and assembler now support industry-standard long long and double types
in both little-endian and big-endian formats. In SDT 2.50/2.51, the formats of
little-endian double and big-endian long long are nonstandard.

If a big-endian 64-bit quantity is represented as abcdefgh, with a being the most
significant byte and h the least significant byte, the standard little-endian format is
hgfedcba. SDT 2.50/2.51 uses the following nonstandard formats:

efghabcd For big-endian long long.

dcbahgfe For little-endian double.

Impact

The format of long long is always industry-standard in ADS 1.0. There is no impact if
you have used little-endian long long. If you previously used big-endian long long, you
must recompile your code and ensure that it conforms to the new format.

There is no impact if you have used big-endian double. If you previously used
little-endian double and hardware floating-point (FPA), you must continue to use the old
little-endian double format and select the -fpu fpa option in ADS.

If you previously used little-endian double and software floating-point, you can choose
whether or not to change to the new format:

• Use -fpu softFPA or -fpu FPA to retain the old format.

• Use -fpu softVFP or -fpu VFP to use the industry-standard format. You must
recompile code that defines or references double types.
ARM DUI 0064C Copyright © 1999, 2000 ARM Limited. All rights reserved. 2-25

Differences
Remote Debug Interface

A new variant of the Remote Debug Interface (RDI 1.5.1) is introduced in ADS. The
version used in SDT 2.50/2.51 was 1.5.

The ADW debugger has been modified to function with RDI 1.0, RDI 1.5, or RDI 1.5.1
client DLLs. AXD works with RDI 1.5.1 targets only.

Debug targets that are released as part of ADS (ARMulators, Remote_A, and Gateway)
have been upgraded to RDI 1.5.1.

Impact

Third-party DLLs written to use RDI 1.5 will continue to work with the versions of
ADW and armsd shipped with ADS, but will only work with AXD if the DLL is, and
reports itself as, RDI 1.5.1 capable. Third-party debuggers will fail to work with the
ADS ARMulators, Remote_A, and Gateway DLLs unless the debuggers conform to
RDI 1.5.1.

Debuggers

A new debugger, AXD, is available for use on Windows or UNIX in addition to the
existing ADW and ADU. ADW has been enhanced.

All debug agents and targets in ADS support RDI 1.51, a new version of the Remote
Debug Interface. The debuggers support all the debug agents (for example ARMulator
and Remote_A) that are released as part of ADS. In addition, all debuggers except
armsd support Multi-ICE 1.4:

• ADW supports all ADS debug agents, Multi-ICE 1.3, and Multi-ICE 1.4

• ADU supports all ADS debug agents, and Multi-ICE 1.4

• Armsd supports all ADS debug agents

• AXD supports all ADS debug agents and Multi-ICE 1.4.

AXD

The new debugger provides a modern GUI with improved window management, data
display, and data manipulation. The debugging views have been redesigned to make the
display more relevant to the data. This includes in-place expansion, in-place editing and
validation, data sensitive formatting and editing, coloring modified data, and greater
user control over formatting and structure.

ADW

ADW enhancements are:

• Support for VFP floating-point opcodes and registers.
2-26 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0064C

Differences
• Improved stack-unwinding due to the use of DWARF2 descriptions. In ADS, all
standard library functions carry DWARF frame unwinding descriptions with
them. These are always generated by ADS compilers and there is new assembler
support in ADS to facilitate their generation for hand-written assembly language.

Impact

AXD can debug RDI 1.5.1 targets only. All ARM-supplied debug targets (Multi-ICE,
ARMulator, Remote_A, and gateway) support RDI 1.5.1. For non-ARM debug targets
that support RDI 1.5 or RDI 1.0, use ADW instead of AXD.

There is no support for conversion of ADW obey files to AXD scripts. If existing obey
files are important, use ADW instead.

ARMulator

The ARMulator has been enhanced to support RPS Interrupt Controller and Timer
peripheral models (as defined in ARM DDI 0062D). The ARMulator supports the
following new processor models:

• ARM9E

• ARM10T™

• ARM1020T™.

The ARM10 models do not support VFP.

There is also a new stack usage monitor memory model available for all processor
models except ARM10T and ARM1020T.

The ARMulator supports RDI 1.5.1.

Angel and Remote_A

Angel and Remote_A enhancements are:

• Remote_A connection supports RDI 1.5.1.

• Improved reliability when semihosting.

• Additional Angel ports and improved integration with uHAL.

• Improved coprocessor support, for example FPA (ARM7500) and VFP (ARM10)
coprocessors.

• Support for dynamically loaded hardware drivers for the host on Windows and
UNIX.
ARM DUI 0064C Copyright © 1999, 2000 ARM Limited. All rights reserved. 2-27

Differences
Hardware other than serial, parallel, or ethernet ports can be used to communicate
with Angel. The GUI interface for Remote_A is extended into the loaded driver.

Libraries

All Libraries (C, C++, math, and floating-point) are released as a set of object code
variants that cover all possible choices of Procedure Call Standard and all processor
architecture versions. A limited set of variants is required because the libraries have
been restructured to remove the necessity for some combinations. The compilation and
linking system has been re-engineered so that the correct library variants are
automatically linked in for the chosen compilation options. The linker is able to identify
the correct library variant from attributes embedded in the ELF. This re-engineering
makes the library variants much easier to use and removes the requirement to rebuild
different variants.

The C library has been improved and restructured so that there is no requirement for a
separate embedded C library. The C library chapter in the ADS Compiler, Linker, and
Utilities Guide describes in detail how to construct target-specific libraries.

New real-time (near constant time) versions of the heap management functions
malloc(), free(), realloc(), and calloc() are provided.

The floating-point libraries have improved performance and functionality. Two versions
are provided:

• The version identified by the files beginning with f_ conforms to IEEE 754
accuracy standards and meets the floating-point arithmetic requirements of the C
and Java language standards.

• The version identified by the files beginning with g_ provides selectable IEEE
rounding modes and full control of IEEE exceptions, but at some performance
cost.

The Math library has better accuracy and a wider variety of functions (for example,
gamma function, cube root, inverse hyperbolic functions).

Library manager

The library manager is armar. The ARM librarian enables sets of ELF format object
files to be collected together and maintained in libraries. You can pass such a library to
the linker in place of several ELF files. armar files are compatible with the UNIX
archive format ar.
2-28 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0064C

Differences
Impact

The linker supports the deprecated ALF library format. Use armar for new libraries and
migrate your existing libraries to armar.

CodeWarrior IDE

ARM has licensed the CodeWarrior IDE from Metrowerks and is making this available
within ADS. This replaces APM on Windows platforms. (It is not available on UNIX
platforms).

The CodeWarrior IDE provides a simple, versatile, graphical user interface for
managing your software development projects. You can use CodeWarrior for the ARM
Developer Suite to develop C, C++, and ARM assembly language code targeted at
ARM processors. The CodeWarrior IDE enables you to configure the ARM tools to
compile, assemble, and link your project code.

CodeWarrior IDE configuration dialogs

The CodeWarrior IDE dialog boxes are used to select the new features available in the
compilers, assembler, and the linker.

Each selectable option on the dialog boxes has a tool tip that displays the command-line
equivalent for the option.

Impact

Existing APM projects are not usable with CodeWarrior. There is no support for
conversion of .apj files to CodeWarrior projects. Use the CodeWarrior IDE for new
projects. Migrate your existing APM projects to use the CodeWarrior IDE.

Check the assembler, compiler, and linker options for your new or migrated projects as
the defaults for ADS 1.0 are different from the defaults for the SDT 2.50/2.51.

Linker

The major linker enhancements are:

• Support for ELF object code.

• Support for automatic selection of the correct library variant.

• Improved scatter-loading features to support new execution region attributes:

— Position Independent (PI)

— Relocatable (RELOC)

— linked at a fixed address (ABSOLUTE)
ARM DUI 0064C Copyright © 1999, 2000 ARM Limited. All rights reserved. 2-29

Differences
— simple Overlay (OVERLAY).

• Direct support for ROPI and RWPI procedure call standard variants.

• Support for outputting symbol definitions from a link step and reading them in a
later link step (support for system code at a fixed address).

Impact

Update your projects or makefiles to link with the appropriate options. In most cases
you will not have to change your source code to use the new options.

Check the assembler, compiler, and linker options for your new or migrated projects as
the defaults for ADS 1.0 are different from the defaults for armlink in SDT 2.50/2.51.

See Changed linker behavior on page 2-47 and the ADS Compiler, Linker, and Utilities
Guide for more information.

Compilers

Extensive improvements have been made to the compilers.

C compilers

The following improvements have been made to the C Compiler:

• Assembly language output generated with the -S option to the ARM and Thumb
compilers can now more easily be assembled. The compilers add ASSERT

directives for command-line options such as ATPCS variants and byte order to
ensure that compatible compiler and assembler options are used when
reassembling the output.

• The inline assembler supports the new ARM9E and ARM10 instructions.

• Instruction scheduling for ARM10 minimizes wait states.

• the new VFP architecture is supported.

New compiler options are provided for:

• controlling warnings

• selecting optimization

• generating position-independent code and position-independent data.
2-30 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0064C

Differences
C++ compilers

The C++ compilers included with ADS inherit all the benefits of the C compiler. The
following additional improvements have been introduced since C++ version 1.10:

• Rogue Wave Library 2.01. This includes the Rogue Wave iostream
implementation. The iostream implementation supplied with C++ version 1.10
has been removed. Replace references to stream.h and iostream.h with iostream.

• Support for the EC++ informal standard.

• Updated vtables to support ROPI.

• Improved template handling.

In addition, improvements have been made to the C++ compilers syntax and semantic
checking in both strict and non-strict modes. If previously successful programs now fail
to compile, please check their syntax first, before concluding that there is a compiler
fault.

Other general improvements are support for:

• mutable

• explicit

• covariant return types for left-most inheritance

• pseudo-destructors

• aggregates with allow complicated initializations

• template classes with static data members

• temporary destruction order for arguments to functions

• explicit casts to private bases

• inline functions

• better overload resolution

• declarations in conditional statements.

See Changed compiler behavior on page 2-38 and the ADS Compiler, Linker, and
Utilities Guide for more information.

Assembler

Enhancements to the assembler include:

• the assembler provides support for the latest ARM processors

• the assembler outputs ELF object code.

There are considerable changes to assembler directives. See Changed assembler
behavior on page 2-44 and the ADS Compiler, Linker, and Utilities Guide for more
information.
ARM DUI 0064C Copyright © 1999, 2000 ARM Limited. All rights reserved. 2-31

Differences
License management

ADS components are license-managed by FLEXlm. See the ADS Installation and
License Management Guide for more information.
2-32 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0064C

Differences
2.3.2 Differences in default behavior

The differences in the default behavior of ADS compared to SDT 2.50/2.51 are
described in:

• Object and library compatibility on page 2-33

• Entry point used with debugger on page 2-34

• Entry point set by linker option on page 2-34

• ADW on page 2-34

• ARMulator on page 2-35

• ELF, AIF, Binary AIF, IHF and Plain Binary Image formats on page 2-35

• Floating-point exceptions on page 2-35

• Stack unwinding on page 2-36

• Source directory variable in armsd and ADW on page 2-36.

Object and library compatibility

As a consequence of the new features introduced with ADS, ADS object files and
libraries are not guaranteed to be compatible with SDT 2.50/2.51 object files and
libraries. You can link SDT 2.50/2.51 objects and libraries with ADS images, but you
must ensure that your objects are built with appropriate procedure call standard options,
and that the following restrictions are observed:

• You must choose the SDT 2.50/2.51 default Procedure Call Standard options
when using SDT 2.50/2.51 (/hardfp excluded), and the ADS 1.0 default
Procedure Call Standard options when using ADS.

• In ADS, you must use -fpu FPA, -fpu softFPA, or -fpu none. You cannot use the
default option of -fpu softVFP.

• The format of big-endian long long has changed. This means that there is no
compatibility between ADS and SDT big-endian code if you use long long.

• There is no equivalent in ADS to the SDT -apcs /nofpregargs option for functions
that return a floating-point value. Functions that are built with the -apcs

/nofpregargs option, but do not return a floating-point value, are compatible with
functions declared using the new __softfp keyword.

