ARM Processor Architecture

Jin-Fu Li
Department of Electrical Engineering
National Central University

Adopted from National Chiao-Tung University
IP Core Design

SOC Consortium Course M aterial

Outline

JARM Processor Core
dMemory Hierarchy

U Software Development
dSummary

N ™ et it armm S s svr e~~~ N2

~ ~

ARM Processor Core

e Y ol o Yy L. o U W [.y | ~

3-Stage Pipeline ARM Organization

ﬁ

ey ol &% J Register Bank
T advressregiser K — 2read ports, 1 write ports,
T L access any register
o === — 1 additional read port, 1
| ec | additional write port for r15 (PC)
register .
Y - 4 Barrel Shifter
‘:>" tocode — Shift or rotate the operand by
A iy & any number of bits
l: A:> 2 B control EI ALU
u b b .
: : : 1 Address register and
LT Incrementer
N Data Reqgisters
— Hold data passing to and from
ﬁ memory

| data out register | | data in register | EI InStrUCtlon Decoder and
oo Control

e Y ol o Yy L. o U W [.y |

3-Stage Pipeline (1/2)

1 fetch decode | execute
2 fetch decode | execute
3 | fetch ‘ decode ‘ exec:utei
instruction
- -
time
 Fetch

— The instruction is fetched from memory and placed in the instruction pipeline

J Decode

— The instruction is decoded and the datapath control signals prepared for the
next cycle

] Execute

— The register bank is read, an operand shifted, the ALU result generated and
written back into destination register

3-Stage Pipeline (2/2)

ﬁ

At any time slice, 3 different instructions may
occupy each of these stages, so the hardware In
each stage has to be capable of independent
operations

dWhen the processor Is executing data processing
Instructions , the latency = 3 cycles and the
throughput = 1 instruction/cycle

e Y ol o Yy L. o U W [.y |

Multi-cycle Instruction

1 fetch ADD | decode execLie

2 fetch STR| decode | cale. addr. | data xfer

3 fetch ADD decode | exeaute

4 |fatd’|.-ﬂmi decode | execute

5 fetch ADD| decode | execute
instruction

time
L Memory access (fetch, data transfer) in every cycle

d Datapath used in every cycle (execute, address calculation,
data transfer)

1 Decode logic generates the control signals for the data path
use in next cycle (decode, address calculation)

e Y ol o Yy L. o U W [.y | -

Data Processing Instruction

@

address register

I

registers
Rn

@

address register

increment

Rd

registers
Rn Rm

mult

\ as instruction / as instruction
s

U7

data out| | data in i. piFe dalelout data in i. pipe

(a) register - register operations (b) register - immediate operations

O All operations take place in a single clock cycle

e Y ol o Yy L. o U W [.y | (o)

Data Transfer Instructions

@

address register

W

@

address register :,.I

=
g

Rn PC

PC
registers

registers

Rn

=A/A+B/A-B
e
data out| | data in byte? data in i. pipe
I ot ==

(a) 1t cycle - compute address (b) 2nd cycle - stor e data & auto-index

0 Computes a memory address similar to a data processing instruction

O Load instruction follow a similar pattern except that the data from memory
only gets as far as the ‘data in’ register on the 2nd cycle and a 3rd cycle
IS needed to transfer the data from there to the destination register

e Y ol o Yy L. o U W [.y | aY

Branch Instructions
@ @

address register address register

== i

registers registers

increment

R14

RIS

s/
5 S S e
data out| | data in i. pipe data out| | data in i. pipe
[1ot [l T
(a) 1st cycle - compute branch target (b) 2nd cycle - saver eturn addiess

O The third cycle, which is required to complete the pipeline refilling, is also
used to mark the small correction to the value stored in the link register
In order that is points directly at the instruction which follows the branch

e Y ol o Yy L. o U W [.y | 1N

Branch Pipeline Example

Gycle 1 2 3 4 5 -
address opeation
0x8000 BL felch | decode | execute | linkret | adjust
0x8004 X fetch | decode |
0x8008 XX fetch |\
0x8FEC ADD f&tch decode | execute
0x8FF0 SUB fetch | decode | execute
0x8FF4 MOV fetch | decode
fetch