• An SDT 2.50/2.51 object and an ADS object will be incompatible if they map the
same datum using a struct type T, whether through use of T * pointers or extern
T, and T contains only fields of short alignment.

A field has short alignment if its type is:

— [unsigned] short [array]

— [unsigned] char [array]
ARM DUI 0064C Copyright © 1999, 2000 ARM Limited. All rights reserved. 2-33

Differences
— a short enum type

— a struct containing only fields of short alignment.

In addition, if you link with SDT 2.50/2.51 objects you cannot take advantage of some
ADS debug enhancements. In particular, you cannot unwind the stack through SDT
2.50/2.51 code.

Entry point used with debugger

When an image with an entry point is loaded:

• the CPSR register is set to the value corresponding to a warm boot

• the IRQ and FIQ flags are set (disabling all interrupts)

• mode is set to Supervisor

• Condition Code flags are unchanged

• the processor executes in ARM state.

If the image contains no entry point, no change is made to the CPSR.

Default interrupt settings for debug targets

The ADS default for interrupt settings is different to that for SDT, and more accurately
reflects the hardware power-up settings of an ARM core. The debuggers no longer
enable interrupts during start-up. Interrupts are initially disabled for all debug targets
except Angel (which requires interrupts to be turned on in order to behave correctly).

In SDT 2.50/2.51, initially cpsr = %ift_SVC32 for all targets.

In ADS, initially cpsr = %IFt_SVC for all targets except Angel, which has %ift_SVC.

Entry point set by linker option

The -entry option sets the entry point for an image. There can be only one instance of
the -entry option to the linker.

Impact

Multiple -entry settings generate an error.

ADW

ADW now defaults to VFP mode for the display of floating-point and double values,
and for floating-point registers.
2-34 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0064C

Differences
The SDT 2.50/2.51 version of ADW allowed some debug target settings to be
configured by the debugger tab on the configuration screen (for example, ARMulator
memory maps and byte order). For ADS debug targets, this tab is greyed out and the
configuration button must be used instead. This button invokes the configuration box in
the RDI Target.

Impact

The RDI Target configuration box has been extended to handle memory maps and byte
order. The debugger tab is still available for old debug target DLLs.

ARMulator

FPE is now deselected by default in ARMulator. If you need FPE support for armsd, use
the command-line option -FPE. If you need FPE support for ADW or AXD, select the
FPE option in the ARMulator configuration dialog.

Map file selection has changed since SDT 2.50/2.51. The local/global/none map file
selection dialog has been replaced with a single map file selection.

ELF, AIF, Binary AIF, IHF and Plain Binary Image formats

The default, and only supported, image format is ELF.

Impact

The preferred way to generate an image in a non-ELF image (such as plain binary or
AIF) is to use the fromELF tool to translate the ELF image into the required format.

Floating-point exceptions

The ADS tools have been changed to conform to the IEEE specification. The
SDT2.50/2.51 tools set the default response to floating-point Invalid-Operation,
Divide-By-Zero and Overflow to be a trap causing program termination. This is
contrary to IEEE 754 section 7, that states that “The default response to an exception
shall be to proceed without a trap.”

Impact

To restore exception handling to the SDT 2.50/2.51 default, make the call shown in
Example 2-1 before using any floating-point operations. The call should preferably be
at the beginning of main().
ARM DUI 0064C Copyright © 1999, 2000 ARM Limited. All rights reserved. 2-35

Differences
Example 2-1

#include <fenv.h>
#define EXCEPTIONS (FE_IEEE_MASK_INVALID | FE_IEEE_MASK_DIVBYZERO | \
 FE_IEEE_MASK_OVERFLOW)
__ieee_status(EXCEPTIONS, EXCEPTIONS);

Stack unwinding

The compilers now always generate DWARF2 stack-unwinding descriptions. In SDT
2.50/2.51 they were only generated if the -g option was specified (for debug
information). The assembler generates stack-unwinding descriptions if the new frame
directives are used. The debuggers rely on the stack-unwinding descriptions for stack
backtrace.

Impact

If you want to unwind stacks when debugging assembler code, ensure that you use the
new frame directives. Stack-unwinding descriptions are automatically generated by the
ADS compilers and are included in the libraries released with ADS, so you have to
change only assembly language code and legacy SDT2.50/2.51 code not compiled with
debug information (-g option). You can examine disassembled output from the
compilers to see how to use the assembler frame directives correctly.

Source directory variable in armsd and ADW

The $sourcedir variable used by armsd and ADW defaults to NULL if no value is
specified. In addition, the delimiter used to separate multiple pathnames has been
changed from a space to a semicolon.

The variable is used only to specify alternative search paths to the debuggers. You must
use the following conventions when specifying search paths:

• Enclose the full pathname in double quotes.

• In ADW and armsd under Windows DOS, escape the backslash directory
separator with another backslash character. For example:

"c:\\mysource\\src1"

• Separate multiple pathnames with a semicolon, not with a space character. For
example:

"c:\\mysource\\src1;c:\\mysource\\src2"

You can also specify long pathnames containing space characters. For example:
2-36 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0064C

Differences
"c:\\my source\\src1;c:\\my source\\src2"
ARM DUI 0064C Copyright © 1999, 2000 ARM Limited. All rights reserved. 2-37

Differences
2.3.3 Changed compiler behavior

This section describes compiler behavior that is new, changed, deprecated, or obsolete.
Obsolete features are identified explicitly. Their use is faulted in ADS. Deprecated
features will be made obsolete in future releases. Their use is warned about in ADS.

New compiler options

The following new warning options are available in the compilers:

-We Turn off warnings about pointer casts

-Wm Turn off warnings about multi-character char constants

-Wo Turn off warnings about implicit conversion to signed long long

-Wq Turn off warnings about C++ constructor initialization order

-Wy Turn off warnings about deprecated features.

Use -W+option to turn a warning on. For example use -W+e to turn on warnings about
pointer casts.

The following additional new options are available in the compilers:

-Ono_inline Disable inlining. This option replaces -zpdebug_inlines.

-memaccess Specifies the memory attributes of the target system.

-nostrict Enables minor extensions to the C and C++ standards.

The changes to the qualifiers to the -apcs option are listed in Table 2-1.

Table 2-1 Procedure call standard qualifiers

ADS form
SDT 2.50/2.51
equivalent

[no]interwork [no]interwork

[no]ropi Not available

[no]rwpi Not available

[no]swstackcheck [no]swstackcheck

Obsolete. Now always nofp. [no]fp

No direct equivalent. For default behavior use -fpu softVFP.
For compatibility with legacy SDT objects or libraries, use
-fpu softFPA.

softfp

No direct equivalent, use -fpu FPA. hardfp
2-38 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0064C

Differences
Impact

Update your projects or makefiles to compile with the appropriate options. In most
cases you do not have to change your source code to use the new options.

Check the assembler, compiler, and linker options for your new or migrated projects as
the defaults for ADS 1.0 are different from the defaults for SDT 2.50/2.51.

Obsolete compiler pragmas

The following pragmas from the ARM Software Development Toolkit are not supported
in the compiler:

check_memory_accesses
optimize_cross_jump
optimize_cse
optimize_multiple_loads
optimise_scheduling
side_effects
continue_after_hash_error
debug_inlines
force_toplevel
include_only_once

Impact

If you are creating new applications, there is no impact. If you are recompiling existing
applications, ensure that the appropriate build options are specified to the compiler.
Remove any obsolete pragmas from your source code and replace them, where
necessary, with equivalent compiler options.

Obsolete compiler options

The following options from the ARM Software Development Toolkit are not supported
in the compiler:

-zpname

Not available. [no]fpregargs

Obsolete. Now always narrow. narrow, wide

No direct equivalent, use -rwpi. [non]reentrant

Table 2-1 Procedure call standard qualifiers (continued)

ADS form
SDT 2.50/2.51
equivalent
ARM DUI 0064C Copyright © 1999, 2000 ARM Limited. All rights reserved. 2-39

Differences
Select pragma from command line.

-zinumber

Replaced by -Ospace and -Otime.

-gxletter

Replaced by the -O[0|1|2] options.

-dwarf Use -dwarf2 (or -dwarf1).

-aof Output AOF.

-asd Output ASD format debug tables.

-MD Generate APM dependency.

-cfront Select Cfront-style C++.

-pcc Select Berkeley PCC.

-fussy Synonym for -strict.

-pedantic Synonym for -strict.

-fw Make string literals writable.

-zanumber

Use -memaccess instead. The default behavior for ADS 1.0 is for LDR to
access only word-aligned addresses (-za1).

-zt Fault tentative declarations. This is now the default unless -strict is
specified.

-zznumber

Default is -zzt0.

-zztnumber

Combines the -zt and -zz options.

-zap Specify whether pointers to structures are assumed to be aligned on at
least the minimum byte alignment boundaries set by -zas. The behavior
for ADS 1.0 is -zap0.

-zat Default is -zat1.

-zrnumber

Set the number of register values transferred by LDM and STM instructions.
The compilers never generate LDM or STM instructions that transfer more
than nine register values for either ARM code or Thumb code.

-fz This is now the default.
2-40 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0064C

Differences
Impact

If you are creating new applications, there is no impact. If you are recompiling existing
applications, ensure that the appropriate build options are specified to the compiler.
Remove any obsolete options from your make files and replace them, where necessary,
with equivalent options. Check the assembler, compiler, and linker options for your new
or migrated projects as the defaults for ADS 1.0 are different from the defaults for the
SDT 2.50/2.51.

Deprecated compiler options

The following options are deprecated and will not be supported in future versions of the
compiler:

-dwarf1 Use -dwarf2.

-proc, -arch Select processor or architecture. Use -cpu instead.

-zasnum Align structures on at least a num-byte boundary (1, 2, 4, or 8). The
default is now 1 (align only as strictly as the contents of the
structure require).

Impact

You can still output DWARF1 debug tables. However, the functionality of these output
files when used with the new debuggers might be reduced. Use DWARF2 format for
new projects and update your existing tools to use the DWARF2 format.

Obsolete ARM-specific language extensions

The following language extensions are obsolete:

__global_freg

This language extension is not required.

___weak (three underscores)

This was a synonym for __weak (two underscores) in SDT 2.50/2.51. Use
__weak.

__softfp This is a storage class specifier you can use in the declaration of a
function to indicate that the function has a software floating-point
interface (a double parameter passed in two integer registers, a double

result returned in a0, a1) even though its implementation may use
floating-point instructions. Use this to create ARM-state, VFP-using (or
FPA-using) functions that you can call directly from Thumb state (in
which floating-point instructions are inaccessible).
ARM DUI 0064C Copyright © 1999, 2000 ARM Limited. All rights reserved. 2-41

Differences
Obsolete and new predefined macros

The obsolete predefined macros are listed in Table 2-2.

The new predefined macros are listed in Table 2-3.

Table 2-2 Obsolete predefined macros

Predefine Status Comments

__CLK_TCK Obsolete C library use only.

__APCS_32 Obsolete Relates to obsolete APCS/TPCS. No ATPCS equivalent.

__APCS_FPREGARGS Obsolete Relates to obsolete APCS/TPCS. No ATPCS equivalent.

__APCS_NOFP Obsolete Relates to obsolete APCS/TPCS. No ATPCS equivalent.

__APCS_REENT Obsolete Relates to obsolete APCS/TPCS. No ATPCS equivalent.

__APCS_NOSWST Obsolete Relates to obsolete APCS/TPCS. Use new __APCS_SWST.

__CFRONT_LIKE Obsolete The option -cfront is now obsolete.

__DIALECT_PCC Obsolete The option -pcc is now obsolete.

__DIALECT_FUSSY Obsolete The option -fussy is now obsolete.

Table 2-3 New predefined macros

Predefine Status Comments

__CC_ARM New Always defined.

__STRICT_ANSI__ New Set by -strict.

__embedded_cplusplus New Set by -embeddedcplusplus.

__APCS_ROPI New Set by -apcs /ropi.

__APCS_RWPI New Set by -apcs /rwpi.

__APCS_SWST New Set by -apcs /swst.

__FEATURE_SIGNED_CHAR New Set by -zc.

__OPTIMISE_SPACE New Set by -Ospace.
2-42 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0064C

Differences
__OPTIMISE_TIME New Set by -Otime.

__TARGET_FPU New Target Floating Point Unit

__TARGET_FEATURE_DSPMUL New Set if ARM9E multiplier available.

Table 2-3 New predefined macros (continued)

Predefine Status Comments
ARM DUI 0064C Copyright © 1999, 2000 ARM Limited. All rights reserved. 2-43

Differences
2.3.4 Changed assembler behavior

This section describes assembler behavior that is changed, deprecated, or obsolete.
Obsolete features are identified explicitly. Their use is faulted in ADS. Deprecated
features will be made obsolete in future releases. Their use is warned about in ADS.

New or changed assembler behavior

The following enhancements and changes are available in the assembler:

• The assembler provides new ATPCS command-line options similar to those for
the compilers.

• The default floating-point option is -fpu softvfp.

• A new default software stack checking option of -swstna is introduced for code
that is compatible with both software stack checking code and non software stack
checking code. This option makes explicit the behavior of the assembler. There is
no change to the default behavior.

• The assembler always outputs ELF object code. AOF is no longer supported.

• The assembler requires the dollar ($) and double quotation (") characters to be
doubled when they are included in string literals. SDT 2.50/2.51 required only a
single dollar or double quote character. For example, the following statement in
SDT:

copyloadsym SETS "|Load$$":CC:namecp:CC:"$$Base|"

must in ADS be:

copyloadsym SETS "|Load$$$$":CC:namecp:CC:"$$$$Base|"

• The new -memaccess option specifies the memory attributes of the target system.

• The -list option now accepts an argument of - to select stdout.

• DWARF2 stack-unwinding descriptions can be, and are recommended to be,
produced by the use of new directives.

• The assembler supports the new ARM9E and ARM10 instructions. Use one of
ARM9E, ARM10TDMI™, ARM1020T, or ARM10200™ with the -cpu option.

• Support is provided for VFP in both scalar and vector mode.

• New directives DCQ and DCQU define a 64-bit integer value. DCQ is aligned to a 32-bit
boundary while DCQU is unaligned (byte boundary).

• The DCFD, DCFDU, DCFS and DCFSU directives now also accept a hex-constant form of
operand that specifies the IEEE bit-pattern of the value.
2-44 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0064C

Differences
• There are new synonyms FIELD and SPACE for # and % directives.

• Directives are now accepted in all upper case, or all lower case, but not a mixture.
Previously, only the upper case form was accepted.

• The EXPORT directive may have a new attribute, WEAK. This defines the exported
symbol as a WEAK symbol in ELF.

• The semantics of the EXTERN and IMPORT directives have changed and they are no
longer synonyms. An unused IMPORT generates an undefined global symbol,
whereas an unused EXTERN generates no symbol. (In SDT 2.50/2.51 an unused
EXTERN or IMPORT symbol was made WEAK).

• The AREA directive has a new attribute, ASSOC= area_name) that requires this AREA to
be included in a link step whenever the associate area (named by the
ASSOC=area_name) is included. The assembler implements the requirement by
generating an R_ARM_NONE relocation at offset 0 of area area_name, relative to the
section symbol for the area defined by the AREA directive.

• The new directive REQUIREarea_name requires area_name. to be included in any link
step that includes the requiring section. The assembler implements the
requirement by generating an R_ARM_NONE relocation in the current section to the
required area_name.

• The DCD directive now accepts expressions evaluating the difference between a
label in another section and a position in the current section.

• The DCW and DCB directives now accept expressions including an external symbol.

• The new DCDO directive treats label operands as sb-relative.

• The literal-using, pseudo-instruction forms of load and store instructions (for
example, LDR rx,=yyy) can now take external symbols as immediate values (yyy).

• The ARM instructions of the form data-processing-op rd,rn,#sym can now take
external symbols as immediate operands.

• ARM and Thumb SWI instructions can now take external symbols as immediate
operands.

• If you select a cpu or architecture that does not support Thumb, an attempt to
generate Thumb code will generate an error message. For example armasm -cpu 4

will not accept Thumb instructions but armasm -cpu 4T will.
ARM DUI 0064C Copyright © 1999, 2000 ARM Limited. All rights reserved. 2-45

Differences
Features of the SDT assembler not supported

The following assembly language features are no longer supported and are faulted:

• AREA directive with attribute ABS, BASED, A32bit, HALFWORD, INTERWORK, PIC,
REENTRANT

— ABS has been withdrawn because it conflicts with the linker scatter-loading
mechanism. An AREA previously declared ABS should now be placed using a
scatter-loading description

— BASED has been withdrawn because it was needed only for the old shared
library mechanism that is now obsolete. No workaround is necessary.

— A32bit has been withdrawn as it was needed only to distinguish 32 bit mode
code from 26 bit mode code and 26 bit mode is now obsolete.

— INTERWORK and PIC have been withdrawn as the ATPCS and architecture are
now always specified on the command line. Any occurrences of these
attributes should be deleted, and replaced by the corresponding new -apcs

command line qualifiers.

• value 32 as operand to the ALIGN area attribute. The assembler accepted 32 as
operand to ALIGN even though it was not useful. The only address that satisfies
ALIGN=32 is 0, and if that is the desired behavior it can be expressed by using a
scatter-loading description to place the AREA at address 0

• IMPORT directive with attribute FPREGARGS. The FPREGARGS attribute had no effect
and has been removed.

• EXPORT directive with attribute FPREGARGS, and LEAF.

— The FPREGARGS attribute had no effect. The workaround is to delete it from
assembly source.

— The LEAF attribute was needed only for the old shared library mechanism
that is now obsolete. The workaround is to remove it.

• ADR pseudo-instructions with out-of-area symbol operands. The workaround is to
load out-of-area addresses into registers using LDR.

Deprecated assembler options

The following options are deprecated and will not be supported in future versions of the
assembler:

-dwarf1 DWARF1 debug tables will not be supported in future versions.

-proc Select processor (use -cpu instead).
2-46 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0064C

Differences
-arch Select architecture (use -cpu instead).

Impact

Use DWARF2 format for new projects and update your existing tools to use the
DWARF2 format.

2.3.5 Changed linker behavior

This section describes linker behavior that is changed, deprecated, or obsolete. Obsolete
features are identified explicitly. Their use is faulted in ADS. Deprecated features will
be made obsolete in future releases. Their use is warned about in ADS.

New or changed linker behavior

The following new or significantly changed options are available in the linker:

• The linker is now an ELF-only linker.

• The syntax of the -remove command has been expanded to include section
attribute qualifiers. This is backwardly compatible with SDT 2.50/2.51.

The linker now has -remove as its default option. The SDT 2.50/2.51 default was
-noremove. The -remove option is strongly recommended with C++ in order to
reduce code size. Use the new linker option -keep if you want to keep sections that
are not referenced.

• The syntax of -first and -last has been changed to identify both object and
section name, not just section name as in SDT 2.50/2.51. There is no backward
compatibility with SDT 2.50/2.51.

• The syntax of the -entry command has been changed to allow more flexible
selection. Only one entry point can be specified to the linker. There is some
backward compatibility with SDT 2.50/2.51.

• The veneers argument has been added to the -info option.

• The linker now generates conventionally named region-related symbols for non
scatter-loaded images, in a similar way to those generated for scatter-loaded
images.

The following new armlink options have been added:

-partial Generate a partially-linked ELF object

-ropi RO execution region is position-independent

-rwpi RW execution region is position-independent

-split Image has two load regions
ARM DUI 0064C Copyright © 1999, 2000 ARM Limited. All rights reserved. 2-47

Differences
-keep Specify sections to be retained even if unused

-locals Add local symbols to image symbol table

-nolocals Remove local symbols from image symbol table

-xreffrom List section cross references in image from a section

-xrefto List section cross references in image to a section

-strict Strict compliance to build attribute rules

-symdefs Create, or read, a list of symbol definitions.

Obsolete linker options

The following options from the ARM Software Development Toolkit are not supported
in the linker:

-aof Create output in AOF format

-aif Create output in AIF format

-aif -bin Create output in AIF BIN format

-bin Create output in BIN format

-base Alias for ro-base

-data Alias for rw-base

-dupok Allow multiple definitions

-[no]case Case sensitive/insensitive matching

-match Symbol matching options

-nozeropad Do not include ZI section in binary images

-info interwork

Output information on interworking

-u Match all unresolved symbols.

Impact

If you are creating new applications, there is no impact. If you are relinking existing
applications and libraries, ensure that the desired build options are specified to the
assembler, compiler and linker. Remove any obsolete options from your make files and
replace them, where necessary, with equivalent options. Check the assembler, compiler,
and linker options for your new or migrated projects as the defaults for ADS 1.0 are
different from the defaults for the SDT 2.50/2.51.

2.3.6 Obsolete components and standards

This section describes components of SDT 2.50/2.51 that are not available in ADS.
2-48 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0064C

Differences
APM

APM is not provided.

Impact

Use the CodeWarrior IDE or a make utility.

Armmake

Armmake is not provided. There is no longer a need to rebuild the C Libraries, therefore
the ARM-specific make utility has been removed.

Impact

None. Use nmake, make, or gnumake if you want to use a make utility.

Armlib

The ARM librarian, armlib is not provided. It has been replace by a new utility, armar,
that creates ELF ar files. armar provides similar functionality to armlib, but supports
ELF instead of AOF.

Decaof and Decaxf

Decaof and decaxf are not provided.

Impact

The fromELF utility provides equivalent functionality for ELF formats

DWARF1

The compilation tools produce DWARF2 debug table formats by default. The compiler
and assembler can still produce DWARF1 for compatibility with third party tools that
require DWARF1, although DWARF1 will only support debugging for C compiler
images produced with the -O0 option and will not support debugging of C++ images.

DWARF1 is deprecated and will be removed in a future release of ADS

Impact

Use DWARF2 format.
ARM DUI 0064C Copyright © 1999, 2000 ARM Limited. All rights reserved. 2-49

Differences
26-bit addressing

ADS does not support 26-bit addressing. Removal of 26-bit support has enabled a more
efficient ATPCS to be designed.

Impact

Continue to use SDT2.50/2.51 if you need 26-bit support.

AOF, AIF, IHF, and Plain Binary image formats

The SDT 2.50/2.51 linker gave warnings when asked to generate an AIF image, a binary
AIF image, an IHF image, or a plain binary image. The ADS linker refuses to generate
these images and is now a pure ELF linker. Although the linker is capable of processing
AOF files, you are strongly recommended not to link with old AOF files because of
changes to both the Procedure Call Standard and changes to debug tables.

Impact

Use the fromelf tool to translate the ELF image into non-ELF formats such as AIF, Plain
binary, Extended Intellec Hex (IHF), Motorola 32 bit S-record, Intel Hex 32.

Future releases of the linker will not allow AOF input files.

RDI 1.50

A new variant of the Remote Debug Interface (RDI 1.5.1) is introduced in ADS. The
version used in SDT 2.50/2.51 was 1.5. See Debuggers on page 2-26 for details of RDI
1.51.
2-50 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0064C

Chapter 3-
Creating an Application

This chapter describes how to create an application using ADS. It contains the following
sections:

• Using the CodeWarrior IDE on page 3-2

• Building from the command line on page 3-14

• Using ARM libraries on page 3-22

• Using your own libraries on page 3-25

• Debugging the application with AXD on page 3-26.
ARM DUI 0064C Copyright © 1999, 2000 ARM Limited. All rights reserved. 3-1

Creating an Application
3.1 Using the CodeWarrior IDE

The CodeWarrior IDE provides a simple, versatile, graphical user interface for
managing your software development projects. You can use CodeWarrior for the ARM
Developer Suite to develop C, C++, and ARM assembly language code targeted at
ARM processors. The CodeWarrior IDE enables you to configure the ARM tools to
compile, assemble, and link your project code.

The CodeWarrior IDE enables you to organize source code files, library files, other
files, and configuration settings into a project. Each project enables you to create and
manage multiple build targets. A build target is the collection of build settings and files
that determines the output that is created when you build your project. Build targets can
share files in the same project, while using their own build settings.