Breaking the pipeline

dNote that the core Is executing in the ARM
state

5-Stage Pipeline ARM Organization

EITprog - |\Iinst * CPI /fclk
— Thog: the time that execute a given program

— N, the number of ARM instructions executed in the
program => compiler dependent

— CPI: average number of clock cycles per instructions =>
hazard causes pipeline stalls

— f.: frequency

 Separate instruction and data memories => 5 stage
pipeline

dUsed in ARMO9TDMI

ﬁ

e Y ol o Yy L. o U W [.y |] N

5-Stage Pipeline Organization (1/2)

50«

next
pc

pc+4

B, BL
MOV pc
UBS pc

LDR pc

I-cache

| decode

‘}MS

V2

register read

LDM/

S™ post-

index

reg
shift

pre-index

fetch

instruction
decode

immediate

Il

|

fields

=]

execute

paths

e

buffer/
data

\ forwarding
<: —
byte repl.
\/
Toad/store > D-cache
address
N

register write

e Y ol o Yy L. o U W [.y |

J Fetch

— The instruction is fetched from

memory and placed in the instruction
pipeline

1 Decode

— The instruction is decoded and
register operands read from the
register files. There are 3 operand
read ports in the register file so most
ARM instructions can source all their
operands in one cycle

] Execute

— An operand is shifted and the ALU
result generated. If the instruction is
a load or store, the memory address
Is computed in the ALU

q N

5-Stage Pipeline Organization (2/2)

next

pc+4

B, BL
MOV pc
UBS pc

LDR pc

pc

+4

I-cache

LDM/

S™ post-

index

pre-index

1 Buffer/Data

fetch

— Data memory is accessed if required.
Otherwise the ALU result is simply

| decode buffered for one cycle
\}rl‘r’ 4 instruction .
register read fecoce D erte baCk
= s — The result generated by the
— instruction are written back to the
st D register file, including any data
o | [loaded from memory
Vv execute
ALU / forwarditr;]g

—P

byte repl.
\Z
Toad/store > D-cache
address

N\

register write

CONL™ ™ et s s S o~

Lo

buffer/
data

v rme~ Ml At~ o~

Pipeline Hazards

 There are situations, called hazards, that prevent the next
Instruction in the instruction stream from being executing
during its designated clock cycle. Hazards reduce the
performance from the ideal speedup gained by pipelining.

1 There are three classes of hazards:

— Structural Hazards: They arise from resource conflicts when the
hardware cannot support all possible combinations of instructions in
simultaneous overlapped execution.

— Data Hazards: They arise when an instruction depends on the result
of a previous instruction in a way that is exposed by the overlapping
of instructions in the pipeline.

— Control Hazards: They arise from the pipelining of branches and
other instructions that change the PC

e Y ol o Yy L. o U W [.y | 10

Structural Hazards

dWhen a machine is pipelined, the overlapped
execution of instructions requires pipelining of
functional units and duplication of resources to
allow all possible combinations of instructions in
the pipeline.

dIf some combination of instructions cannot be
accommodated because of a resource conflict, the
machine is said to have a structural hazard.

e Y ol o Yy L. o U W [.y |

Example ﬁ

A machine has shared a single-memory pipeline
for data and instructions. As a result, when an
Instruction contains a data-memory reference
(load), it will conflict with the instruction reference
for a later instruction (instr 3):

Clock cycle number
instr 1 2 3 4 5 6 7 8
load IF ID EX MEM | WB
Instr 1 IF ID EX MEM | WB
Instr 2 IF ID EX MEM | WB
Instr 3 IF ID EX MEM | WB

Solution (1/2)

ﬁ

dTo resolve this, we stall the pipeline for one clock

cycle when a data-memory access occurs. The

effect of the stall is actually to occupy the

resources for that instruction slot. The following
table shows how the stalls are actually

Implemented.
Clock cycle number
instr 1 2 3 4 5 6 7 8 9
load IF ID EX MEM | WB
Instr 1 IF ID EX MEM | WB
Instr 2 IF ID EX MEM | WB
Instr 3 stall | IF ID EX MEM | WB

Solution (2/2) 50¢

d Another solution Is to use separate instruction and
data memories.