Note

A build target is distinct from a target system, such as an ARM development board. For
example, you can compile a debugging build target and an optimized build target of
code targeted at hardware based on an ARM7TDMI.

CodeWarrior for the ARM Developer Suite provides preconfigured project stationery
files for common project types, including:

• ARM Executable Image

• ARM Object Library

• Thumb Executable Image

• Thumb Object Library

• Thumb/ARM Interworking Image.

You can use the project stationery as a template when you create your own projects.

The non-interworking ARM project stationery files define three build targets. The
interworking project stationery defines an additional three build targets to compile
Thumb-targeted code. The basic build targets for each of the stationery projects are:

Debug This build target is configured to build output binaries that are fully
debuggable, at the expense of optimization.

Release This build target is configured to build output binaries that are fully
optimized, at the expense of debug information.

DebugRel This build target is configured to build output binaries that provide
adequate optimization, and give a good debug view.

For more information on using the CodeWarrior IDE to create complex, dependent
build target relationships, see the CodeWarrior IDE Guide.
3-2 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0064C

Creating an Application
3.1.1 Creating and building a simple project

This section describes how to create and build a simple project. It uses source files from
the dhryansi example supplied with ADS 1.1 to give an introduction to configuring tool
options and using build targets in the CodeWarrior IDE.

Note

This example assumes that you have installed the example code supplied with ADS 1.1,
and that you have installed in the default installation directory. Example code is
installed by default unless you have chosen a minimal install or a custom install.

The following sections give a summary of how to:

• Create a new project using ARM project stationery

• Add source files to your project

• Configure the build target settings for your project

• Compile and link an executable image.

• Execute the AXD debugger to debug your image.

Creating a new project from ARM project stationery

To create a new project, and compile and link an application using the CodeWarrior
IDE:

1. Select Programs → ARM Developer Suite → CodeWarrior for ARM
Developer Suite v1.1 from the Windows Start menu to start the CodeWarrior
IDE.

2. Select New… from the File menu. A New dialog is displayed (see Figure 3-1 on
page 3-4).
ARM DUI 0064C Copyright © 1999, 2000 ARM Limited. All rights reserved. 3-3

Creating an Application
Figure 3-1 New dialog

3. Ensure that the Project tab is selected. The available ARM project stationery is
listed in the left of the dialog (see Figure 3-1), together with the Empty Project
stationery and the Makefile Importer Wizard.

See the CodeWarrior IDE Guide for more information on using empty projects
and the Makefile Importer Wizard.

4. Select ARM Executable Image from the list of project stationery.

5. Click the Set… button next to the Location field. A Create New Project dialog is
displayed (Figure 3-2).

Figure 3-2 Create New Project dialog
3-4 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0064C

Creating an Application
6. Navigate to the directory where you want to save the project and enter a project
name, for example My_Project. Leave the Create Folder checkbox selected.

7. Click Save. The CodeWarrior IDE sets the Project Name field and Location path
in the New dialog box. The Location path is used as a default when you create
additional projects.

8. Click OK. The CodeWarrior IDE creates a new project based on the ARM
Executable Image project stationery, and displays a new project window with the
Files view selected (Figure 3-3).

Figure 3-3 New project

Adding source files to the project

Projects created from ARM project stationery do not contain source files. This section
describes how to add the source files from the dhryansi example.

To add source files to a project:

1. Ensure that the project window is the active window.

2. Select Add Files… from the Project menu. A Select files to add… dialog is
displayed.

3. Navigate to the dhryansi directory in the install_directory\Examples directory
and Shift-click on dhry_1.c and dhry_2.c to select them (Figure 3-4).
ARM DUI 0064C Copyright © 1999, 2000 ARM Limited. All rights reserved. 3-5

Creating an Application
Figure 3-4 Select files to add… dialog

4. Click Add. The CodeWarrior IDE displays an Add Files dialog (Figure 3-5). The
dialog contains a checkbox for each build target defined in the current project. In
this example, the dialog contains three checkboxes corresponding to the three
build targets defined in the ARM Executable Image project stationery.

Figure 3-5 Add Files

5. Leave all the build target checkboxes selected and click OK. The CodeWarrior
IDE adds the source files to each target in the project and displays a Project
Messages window to inform you that the directory containing the source files has
been added to the access paths for each build target (Figure 3-6).
3-6 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0064C

Creating an Application
Figure 3-6 Project messages window

The access paths for each build target define the directories that will be searched
for source and header files. See the CodeWarrior IDE Guide for details.

Note

You do not need to explicitly add the header files for the dhryansi project because
the CodeWarrior IDE locates them in the newly added access path. However, you
can add header files explicitly if you want.

6. Ensure that the Files tab is selected in the project window. The project window
displays all the source files in the project. (Figure 3-7). See the CodeWarrior IDE
Guide for more information on what is displayed when you click the Link Order
tab and the Targets tab.

Figure 3-7 Source files in Files view

Configuring the project build targets

This section describes how to configure your example project so that the example
dhryansi files compile, and the project build settings are the same as those in the
supplied dhryansi example project. It describes one way of selecting build targets, and
shows how different build target settings can be used in the same project. See the
CodeWarrior IDE Guide for a complete description of build targets.
ARM DUI 0064C Copyright © 1999, 2000 ARM Limited. All rights reserved. 3-7

Creating an Application
Build target settings must be selected separately for each build target in your project. To
set build target options for the dhryansi example:

1. Ensure that the DebugRel build target is currently selected. By default, the
DebugRel build target is selected when you create a new project based on the
ARM project stationery. The currently selected build target is displayed in the
Build Target pop-up menu in the project toolbar (Figure 3-8 on page 3-8).

Figure 3-8 Currently selected build target

2. Select DebugRel Settings… from the Edit menu. The name of this menu item
changes depending on the name of the currently selected build target. The
CodeWarrior IDE displays the DebugRel Target Settings panel (Figure 3-9 on
page 3-9). All the target-specific settings are accessible through configuration
panels listed at the left of the panel.

Note

Many configuration options are optional, however you should review the target
settings for each build target in your project to ensure that they are appropriate for
your target hardware, and your development requirements. See the chapter on
configuring a build target in the CodeWarrior IDE Guide for configuration
recommendations.

��������	�
��������	����������	��
����	�	�����	�����	���
��������	��
3-8 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0064C

Creating an Application
Figure 3-9 DebugRel Settings

3. Click the ARM C Compiler entry in the Target Settings Panels list to display the
configuration panel for the C compilers. The Target and Source panel is displayed
(Figure 3-10 on page 3-9). The panel consists of a number of tabbed panes
containing groups of configuration options. For this example, the dhryansi source
requires a predefined macro be set before it will compile.

Figure 3-10 ARM C compiler panel

4. Click the Preprocessor tab to display a list of predefined macros (Figure 3-11).
ARM DUI 0064C Copyright © 1999, 2000 ARM Limited. All rights reserved. 3-9

Creating an Application
Figure 3-11 ARM C compiler preprocessor pane

5. Type MSC_CLOCK into the text field beneath the List of #DEFINES and click Add
to define the MSC_CLOCK macro. The CodeWarrior IDE adds MSC_CLOCK to the List
of #DEFINES. The Equivalent Command Line text box displays the compiler
command-line option required to define MSC_CLOCK (Figure 3-12).

Figure 3-12 MSC_CLOCK defined

6. Click Save to save your changes, and close the DebugRel Settings panel.

At this point you have defined the MSC_CLOCK macro for the DebugRel build target only.
You must also define the MSC_CLOCK macro for the Release and Debug build targets if you
want to use them. To select the Release build target:

1. Ensure that the Project window is currently active.

2. Click the Current Target pop-up menu to display the list of defined build targets
(see Figure 3-8 on page 3-8).

3. Select Release from the list of build targets to change the current build target.

4. Apply the steps you followed above to define MSC_CLOCK the Release build target.
3-10 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0064C

Creating an Application
Note
You can also cut and paste build target settings into the Equivalent Command Line
text box. Press the Enter key to set the options and update the panel controls. Be
careful not to copy command-line options that are inappropriate, such as the
optimization and debug settings, from one build target to another.

Leave the Release Target settings panel open after you have saved your changes.

5. Click on the Debug/Opt tab to display Debug and Optimization options for the
Release build target (Figure 3-13).

Figure 3-13 Debug/Opt configuration panel

6. Select the For time Optimization Criterion button. The Equivalent Command
Line text box reflects the change.

7. Click Save to save your settings.

8. Define MSC_CLOCK in the Debug build target in the same way as you have for the
DebugRel and Release build targets.

Your project is now equivalent to the dhryansi example project supplied with the
ARM Developer Suite.
ARM DUI 0064C Copyright © 1999, 2000 ARM Limited. All rights reserved. 3-11

Creating an Application
Note
This example has shown how to use the configuration dialogs to set options for
individual build targets. There are configuration panels available for most of the ADS
toolchain, including the linker, fromELF, and the assembler. You can use the
configuration panels to specify most options available in the tools, including:

• procedure call options

• the structure of output images

• the linker and postlinker to use

• the ARM debugger to call from the CodeWarrior IDE.

See the chapter on configuring a build target in the CodeWarrior IDE Guide for a
complete description of build target options.

Building the project

The Project menu contains a number of commands to compile, or compile and link
your project files. These commands apply only to the current build target. To compile
and link the example project:

1. Ensure that the project window is the currently active window.

2. Select the build target you want to build (see Figure 3-8 on page 3-8). For this
example, select the DebugRel build target.

3. Select Make from the Project menu. The CodeWarrior IDE builds the project by:

• compiling newly added, modified, and touched source files to produce ELF
object files

• linking object files and libraries to produce an ELF image file, or a partially
linked object

• performing any postlink operations that you have defined for your build
target, such as calling fromELF to convert an ELF image file to another
format.

Note

In the dhryansi example there is no postlink operation.

If the project has already been compiled using a command such as Bring Up To
Date or Compile, the Make command performs only the link and postlink steps.

The compiler displays build information, errors, and warnings for the build in a
messages window.
3-12 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0064C

Creating an Application
Debugging the project

By default, the ARM project stationery is configured to call the AXD debugger to debug
and run images built from the CodeWarrior IDE. You can configure the debugger to be
called using the ARM Debugger configuration panels for each build target. See the
CodeWarrior IDE Guide for details.

To execute and debug your example project:

1. Ensure that the project window is the currently active window.

2. Select the build target you want to debug. The Debug command applies only to
the current build target.

3. Select Debug from the Project menu. The CodeWarrior IDE compiles and links
any source files that are not up to date, and calls the AXD debugger to load and
execute the image. See Debugging the application with AXD on page 3-26 for
more information on using AXD.
ARM DUI 0064C Copyright © 1999, 2000 ARM Limited. All rights reserved. 3-13

Creating an Application
3.2 Building from the command line

This section describes how to build an application from the command line. From the
command line, you can access:

• the compilers

• the assembler

• the linker

• the CodeWarrior IDE.

3.2.1 Using the compilers from the command line

There are four compiler variants as shown in Table 3-1:

Compiler syntax

The command for invoking the ARM compilers is:

compiler [PCS-options] [source-language] [search-paths] [preprocessor-options]

[output-format] [target-options] [debug-options] [code-generation-options]

[warning-options] [additional-checks] [error-options] [source]

Refer to the ADS Compiler, Linker, and Utilities Guide and the ADS Developer Guide
for more information.

Building an example

Sample C source code for a simple application is in
install_directory\Examples\rom\embed\main.c.

To build the example from the command line:

1. Compile the C file main.c with the following command with either:

Table 3-1 Compiler variants

Compiler name Compiler variant
Source
language

Compiler output

armcc C C 32-bit ARM code

tcc C C 16-bit Thumb code

armcpp C++ C or C++ 32-bit ARM code

tcpp C++ C or C++ 16-bit Thumb code
3-14 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0064C

Creating an Application
armcc -g -O1 -c main.c (for ARM)

tcc -g -O1 -c main.c (for Thumb)

where:

-g Tells the compiler to add debug tables.

-O1 Tells the compiler select good optimization.

-c Tells the compiler to compile only (not to link).

2. Link the image using the following command:

armlink main.o -o embed.axf

where:

-o Specifies the output file as embed.axf.

3. Use ARMulator to test the image or download the image to a development board
and use Multi-ICE.

For more information on using assembly language, C, C++ and the linker to create
applications, see the ADS Developer Guide and ADS Compiler, Linker, and Utilities
Guide.
ARM DUI 0064C Copyright © 1999, 2000 ARM Limited. All rights reserved. 3-15

Creating an Application
3.2.2 Using the CodeWarrior IDE from the command line

In some cases you might not require the Graphical User Interface of the CodeWarrior
IDE, for example, when a project is part of a larger system that must be built
automatically without user interaction.

CMDIDE.EXE is a console window program that can be started from the command line to
build project files that have been created and edited with the CodeWarrior IDE.
CMDIDE.EXE invokes the CodeWarrior IDE, passes the proper parameters to produce a
build, and waits for the IDE to finish its operation.

The command-line arguments are:

Projectname

Specifies the project to use.

/tTargetname

Specifies a target to become the current target.

/r Removes the objects of the current target before building.

/b Builds the current target.

/c Closes the project after building.

/q Quits the IDE after building.

/v[y|n|a] Option for converting projects on open:

y Convert without asking.

n Do not convert.

a Ask whether to convert.

/s Forces the command line to be processed in a new instance of the IDE
(rather than using a current instance).

If more than one project document is specified to be opened in the command line, the
/t target and /b build command flags apply to the first project document found in the
list of documents. If no project is specified in the command line, it uses the usual logic
in the IDE (front project or default project) to select the project to build.

For example, to build the dhryansi project, change directory to the dhryansi example
directory and type:

cmdide dhryansi.mcp /t DebugRel /c /b

If no target is specified cmdide uses whatever the current target is for that project.

All build commands are executed in a different process from the one launched from the
command line. The original process returns when the command line has been
completely processed and the build has completed.
3-16 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0064C

Creating an Application
The following codes are returned and can be tested using the IF ERRORLEVEL instruction
in a batch file:

0 No error

1 Error opening file

2 Project is not open

3 IDE is already building

4 Invalid target name (for /t flag)

5 Error changing current target

6 Error removing objects

7 Build was canceled

8 Build failed

9 Process aborted.

Note

Though IDE.EXE understands the same parameters as CMDIDE.EXE, it is particularly
important on Windows 95 or Windows 98 to use CMDIDE.EXE to ensure that builds are
correctly serialized rather than executed all at once.

3.2.3 Debugging from the command line

You can use the ARM symbolic debugger (armsd) to debug applications from the
command line.

AXD can also be driven from the command line. This is useful for batch testing, for
example.

See the ADS Debuggers Guide for more information on using the debuggers.
ARM DUI 0064C Copyright © 1999, 2000 ARM Limited. All rights reserved. 3-17

Creating an Application
3.2.4 Using the assembler from the command line

The basic syntax to use the ARM assembler (armasm) from the command-line is:

armasm -list listingfile inputfile

For example, to assemble the code in a file called myfile.s, type:

armasm -list myfile.lst myfile.s

This produces an object file called myfile.o, and a listing file called myfile.lst.

For full details of the command-line options and syntax, refer to the Assembler chapter
in ADS Compiler, Linker, and Utilities Guide.

Example 3-1 shows a small interworking ARM/Thumb assembly language program.
You can use it to explore the use of the assembler, linker, and the ARM symbolic
debugger.

Example 3-1

 AREA AddReg,CODE,READONLY ; Name this block of code.
 ENTRY ; Mark first instruction to call.
main
 ADR r0, ThumbProg + 1 ; Generate branch target address and set bit 0
 ; hence arrive at target in Thumb state.
 BX r0 ; Branch and exchange to ThumbProg.
 CODE16 ; Subsequent instructions are Thumb code.
ThumbProg
 MOV r2, #2 ; Load r2 with value 2.
 MOV r3, #3 ; Load r3 with value 3.
 ADD r2, r2, r3 ; r2 = r2 + r3
 ADR r0, ARMProg ; Generate branch target address with bit 0 zero.
 BX r0 ; Branch and exchange to ARMProg.
 CODE32 ; Subsequent instructions are ARM code.
ARMProg
 MOV r4, #4
 MOV r5, #5
 ADD r4, r4, r5
stop MOV r0, #0x18 ; angel_SWIreason_ReportException
 LDR r1, =0x20026 ; ADP_Stopped_ApplicationExit
 SWI 0x0123456 ; ARM semihosting SWI

 END ; Mark end of this file.
3-18 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0064C

Creating an Application
Building the example

To build the example:

1. Enter the code using any text editor and save the file in your current working
directory as addreg.s.

2. Type armasm -list addreg.lst addreg.s at the command prompt to assemble the
source file.

3. Type armlink addreg.o -o addreg to link the file.

Running the example in the debugger

To load and run the example in the debugger:

1. Type armsd addreg to load the module into the command-line debugger.

2. Type step to step through the rest of the program one instruction at a time. After
each instruction, you can type reg to display the registers.

When the program terminates, to return to the command line, type quit.

This example contains both ARM and Thumb code. As you step through the program
you can see the T-bit in the Current Program Status Register (CPSR) changing between
a lowercase t and an uppercase T. This indicates the change between ARM and Thumb
state.

For further details on ARM and Thumb assembly language programing, see the ADS
Assembler Guide.

3.2.5 Setting linker options from the command line

The ARM linker, armlink, enables you to:

• link a collection of objects and libraries into an executable ELF image

• partially link a collection of objects into an object that can be used as input for a
future link step

• specify where the code and data will be located in memory

• produce debug and reference information about the linked files.
ARM DUI 0064C Copyright © 1999, 2000 ARM Limited. All rights reserved. 3-19

Creating an Application
Objects consist of input sections that contain code, initialized data, or the locations of
memory that must be set to zero. Input sections can be read-only (RO), read/write (RW),
or zero-initialized (ZI) These attributes are used by armlink to group input sections into
bigger building blocks called output sections, regions and images. Output sections are
approximately equivalent to ELF segments.

The default output from the linker is a non-relocatable image where the code starts at
0x8000 and the data section is placed immediately after the code. You can specify
exactly where the code and data sections are located by using linker options or a
scatter-load description file.

Linker input and output

Input to armlink consists of:

• one or more object files in ELF Object Format

• optionally, one or more libraries created by armar.

Output from a successful invocation of armlink is one of the following:

• an executable image in ELF executable format

• a partially linked object in ELF object format.

For simple images, ELF executable files contain segments that are approximately
equivalent to RO and RW output sections in the image. An ELF executable file also has
ELF sections that contain the image output sections.

An executable image in ELF executable format can be converted to other file formats
by using the fromELF utility.

Linker syntax

The linker command syntax is of the form:

armlink [-help_options] [-output_options] [-via_options] [-memory_map_options]

[-image_content_options] [-image_info_options] [-diagnostic_options]

See the linker chapter in the ADS Compiler, Linker, and Utilities Guide for a detailed list
of the linker options.
3-20 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0064C

Creating an Application
Using linker options to position sections

The following linker options control how sections are arranged in the final image and
whether the code and data can be moved to a new location after the application starts:

-ropi This option makes the load and execution region containing the RO
output section position-independent. If this option is not used the region
is marked as absolute.

-ro-base address

This option sets the execution addresses of the region containing the RO
output section at address. The default address is 0x8000.

-rw-base address

This option sets the execution addresses of the region containing the RW
output section at address. The default address is at the end of the RW
section.

-rwpi This option makes the load and execution region containing the RW and
ZI output section position-independent. If this option is not used the
region is marked as absolute. The -rwpi option is ignored if -rw-base is
not also used. Usually each writable input section must be read-write
position-independent.

-split When used with -ro-base or -rw-base, this option splits the default load
region, that contains the RO and RW output sections, into two load
regions.

If you want more control over how the sections are placed in an image, use the -scatter

option and specify a scatter-load description file.

Using scatter-load description files for a simple image

The command-line options (-ro-base, -rw-base, -split, -ropi, and -rwpi) create simple
images.

You can create the more complex images by using the -scatter command-line option
to specify a scatter-load description file. The -scatter option is mutually exclusive with
the use of any of the simple memory map options -ro-base, -rw-base, -split, -ropi, or
-rwpi.

For more information on the linker and scatter-load description files, see the ADS
Compiler, Linker, and Utilities Guide and the Writing Code for ROM chapter in the ADS
Developer Guide.
ARM DUI 0064C Copyright © 1999, 2000 ARM Limited. All rights reserved. 3-21

Creating an Application
3.3 Using ARM libraries

The following run-time libraries are provided to support compiled C and C++:

ANSI C The C libraries consist of:

• The functions defined by the ISO C library standard.

• Target-dependent functions used to implement the C library
functions in the semihosted execution environment. You can
redefine these functions in your own application.

• Helper functions used by the C and C++ compilers.

C++ The C++ libraries contain the functions defined by the ISO C++ library
standard. The C++ library depends on the C library for target-specific
support and there are no target dependencies in the C++ library. This
library consists of:

• the Rogue Wave Standard C++ Library version 2.01.01

• helper functions for the C++ compiler

• additional C++ functions not supported by the Rogue Wave library.

As supplied, the ANSI C libraries use the standard ARM semihosted environment to
provide facilities such as file input/output. This environment is supported by the
ARMulator, Angel, Multi-ICE, and EmbeddedICE®. You can use the ARM
development tools in ADS to develop applications, and then immediately run and debug
the applications under the ARMulator or on a development board. See the description
of semihosting in the ADS Debug Target Guide for more information on the debug
environment.

You can re-implement any of the target-dependent functions of the C library as part of
your application. This enables you to tailor the C library, and therefore the C++ library,
to your own execution environment.

The libraries are installed in two subdirectories within install_directory\lib:

armlib Contains the variants of the ARM C library, the floating-point arithmetic
library, and the math library. The accompanying header files are in
install_directory\include.

cpplib Contains the variants of the Rogue Wave C++ library and supporting C++
functions. The Rogue Wave and supporting C++ functions are
collectively referred to as the ARM C++ Libraries. The accompanying
header files are installed in install_directory\include.

Note
• The ARM C libraries are supplied in binary form only.
3-22 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0064C

Creating an Application
• The ARM libraries should not be modified. If you want to create a new
implementation of a library function, place the new function in an object file, or
your own library, and include it when you link the application. Your version of the
function will be used instead of the standard library version.

• Normally, only a few functions in the ANSI C library require re-implementation
in order to create a target-dependent application.

• The source for the Rogue Wave Standard C++ Library is not freely distributable.
It can be obtained from Rogue Wave Software Inc., or through ARM Limited, for
an additional licence fee. See the Rogue Wave online documentation in
install_directory\Html for more about the C++ library.

3.3.1 Using the ARM libraries in a semihosted environment

If you are developing an application to run in a semihosted environment for debugging,
you must have an execution environment that supports the ARM and Thumb
semihosting SWIs and has sufficient memory.

The execution environment can be provided by either:

• using the standard semihosting functionality that is present by default in, for
example, ARMulator, Angel, and Multi-ICE

• implementing your own SWI handler for the semihosting SWI.

You do not have to write any new functions or include files if you are using the default
semihosting functionality of the library.

3.3.2 Using the ARM libraries in a non-semihosted environment

If you do not want to use any semihosting functionality, you must ensure that either no
calls are made to any function that uses semihosting or that such functions are replaced
by your own non-semihosted functions.

To build an application that does not use semihosting functionality:

1. Create the source files to implement the target-dependent features.

2. Use #pragma import use_no_semihosting_swi to guard the source.

3. Link the new objects with your application.

4. Use the new configuration when creating the target-dependent application.
ARM DUI 0064C Copyright © 1999, 2000 ARM Limited. All rights reserved. 3-23

Creating an Application
You must re-implement functions that the C library uses to insulate itself from target
dependencies. For example, if you use printf() you must re-implement fputc(). If you
do not use the higher level input/output functions like printf(), you do not have to
re-implement the lower level functions like fputc().