JARM iIs use Harvard architecture, so we do not
have this hazard

e Y ol o Yy L. o U W [.y | 10

Data Hazards E

dData hazards occur when the pipeline changes the
order of read/write accesses to operands so that the
order differs from the order seen by sequentially

executing instructions on the unpipelined machine.

Clock cycle number

ADD | R1,R2,R3 IF | ID | EX MEM

SUB |R4,R5,R1 IF |ID., |EX |MEM |WB
AND | R6,R1,R7 IF |ID,, |EX |MEM |WB
OR |R8,R1,R9 IF EX |MEM |WB

XOR | R10,R1,R11 1= ID EX MEM | WB

Forwarding

ﬁ

dThe problem with data hazards, introduced by this
sequence of instructions can be solved with a
simple hardware technique called forwarding.

Clock cycle number
1 2 3 4 5 6 7
ADD |R1,R2,R3 |IF ID EX — MEM-\WB
SUB |R4,R5,R1 IF IDg,p \EX A)EM WB
AND |R6,R1,R7 IF D4 | EX MEM | WB

Forwarding Architecture

50«

next

i +4 « = Forwarding works as
SR ﬁl: fO”OWS
o +8 - — The ALU result from the
s 1T instrucion EX/MEM register is always fed
register read - back to the ALU input latches.
— If the forwarding hardware

detects that the previous ALU
operation has written the
register corresponding to the
source for the current ALU
operation, control logic selects
the forwarded result as the ALU
input rather than the value read
m the register file.

B,BL

MOV pc

load/store
address

forwarding paths

y
oRpe | Ko

Forward Data

Clock cycle number
1 2 3 4 5 6 7
ADD |R1,R2,R3 |IF ID EX,q4q | MEM_ | WB
SUB | R4,R5,R1 IF ID EXop MEM WB
AND |R6,R1,R7 IF ID EX. g MEM |WB

d The first forwarding is for value of R1 from EX__, to EX_,.
The second forwarding is also for value of R1 from MEM_, to EX_, ;.
This code now can be executed without stalls.

U Forwarding can be generalized to include passing the result directly
to the functional unit that requires it: a result is forwarded from the
output of one unit to the input of another, rather than just from the
result of a unit to the input of the same unit.

Without Forward

Clock cycle number

1 |2 |3 |4 5 6 7 8 9
ADD |R1R2R3 |IF |ID |EX |MEM |WB=Jg~__

SUB |R4,R5,R1 IF |stall |stall [ID,, |EX [WEM |WB

AND |R6,R1,R7 stall | stall | IF D, |EX |MEM |WB

Data forwarding

1 Data dependency arises when an instruction needs to use
the result of one of its predecessors before the result has
returned to the register file => pipeline hazards

 Forwarding paths allow results to be passed between stages
as soon as they are available

1 5-stage pipeline requires each of the three source operands
to be forwarded from any of the intermediate result registers
1 Still one load stall
LDR rN, [..]
ADD r2,rl1,rN ;use rN 1mmediately

— One stall
— Compiler rescheduling

e Y ol o Yy L. o U W [.y |

Stalls are required

1 |2 |3 |4 5 6 7 8
LDR |R1,@(R2) |IF [ID |EX|MEM |WB

SUB |R4,R1,R5 IF [ID |EX_, |MEM |WB

AND | R6,R1,R7 IF |ID |EX,, |MEM |WB

OR |R8,R1,R9 IF D |EXE |MEM |WB

4 The load instruction has a delay or latency that cannot be
eliminated by forwarding alone.

The Pipeline with one Stall

1 |2 |3 |4 5 6 7 8 9
LDR |RL@(R2) |IF |ID |EX |MEMTWB S~
SUB |R4,R1,R5 IF |ID |stall |EX MEM\\WB
AND |R6,R1,R7 IF |stall [ID |EX MEM WB
OR |R8,R1,R9 stall | IF D |EX |MEM |WB

d The only necessary forwarding is done for R1 from MEM to
EX b

LDR Interlock

Cyele P P 1 P2 : 3 ;4 :5;:6:7;:8;:

ﬂ;urariun

.um "'RI RI H‘
T HI
LDR R4,| |RT|
T

. n“,...,,,...lm IL‘-L m

F = Fefeh = Decode F - Excufe [= Interfock M - Memony
W - Wistehack

O In this example, it takes 7 clock cycles to execute 6
Instructions, CPI of 1.2

d The LDR instruction immediately followed by a data
operation using the same register cause an interlock

Optimal Pipelining

(]
it
.

Jn
=
|
-
=

Cyele : Do
Operation : :
eHl Rl Y I—
emasutenenaat i een s eincs
LDR R4LRT
T A Iu
1ulm .,.,..,,..“H IH Iu...,.,... R R

F = Ferch e Decode F - Excale I = Intevfock M - Memony
W - Wiitehack

O In this example, it takes 6 clock cycles to execute 6
Instructions, CPI of 1

d The LDR instruction does not cause the pipeline to interlock

LDM Interlock (1/2)

Cvele ; Pl 23 i o4 1 5 1 6 17T 8 o9 Q0
[]|I1.I ation : : : : : : : : : : : :
N '[J'{ii'i' """ RI13. {R- Tﬁ T
SUB ""Hu m |:1 -

rgrr—— IH*II
el A m

.,-'I.,‘*il_‘,l,..,IM R_l Itl AP P SR

e T L L L T T T T T T T

F - Fetch D= Decode E - Excate 1= Interlock M = Memaory
ME - Siniltaneous Memory and Writeback W - Writeback

O In this example, it takes 8 clock cycles to execute 5
Instructions, CPI of 1.6

1 During the LDM there are parallel memory and writeback
cycles

LDM Interlock (2/2)

Cyele P 1 i 2 : 3 ;456 :7:8:09 10
Operation : : : : : ' . ' : . >
N ii'{ii'i' """ R13!, {R0- 'rl:'i v
SUB ""lw m m
e IH‘!I
st B m

.,-'I.ND".,m: IH- RI o i e g e g o g g i

e T I T T T T T T T T T

F - Fetch - Decodde E - Excute 1= Interfock M - Memory
ME - Simultanconus Memory and Writehack W - Writehick

O In this example, it takes 9 clock cycles to execute 5
Instructions, CPI of 1.8

 The SUB incurs a further cycle of interlock due to it using the
highest specified register in the LDM instruction

ARM/TDMI Processor Core

ﬁ

d Current low-end ARM core for applications like
digital mobile phones

JdTDMI

— T: Thumb, 16-bit compressed instruction set

— D: on-chip Debug support, enabling the processor to halt
In response to a debug request

— M: enhanced Multiplier, yield a full 64-bit result, high
performance

— |: EmbeddedICE hardware
1Von Neumann architecture

13-stage pipeline, CPI ~ 1.9

e Y ol o Yy L. o U W [.y |

ARM7TDMI Block Diagram

scan chain 2
extern0 ! Embedded scan chain 0
externl - ICE
opc, Thw, < A
mreq, trans,
221[%:0] < 1 - processor other
310 | | | core signals
|

b(31:0] < <> + + scan chain 1
Din[31:0 ~

=0l :>| bus JTAG TAP
Dout[31:0] splitter controller

P r Pt

TCK TMSTRST TDI TDO

e Y ol o Yy L. o U W [.y | N

ARM7TDMI Core Diagram

Al31:07

Address Regisier

: ke

(37 o A -bit registars)
(B stathus regisiars)

Adciess
B Incramantar
u
- |2
Registar Sank

|

ACE I B

a2 % A Inatruetion
v R = I
u

[t}
&
¥ ontrol
Logic

——
LR ==}

Li— DGR
4= BEREAKPTI
g DEVGACH
—+ ECLE
— nEXEC
b= IS WM
e— BL[3-0]
le= AFE

b= ICLE
== N¥alT
=

— MAS]1:0
= nlIFO

= nFiQ

-+ NRESET
- ACORT
— nTRANS
—= nMEED
— NPT
— SE(]