If you are building an application for a different execution environment, you can
re-implement the target-dependent functions (functions that use the semihosting SWI
or that depend on the target memory map). There are no target-dependent functions in
the C++ library. See the chapter on libraries in the ADS Compiler, Linker, and Utilities
Guide for more information.

3.3.3 Building an application without the ARM libraries

Creating an application that has a main() function causes the C library initialization
functions to be included.

If your application does not have a main() function, the C library is not initialized and
the following features are not available to your application:

• software stack checking

• low-level stdio

• signal-handling functions, signal() and raise() in signal.h

• atexit()

• alloca().

You can create an application that consists of customized startup code, instead of the
library initialization code, and still use many of the library functions. You must either:

• avoid functions that require initialization

• provide the initialization and low-level support functions.

These applications will not automatically use the full C run-time environment provided
by the C library. Even though you are creating an application without the library, some
helper functions from the library must be included. There are also many library
functions that can be made available with only minor re-implementations. See the
chapter on libraries in the ADS Compiler, Linker, and Utilities Guide for more
information.
3-24 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0064C

Creating an Application
3.4 Using your own libraries

The ARM librarian, armar, enables sets of ELF object files to be collected together and
maintained in libraries. Such a library can then be passed to armlink in place of several
object files. However, linking with an object library file does not necessarily produce
the same results as linking with all the object files collected into the object library file.
This is because armlink processes the input list and libraries differently:

• each object file in the input list appears in the output unconditionally, although
unused areas are eliminated if the armlink -remove option is specified

• a member of a library file is included in the output only if it is referred to by an
object file or a previously processed library file.

To create a new library called my_lib and add all the object files in the current directory,
type:

armar -create my_lib *.o

To delete all objects from the library that have a name starting with sys_, type:

armar -d my_lib sys_*

To replace, or add, three objects in the library with the version located in the current
directory, type:

armar -r my_lib obj1.o obj2.o obj3.o

For more information on armar, see the Utilities chapter in the ADS Compiler, Linker,
and Utilities Guide.

Note

The ARM libraries should not be modified. If you want to create a new implementation
of a library function, place the new function in an object file or your own library. Include
your object or library when you link the application. Your version of the function will
be used instead of the standard library version.
ARM DUI 0064C Copyright © 1999, 2000 ARM Limited. All rights reserved. 3-25

Creating an Application
3.5 Debugging the application with AXD

AXD enables you to run and debug your ARM-targeted image using any of the
following debugging systems:

• ARMulator (the default)

• Multi-ICE

• EmbeddedICE

• Angel debug monitor.

See the ADS Debuggers Guide for more information on using the debuggers.

3.5.1 Starting AXD

Start AXD in any of the following ways:

• If you are running under UNIX, either:

— from any directory type the full path and name of the debugger, for
example, /opt/arm/axd

— change to the directory containing the debugger and type its name, for
example, ./axd

• If you are working in the CodeWarrior IDE, open a project and select Edit →
target Settings... → Debugger → ARM Debugger to ensure that AXD is the
default debugger and other settings are as you require, then click the Run/Debug
button or select Debug from the Project menu.

• If you are running Windows, select Start → Programs → ARM Developer
Suite 1.1 → AXD Debugger.

• If you are using a Windows DOS shell, you can start AXD with the following
arguments. Arguments must be in lowercase:

-debug ImageName

Load ImageName for debugging.

-exec ImageName

Load and run ImageName.

-logo Show splash screen (this is the default).

-nologo Suppress splash screen.

For example, to launch AXD and load dhryansi.axf for debugging, type:
axd -debug dhryansi.axf
3-26 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0064C

Creating an Application
Loading an image

If you start AXD from the CodeWarrior IDE, or specify an image name on the DOS
command line, an image is already loaded into AXD. If you start AXD without
specifying an image, the most recently loaded image is reloaded, if possible. Use
File → Load Image to load a new image (Figure 3-14).

Figure 3-14 Loading an image

Stepping through an application

Use Execute → Step to step through the application (Figure 3-15).
ARM DUI 0064C Copyright © 1999, 2000 ARM Limited. All rights reserved. 3-27

Creating an Application
Figure 3-15 The Execute menu

The disassembled code is displayed and a pointer indicates the current position
(Figure 3-16). Use Step (F10) to execute the next instruction.

Figure 3-16 Code

Processor view

Use the Processor Views menu to monitor the program data during the debug
(Figure 3-17).
3-28 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0064C

Creating an Application
Figure 3-17 Processor Views menu

For example, use Processor Views → Register to display a dialog showing the register
contents (Figure 3-18).

Figure 3-18 Viewing register contents

3.5.2 Configuring ARMulator for AXD

When you run AXD for the first time, an ARMulator debugging session starts by
default, with ARMulator configured by settings held in a default configuration file.

For information on reconfiguring ARMulator, returning to ARMulator after using
another debug target, and selecting and configuring other debug targets, refer to the ADS
Debuggers Guide.
ARM DUI 0064C Copyright © 1999, 2000 ARM Limited. All rights reserved. 3-29

Creating an Application
3-30 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0064C

Chapter 4-
Migrating Projects from SDT to ADS

This chapter describes some of the issues involved when converting an existing project
built with the ARM Software Development Toolkit (SDT) to the ARM Developer Suite
(ADS). It also shows some of the diagnostic messages which you might see when
converting a project, and suggests workarounds for common problems.

It is strongly recommended that you read Chapter 2 Differences before reading this
chapter.

This chapter contains the following sections:

• Converting makefiles and APM project files on page 4-2

• Moving your development project from SDT to ADS on page 4-4.
ARM DUI 0064C Copyright © 1999, 2000 ARM Limited. All rights reserved. 4-1

Migrating Projects from SDT to ADS
4.1 Converting makefiles and APM project files

This section describes:

• Converting APM project files (Windows only) on page 4-2

• Converting makefiles (Windows & Unix) on page 4-3.

4.1.1 Converting APM project files (Windows only)

SDT projects are managed using the ARM Project Manager (APM). ADS projects are
managed using the CodeWarrior IDE.

You cannot use existing APM projects, and there is no automatic way to convert APM
.apj project files to CodeWarrior .mcp project files. You must convert APM projects
manually.

To convert an APM project to CodeWarrior:

1. Start the ARM Project Manager.

2. Select APM… from the Tools menu to display the APM preferences panel.

3. Select the Echo command lines verbosely checkbox.

4. Rebuild your project. The project log window displays the command line used to
invoke each tool.

5. Copy and paste the assemble, compile, and link lines into a temporary text file.
For example:

[armcc -O1 -echo -W -g+ -MD -DMSC_CLOCK -Ic:\ARM251\INCLUDE]

Note
Do not copy out of the tool configuration windows. The options you can see by
opening the window at a certain level in the tree might change further down the
tree.

6. Edit the text file to remove the square brackets [] and any APM-specific options
such as -echo and -MD.

If there are references to files, such as header files or library files, in the SDT
installation directory (for example, ARM251) you might need to change these to
point to the ADS installation directory instead.
4-2 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0064C

Migrating Projects from SDT to ADS
7. Check any other assembler, compiler, and linker options displayed on the
command line. Some of the defaults have changed. See the appropriate sections
in Moving your development project from SDT to ADS on page 4-4 for more
information on how default compiler, linker, and assembler options have changed
between SDT and ADS.

8. Create a new CodeWarrior project. See Using the CodeWarrior IDE on page 3-2
for an introduction to CodeWarrior. See the CodeWarrior IDE Guide for detailed
information.

9. Copy the corrected lines from the text file into the Equivalent Command Line box
of the Target Settings dialog for each tool. See Configuring the project build
targets on page 3-7 for more information.

Alternatively, use the text file as the basis of a makefile. You must edit the text files so
that it complies with your makefile format.

4.1.2 Converting makefiles (Windows & Unix)

Some of the assembler, compiler, and linker options have changed. You might need to
modify your makefile to account for these changes. See the appropriate sections in
Moving your development project from SDT to ADS on page 4-4 for more information
on how default compiler, linker, and assembler options have changed between SDT and
ADS.
ARM DUI 0064C Copyright © 1999, 2000 ARM Limited. All rights reserved. 4-3

Migrating Projects from SDT to ADS
4.2 Moving your development project from SDT to ADS

The following sections describe the most important changes between ADS and SDT,
and describe how to change your tool options and code to work with ADS:

• Compiling on page 4-4

• Assembling on page 4-7

• Linking on page 4-8

• Initialization of C Libraries and Execution Regions on page 4-13

• Calling constructors and destructors for top-level C++ objects on page 4-15.

4.2.1 Compiling

Some compiler features have changed between SDT and ADS. For a full list of changes
between SDT and ADS 1.0, see Changed compiler behavior on page 2-38. For a full list
of changes between ADS 1.0 and ADS 1.1, see Changes to the compilers and libraries
on page 2-10. The following sections describe changes to the most commonly used
compiler options, and to how paths are handled:

• -apcs 3/nosw on page 4-4

• -apcs /softfp/narrow (or /wide) on page 4-4

• -zat and alignment of top-level static objects on page 4-5

• -zas and alignment of structs on page 4-5

• -zz, -zt, -zzt0 on page 4-5

• -fc on page 4-6

• Include paths on page 4-6

-apcs 3/nosw

The -apcs 3 options is the default for the compilers in SDT 2.50 and SDT 2.51. It is
redundant, and is faulted in ADS.

The -apcs qualifier /nosw is recognized by the SDT ARM compilers. /noswst is the
default for ADS.

-apcs /softfp/narrow (or /wide)

-apcs /softfp is the default for the compilers in SDT 2.50 and SDT 2.51. The equivalent
default ADS option is -fpu softvfp. The options are functionally similar. They both
implement floating-point arithmetic by subroutine call.

If you see:

Error: C3057E: bad option '-apcs /softfp': ignored
4-4 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0064C

Migrating Projects from SDT to ADS
then remove the /softfp qualifier from your compiler command line. See
Floating-point support on page 2-24 for more information.

In ADS, all code is compiled as -apcs /narrow. The -apcs /wide option was obsolete in
SDT 2.50 and SDT 2.51, and is no longer supported.

If you see:

Error: C3057E: bad option '-apcs /narrow': ignored

then remove the /narrow qualifier from your compiler command line. See Table 2-1 on
page 2-38 for more information on changed APCS qualifiers.

-zat and alignment of top-level static objects

In SDT, -zatNumber specifies the minimum byte alignment for top-level static objects,
such as global variables. Valid values for Number are1, 2, 4, and 8. The default is 4 for
the ARM compilers and 1 for the Thumb compilers

The ADS compilers do not support the -zat option. The default is the equivalent of
-zat1 for both ARM and Thumb.

-zas and alignment of structs

In SDT, the compiler always places structures on word boundaries (-zas4) by default,
unless they are packed with the __packed qualifier.

The ADS compilers align only as strictly as the contents of the structure require. This
is the equivalent of -zas1. The -zas option is deprecated and the compiler generates the
following warning:

Warning: C2067I: option -zas will not be supported in future releases

It is recommended that you avoid writing code that relies on the alignment of objects
such as structures. See the description of structures, unions, enumerations, and bitfields
in the ADS Compiler, Linker, and Utilities Guide for more information.

To revert to SDT behavior and place structures on word boundaries, compile with -zas4.

-zz, -zt, -zzt0

In SDT, the compiler options -zz0 and -zt are commonly combined as -zzt0. This
forbids the use of tentative declarations, and forces uninitialized globals to be placed
directly in the ZI area.
ARM DUI 0064C Copyright © 1999, 2000 ARM Limited. All rights reserved. 4-5

Migrating Projects from SDT to ADS
Note
-zz-1 is a deprecated option that gives the same result as -zz0. Use -zz0 in preference to
-zz-1 in SDT 2.50 and SDT 2.51.

In ADS, -zz0, -zt, -zzt0, and -zz-1 are faulted. The behavior specified by -zz0 and -zt

is the default in ADS unless -strict is used. Remove these options from your compiler
command line.

This change might affect linking if you are using a scatter-load description file. See
Linking on page 4-8 for more information.

-fc

In the SDT 2.11a, and earlier toolkits, the -fc option enabled limited pcc support. This
is redundant in SDT 2.50 and SDT 2.51. Using -fc:

• allowed dollar characters ($) in identifiers

• suppressed warnings on explicit casts between function and object pointers

• allowed junk at the end of preprocessor directive lines.

The first two of these are the default in SDT 2.50, SDT 2.51, and ADS, unless -strict

is used. To allow junk at the end of preprocessor directives, use the -Ep option instead.

For backward compatibility with old projects, the -fc option is not faulted in SDT 2.50
and SDT 2.51, but it has no effect over the normal defaults and is not documented.

The ADS compilers fault -fc. Remove it from your compiler command line.

Include paths

It is recommended that you use the CodeWarrior IDE Access Paths tab, not the
Equivalent Command Line field, to specify compiler include paths (such as
'-I.\include') in a CodeWarrior project.

For example, '-I..\include' is the same as the project relative path
'{Project}..\include'.

Note

It is recommended that you do not use recursive path searching. See the CodeWarrior
IDE Guide for details.

You can use -I in the Equivalent Command Line field if you must follow Berkeley
search rules (the default compiler command-line behavior) or K&R search rules,
instead of the CodeWarrior behavior. However, CodeWarrior Browser information and
4-6 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0064C

Migrating Projects from SDT to ADS
Error processing is unlikely to work correctly because the -I option does not update
CodeWarrior internal path information. CodeWarrior cannot find files that the
compilers input from paths specified with -I. The Access Paths tab also enables you to
move a project without moving its source files.

4.2.2 Assembling

Some assembler features have changed between SDT and ADS. For a full list of
changes between SDT and ADS 1.0, see Changed assembler behavior on page 2-44.
For a full list of changes between ADS 1.0 and ADS 1.1, see Changes to the assembler
on page 2-14. The following sections describe changes that most frequently cause
problems when moving to ADS:

• Interworking on page 4-7

• New FUNCTION directive on page 4-7

• String Literals and $ on page 4-8.

Interworking

In SDT, assembly language code intended for interworking is marked with the
INTERWORK attribute on the AREA directive. For example:

 AREA Thumb,CODE,READONLY,INTERWORK

In ADS the INTERWORK attribute is obsolete and has been replaced with the /interwork

qualifier to the -apcs option. The assembler gives the following warning:

INTERWORK area directive is obsolete. Continuing as if -apcs /inter selected.

Delete the INTERWORK attribute from your assembly language source, and assemble with
the -apcs/interwork command-line option instead. At link time, the linker adds
interworking veneers to the image, if required.

New FUNCTION directive

ADS supports a new ARM assembler directive called FUNCTION. If you have any macros
in your assembly language code with the name FUNCTION, the names will conflict, and
the assembly will fail.

You must rename any macros that use the name FUNCTION. For example, change the
macro:

 FUNCTION <label>

to:

 FUNCTION1 <label>
ARM DUI 0064C Copyright © 1999, 2000 ARM Limited. All rights reserved. 4-7

Migrating Projects from SDT to ADS
String Literals and $

If you are porting SDT code that contains $ symbols in strings, (for example,
initialization code that performs the RO and RW execution region copying and ZI
initialization), you must change $ to $$ to build under ADS. For example, change:

basesym SETS "|Image$$":CC:namecp:CC:"$$Base|"

to:

basesym SETS "|Image$$$$":CC:namecp:CC:"$$$$Base|"

See Changed assembler behavior on page 2-44, and the ADS Assembler Guide for more
information.

Note

In ADS, RO/RW/ZI initialization is usually done by the C library. You might not need
your SDT initialization code. See Initialization of C Libraries and Execution Regions
on page 4-13 for more information.

4.2.3 Linking

Some linker features have changed between SDT and ADS. For a full list of changes
between SDT and ADS 1.0, see Changed linker behavior on page 2-47. For a full list
of changes between ADS 1.0 and ADS 1.1, see Changes to the linker on page 2-16. The
following sections describe changes that most frequently cause problems when moving
to ADS:

• Specifying libraries on page 4-8

• Change -info size to -info sizes on page 4-9

• Change -symbols file to -symbols on page 4-9

• Linking old objects on page 4-9

• Linking old libraries on page 4-10

• Unused section elimination on page 4-10

• Use of +RW and +ZI in scatter-loading on page 4-11

• Generating binary images on page 4-13.

Specifying libraries

With SDT, it is common to specify C libraries on the linker command line, in particular
if you are using the Embedded C libraries.
4-8 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0064C

Migrating Projects from SDT to ADS
With ADS:

• There are no Embedded C libraries supplied with ADS. You can retarget the
standard C libraries for embedded use. See the description of tailoring the C
library to a new execution environment in the ADS Compiler, Linker, and Utilities
Guide for detailed information.

• The names of the C libraries are different to those used for SDT. See the
description of library naming conventions in the ADS Compiler, Linker, and
Utilities Guide.

• The linker normally finds the correct C or C++ libraries to link with, and it might
use several libraries, so do not specify the C or C++ libraries on the linker
command line.

For example, change:

armlink obj1.o obj2.o armlib_cn.32l -o image.axf

to:

armlink obj1.o obj2.o -o image.axf

Change -info size to -info sizes

In SDT 2.50 and SDT 2.51, the linker accepts either size or sizes as a qualifier to the
-info option. In ADS, only sizes is accepted.

Change -symbols file to -symbols

In SDT 2.50 and SDT 2.51, the -symbols option requires a filename as a parameter.

In ADS, the -symbols option has no parameter. If output to a file is required, use -list

filename.

Linking old objects

The object file format for ADS is different to that used by SDT.

In SDT, objects are in the ARM proprietary AOF format. In ADS, the format for all
objects and images is the industry standard ELF.

For backwards compatibility, the ADS linker accepts object files in the SDT AOF
format and libraries in the SDT ALF format. However, these formats are obsolete and
will not be supported in future releases.

Note

The byte order of double and long long types has changed.
ARM DUI 0064C Copyright © 1999, 2000 ARM Limited. All rights reserved. 4-9

Migrating Projects from SDT to ADS
In SDT, the formats of little-endian double and big-endian long long are nonstandard.

The ADS compilers and assembler support industry-standard double and long long

types in both little-endian and big-endian formats. See Byte order of long long and
double on page 2-25 for more information.

If you try to link an ADS object that uses pure-endian double with an SDT object that
uses mixed-endian double, the linker reports an attribute clash:

Error: L6242E: Cannot link object _main.o as its attributes are incompatible
with the image attributes.

If possible, it is recommended that you rebuild your entire project, including the old
objects, with ADS. However, if you do not have the source code for an object or library,
try rebuilding your ADS application code with the -fpu softfpa option. See Object and
library compatibility on page 2-33 for a detailed explanation of how and when you can
link old library code. See Floating-point support on page 2-24 for more information on
changes to the floating-point defaults.

Not all AOF relocations are recognized in ADS. This means that some AOF objects
cannot be translated to ELF. The linker faults an attempt to link with an AOF object that
cannot be translated:

Error : (Fatal) L6027U: Relocation #17 in obj.o (SYMBOL_NAME) has
invalid/unknown type.

In this case, you must rebuild the object or library with ADS.

Linking old libraries

The library file format has changed between SDT and ADS. SDT libraries are in the
ARM proprietary ALF format. The ADS library format is ar and armar replaces armlib
as the library manager.

For backwards compatibility, the ADS linker accepts object files in the SDT AOF
format and libraries in the SDT ALF format. However, these formats are obsolete and
will not be supported in future releases. It is recommended that you rebuild your entire
project, including the libraries, with ADS. See Linking old objects on page 4-9 for more
information.

Unused section elimination

In SDT, the -noremove linker option is the default. The linker does not remove unused
code or data sections unless instructed to do so with the -remove option.
4-10 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0064C

Migrating Projects from SDT to ADS
In ADS, -remove is the default. Unused code and data sections are removed by default.
Use the -info unused option to generate a list of sections that have been removed.

To ensure that important sections, such as the vector table, are not removed you must
mark them as an entry point. For example, use the assembler ENTRY directive. The linker
does not remove sections that are marked as an entry point.

The ADS C library defines an entry point at __main(). If you specify additional entry
points, and do not explicitly specify an initial entry point with the -entry option, the
linker cannot determine which entry point to use as the initial entry point and gives a
warning:

Image does not have an entry point. (Not specified or not set due to multiple
choices)

You can select one of the entry points as the initial image entry point. For example, use
-entry 0x0 for ROM images that are entered at reset.

ARM cores that support WinCE have a high vector pin. For example, the ARM920T has
the HiVecs pin, so that the vector table can be moved to 0xFFFF0000. In this case, link
with -entry 0xFFFF0000.

See the description of image entry points in the ADS Compiler, Linker, and Utilities
Guide for more information.

Use of +RW and +ZI in scatter-loading

SDT places global variable declarations such is:

int a;

into the RW data area, unless the compiler switch -zzt0 is used, in which case it is
placed into the ZI data area. See -zz, -zt, -zzt0 on page 4-5 for more information.

In ADS 1.0 and later an uninitialized global variable is always be placed into the ZI data
area. In ADS 1.1 and later, zero initialized global definitions such as:

int a=0;

are also placed in the ZI data area.

This change in default behavior can cause problems with some SDT scatter-load
description files.

Example 4-1 shows a typical scatter-load description file that can be used with SDT,
where int a; is declared in periph.c:
ARM DUI 0064C Copyright © 1999, 2000 ARM Limited. All rights reserved. 4-11

Migrating Projects from SDT to ADS
Example 4-1

LOAD_FLASH 0x04000000 0x80000 ; start address and length
{ EXEC_FLASH 0x04000000
 { init.o (Init,+FIRST) ; remap & init code
 * (+RO) ; all other RO areas
 }
 Peripherals 0x02000000
 { periph.o (+RW) ; Variables for accessing
 ; peripherals
 }
 32bitRAM 0x0000
 { vectors.o (Vect,+FIRST) ; vector table
 int_handler.o (+RO) ; interrupt handler
 }
 16bitRAM 0x2000
 { * (+RW,+ZI) ; program variables
 }
}

If periph.c contains only uninitialized global variables, and this scatter-load description
file is used with ADS, the linker gives the following warning message:

Warning : L6314W: C:\scatter.scf(line 7, col 19) No section matches pattern
periph.o(RW).

because the linker cannot identify any RW data from periph.o that can be placed into
this execution region. In Example 4-1, the ZI data that is produced when compiling
periph.c is placed into the 16bitRAM execution region by the wildcard placement rule:

16bitRAM 0x2000
 { * (+RW,+ZI) ; program variables
 }

This causes the application to execute incorrectly because accesses to the variables from
periph.c will no longer map onto the actual peripheral registers.

If the 16bitRAM wildcard region had not been defined, the link would fail because the
ZI section generated from periph.c would not match any placement rule.

To fix this problem, you must change the specification for the Peripherals execution
region to:

 Peripherals 0x02000000
 { periph.o (+ZI) ; Variables for accessing peripherals

See also Memory Mapped Peripherals on page 4-15.
4-12 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0064C

Migrating Projects from SDT to ADS
Generating binary images

In SDT 2.50 and SDT 2.51, you can convert the ELF output image from the linker into
a plain binary file with:

fromelf -nozeropad image.axf -bin image.bin

In ADS, the syntax has changed. Use:

fromelf image.axf -bin -o image.bin

The -nozeropad option is redundant in ADS, because fromelf never pads output images
with zeros to represent the ZI section.

The SDT 2.50 and SDT 2.51 linkers warn that -bin and -aif -bin will not be supported
in future releases. The ADS linker faults these options. Use fromelf to generate the
binary instead.

4.2.4 Initialization of C Libraries and Execution Regions

This section applies to SDT projects that link with the Embedded C libraries (in the
\lib\embedded directory) to avoid the use of semihosting SWIs. It describes:

• Application Entry Point on page 4-13

• Library Entry Point on page 4-14

• RW/RO and ZI Region Initialization on page 4-14

• Memory Mapped Peripherals on page 4-15

Application Entry Point

The SDT embedded C libraries do not require initialization. It is recommended that you
use C_Entry(), instead of main() as the entry point for your C code. This ensures that the
full ANSI C semihosting library initialization code is not linked in.

There are no Embedded C libraries supplied with ADS because the standard C libraries
can be retargeted for embedded use. However, the standard libraries must be initialized.
This is normally done through main().

This means that you must have a main() function if you use the C libraries in ADS. If
you are moving a project from SDT to ADS, rename C_Entry() to main().

See the section on tailoring the C library to a new execution environment in the ADS
Compiler, Linker, and Utilities Guide for more information on retargeting the C
libraries.
ARM DUI 0064C Copyright © 1999, 2000 ARM Limited. All rights reserved. 4-13

Migrating Projects from SDT to ADS
Library Entry Point

With the SDT, you typically call C_Entry from some assembler initialization code that
initializes, for example, stack pointers.

With ADS, __main is the entry point for the C library. Change your initialization code to
branch to __main instead of C_Entry. For example, change:

 BL C_Entry

to:

 B __main

Use a B instruction (not BL) because an application will never return this way.

RW/RO and ZI Region Initialization

With the SDT, you must write your own code to initialize RW and ZI variables and to
relocate RO code to RAM, if required. That is, you must copy the RW and RO data and
code from ROM to RAM, and zero the ZI data.

With ADS you do not need to write your own initialization code because the C library
code within __main():

1. Copies non-root RW and RO execution regions from their load addresses to their
execution addresses.

2. Zeroes ZI regions.

3. Branches to __rt_entry, to initialize the library, which ultimately calls your
main().

If you are moving from SDT to ADS you can remove or comment out the redundant
initialization code.

If you want to continue using your own initialization code to perform RO, RW execution
region and ZI initialization, define your own __main that branches to __rt_entry:

 IMPORT __rt_entry
 EXPORT __main
 ENTRY
__main
 B __rt_entry

See the description of how C and C++ programs use the library functions in the C library
chapter of the ADS Compiler, Linker, and Utilities Guide.
4-14 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0064C

Migrating Projects from SDT to ADS
Memory Mapped Peripherals

If you have C variables mapped onto the registers of, for example, memory mapped
peripherals, you can instruct the ADS library not to zero-initialize them.

Example 4-2 defines a C structure mapped onto some peripheral registers in a file called
iovar.c:

Example 4-2 iovar.c

 struct {
 volatile unsigned reg1; /* timer control */
 volatile unsigned reg2; /* timer value */
 } timer_reg;

Example 4-3 adds a root region to the scatter-load description file to place the output
from iovar.c at the required address in the memory map. The region is labeled UNINIT

to ensure that the ZI section is not zero-initialized.

Example 4-3 Scatter-load description for iovar.c

IO 0x40000000
{
 IO 0x40000000 UNINIT
 {
 iovar.o (+ZI)
 }
}

4.2.5 Calling constructors and destructors for top-level C++ objects

If you are using ARM C++ with SDT you must:

• call constructors for top-level C++ library objects with an explicit call to
__cpp_initialise()

• call destructors for top-level C++ library objects with an explicit call to
__cpp_finalise().

This is described in the SDT 2.51 Errata PDF, and in Application Note 74 Using ARM
C++ in Embedded Systems.
ARM DUI 0064C Copyright © 1999, 2000 ARM Limited. All rights reserved. 4-15

Migrating Projects from SDT to ADS
In ADS:

• constructors for top-level C++ library objects are called by __rt_lib_init().

• destructors for top-level C++ library objects are called by __rt_lib_shutdown().

You must not call __cpp_initialise() and __cpp_finalise() from your application
code.
4-16 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0064C

Index

The items in this index are listed in alphabetical order, with symbols and numerics appearing at the end. The
references given are to page numbers.
A
ANSI C library

ISO C standard
armar 3-25
ARMulator

configuring for AXD 3-29
Assembler

differences 2-31, 2-44
enhancements 2-31, 2-44
mode changing 3-18

AXD
starting 3-26
using

B
Books

Assembler Guide 1-6
CodeWarrior IDE Guide 1-7
Compiler, Linker, and Utilities

Guide 1-6

Debug Target Guide 1-7
Debuggers Guide 1-6, 1-8
Developer Guide 1-6
HTML 1-14
Installation and License

Management Guide 1-6

C
CodeWarrior IDE

new project 3-3
Command line

arguments for AXD 3-26
CodeWarrior IDE 3-16
debugging 3-17
linker options 3-19

Compiler options
-dwarf1 2-12, 2-15

Compilers
enhancements 2-38
invoking 3-14

Components 1-2

C++ library
Rogue Wave 3-23
source 3-23

D
Debuggers

AXD 2-26
enhancements 2-26
starting AXD 3-26

Differences 2-2
ADW 2-34
AIF 2-35
ARMulator 2-35
compiler 2-38
debugger 2-26
default behavior 2-33
enhancements 2-23
entry point 2-34
floating point 2-35
librarian 2-28
project manager 2-29
ARM DUI 0064C Copyright © 1999, 2000 ARM Limited. All rights reserved. Index-1

Index
stack unwinding 2-36
DWARF 2-5, 2-19

E
ELF 2-5, 2-19, 2-28, 2-29, 2-31, 2-35,

2-44, 2-47
Entry point

debugger 2-34
differences 2-34
linker 2-34

G
GNU 2-5, 2-19

H
Hiding and renaming symbols 2-16

I
Invoking the compiler 3-14

L
Librarian 3-25

enhancements 2-28
Libraries

ARM 3-22
armar 3-25
custom 3-25
C++
embedded 3-23
non-hosted environment
programing without
RogueWave
semihosting
semihosting dependencies

Linker
information 2-16, 2-17
messages 2-16, 2-17
steering files 2-16
symbols

hiding and renaming 2-16
Linker options

-edit 2-16
-mangled 2-17
syntax 3-20
-unmangled 2-16

O
Obsolete

assembler options 2-46
compiler macros 2-42
compiler options 2-39
components 2-48
file formats 2-50
linker options 2-48
standards 2-48

P
Project manager

enhancements 2-29

R
Rogue Wave C++ library

S
Scatter loading 3-21
Standards 1-4

obsolete 2-48
Starting

CodeWarrior IDE 3-3
Steering files 2-16
Symbols

linker 2-16
Index-2 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0064C

	Contents
	Preface
	About this book
	Intended audience
	Using this book
	Typographical conventions
	Further reading
	ARM publications

	Feedback
	Feedback on the ARM Developer Suite
	Feedback on this book

	Introduction
	1.1 About the ARM Developer Suite
	1.1.1 Components of ADS
	Command-line development tools
	GUI development tools
	Utilities
	Supporting software
	Supported standards

	1.2 Printed documentation
	1.2.1 ADS publications

	1.3 Online documentation
	1.3.1 DynaText
	Opening a book
	Navigating through the book
	Navigating using hyperlinks
	Displaying graphics
	Navigating to a different book
	Displaying help for DynaText

	1.3.2 HTML

	1.4 Online help
	1.4.1 Online help
	Context-sensitive help

	Differences
	2.1 Overview
	2.2 Changes between ADS 1.1 and ADS 1.0
	2.2.1 Functionality enhancements and new functionality
	Support for ARM architecture v5TE
	Improved debug view
	Improved support for debugging third party images
	IRQ and FIQ debugger internal variables
	Code size improvements and improved optimization
	Extensions to RDI support
	Support for RealMonitor
	Support for self-describing modules
	Changes to memory alignment
	Angel moved to AFS

	2.2.2 Differences in default behavior
	2.2.3 Changes to the compilers and libraries
	New compiler options and pragmas
	New predefined macros
	Obsolete compiler options
	Changed behavior
	Changes to the inline assemblers
	Changes to the libraries

	2.2.4 Changes to the assembler
	New instructions and directives
	New assembler options
	New predefined register names
	Obsolete assembler options
	Changed behavior

	2.2.5 Changes to the linker
	New linker options
	New scatter loading attributes
	Changed linker behavior

	2.2.6 Changes to fromELF
	New fromELF options
	Changed behavior

	2.2.7 Changes to the Flash downloader
	2.2.8 Changes to the debuggers
	Changes to AXD
	Changes to armsd
	Changes to ADW and ADU

	2.2.9 Changes to ARMulator
	License management
	Integrated ARMulator and new processor models
	New API for memory models
	New configuration mechanism
	ARMulator byte order set from the debuggers
	Changes to default behavior

	2.2.10 Changes to the CodeWarrior IDE
	2.2.11 Changes to the examples

	2.3 Changes between ADS 1.0 and SDT 2.50/2.51
	2.3.1 Functionality enhancements and new functionality
	Support for new processors (ARM9E and ARM10)
	New ARM/Thumb procedure call standard
	Floating-point support
	Byte order of long long and double
	Remote Debug Interface
	Debuggers
	ARMulator
	Angel and Remote_A
	Libraries
	Library manager
	CodeWarrior IDE
	Linker
	Compilers
	Assembler
	License management

	2.3.2 Differences in default behavior
	Object and library compatibility
	Entry point used with debugger
	Default interrupt settings for debug targets
	Entry point set by linker option
	ADW
	ARMulator
	ELF, AIF, Binary AIF, IHF and Plain Binary Image formats
	Floating-point exceptions
	Stack unwinding
	Source directory variable in armsd and ADW

	2.3.3 Changed compiler behavior
	New compiler options
	Obsolete compiler pragmas
	Obsolete compiler options
	Deprecated compiler options
	Obsolete ARM-specific language extensions
	Obsolete and new predefined macros

	2.3.4 Changed assembler behavior
	New or changed assembler behavior
	Features of the SDT assembler not supported
	Deprecated assembler options

	2.3.5 Changed linker behavior
	New or changed linker behavior
	Obsolete linker options

	2.3.6 Obsolete components and standards
	APM
	Armmake
	Armlib
	Decaof and Decaxf
	DWARF1
	26-bit addressing
	AOF, AIF, IHF, and Plain Binary image formats
	RDI 1.50

	Creating an Application
	3.1 Using the CodeWarrior IDE
	3.1.1 Creating and building a simple project
	Creating a new project from ARM project stationery
	Adding source files to the project
	Configuring the project build targets
	Building the project
	Debugging the project

	3.2 Building from the command line
	3.2.1 Using the compilers from the command line
	Compiler syntax
	Building an example

	3.2.2 Using the CodeWarrior IDE from the command line
	3.2.3 Debugging from the command line
	3.2.4 Using the assembler from the command line
	Building the example
	Running the example in the debugger

	3.2.5 Setting linker options from the command line
	Linker input and output
	Linker syntax
	Using linker options to position sections
	Using scatter-load description files for a simple image

	3.3 Using ARM libraries
	3.3.1 Using the ARM libraries in a semihosted environment
	3.3.2 Using the ARM libraries in a non-semihosted environment
	3.3.3 Building an application without the ARM libraries

	3.4 Using your own libraries
	3.5 Debugging the application with AXD
	3.5.1 Starting AXD
	Loading an image
	Stepping through an application
	Processor view

	3.5.2 Configuring ARMulator for AXD

	Migrating Projects from SDT to ADS
	4.1 Converting makefiles and APM project files
	4.1.1 Converting APM project files (Windows only)
	4.1.2 Converting makefiles (Windows & Unix)

	4.2 Moving your development project from SDT to ADS
	4.2.1 Compiling
	-apcs 3/nosw
	-apcs /softfp/narrow (or /wide)
	-zat and alignment of top-level static objects
	-zas and alignment of structs
	-zz, -zt, -zzt0
	-fc
	Include paths

	4.2.2 Assembling
	Interworking
	New FUNCTION directive
	String Literals and $

	4.2.3 Linking
	Specifying libraries
	Change -info size to -info sizes
	Change -symbols file to -symbols
	Linking old objects
	Linking old libraries
	Unused section elimination
	Use of +RW and +ZI in scatter-loading
	Generating binary images

	4.2.4 Initialization of C Libraries and Execution Regions
	Application Entry Point
	Library Entry Point
	RW/RO and ZI Region Initialization
	Memory Mapped Peripherals

	4.2.5 Calling constructors and destructors for top-level C++ objects

	Index
	A
	B
	C
	D
	E
	G
	H
	I
	L
	O
	P
	R
	S