— LOCK
—= nCFI
= A

- PR

—= fkA[4-0]
+— THE

== TREIT

=+ HIGHZ

<L

Wirile Dabs Rogisbor

I it

Instruciion Poaline
& Reac Data Regivhsr
£ Thumbl instructon Descoder

NEMOUT | nERIR

B

e Y ol o Yy L. o U W [.y |

ARMY7TDMI Interface Signals (1/4)

clock

control
configuration C
interrupts [

initialization <
e

bus
control

debug

N
—~

coprocessor
interface

N

power (

rangeout0 -——
rangeoutl <+——

mclk ——
walt ——»|
eclk ———

bigend =™

g ——»
T —>
iSsync ——»|

ape —»|
dbe ——»
tbe ———»
busen ——»
highz €——
busdis €——
ecapclk -——

dbgrq ——m

breakpt
dbgack «———

exec +——
externl ———»
extern0 ——m
dbgen ——»

dbgrgi <+—
commrx +—
commtx ~e——
opc <]
cpi +——
cpa —>

cpb

Vdd ——»
Vss ——»

ARM7TDMI

core

———
—>
—>
>
L >
—>
>
——————
>
L >
—
>
L >
>
| I
L >
>
———»
—>
>
L
—>
l———
L
>
—————
-————
l———
l———
—>

—>

N

—
=

A[31:0]
Din[31:0]
Dout[31:0]

D[31:0]

bl[3:0]
Tiw
mas[1:0]
mreq
seq

lock e

Thit P!

tapsm([3:0]N
ir[3:0]

tdoen

tckl

tck2
screg[3:0]_/

drivebs ™
ecapclkbs
icapclkbs
highz
pclkbs
rstclkbs
sdinbs
sdoutbs
shclkbs
shclk2bs ~

TRST
TCK

T™MS

TDI

TDO -

memory
interface

MMU
interface

state

TAP
information

boundary
scan
extension

JTAG
controls

e Y ol o Yy L. o U W [.y |

ARM7TDMI Interface Signals (2/4) ﬁ

[Clock control

— All state change within the processor are controlled by mclk, the
memory clock

— Internal clock = mclk AND \wait
— eclk clock output reflects the clock used by the core

d Memory interface

— 32-bit address A[31:0], bidirectional data bus D[31:0], separate data
out Dout[31:0], data in Din[31:0]

— \mreq indicates that the memory address will be sequential to that
used in the previous cycle

mreq Seq Cycle Use

0 0 N Non-sequentia memory access

0 1 S Sequentia memory access

1 0 I Interna cycle— bus andmemory inactive

1 1 C Coprocessor register transfer — memory inactive

e Y ol o Yy L. o U W [.y | la YAl

ARM7TDMI Interface Signals (3/4) E

— Lock indicates that the processor should keep the bus to ensure the
atomicity of the read and write phase of a SWAP instruction

— \r/w, read or write
— mas[1:0], encode memory access size — byte, half — word or word

— DblI[3:0], externally controlled enables on latches on each of the 4 bytes
on the data input bus

J MMU interface

— \trans (translation control), O: user mode, 1: privileged mode
— \mode[4:0], bottom 5 bits of the CPSR (inverted)
— Abort, disallow access

] State

— T bit, whether the processor is currently executing ARM or Thumb
Instructions

1 Configuration
— Bigend, big-endian or little-endian

ARM7TDMI Interface Signals (4/4)

4 Interrupt

— \fiq, fast interrupt request, higher priority

— \irg, normal interrupt request

— Isync, allow the interrupt synchronizer to be passed
4 Initialization

— \reset, starts the processor from a known state, executing from
address 00000000,

J ARM7TDMI characteristics

ﬁ

Process 0.35um Trandgors 74,20% MIPS 60
Metal layers 3 Corearea 21mm Power 87 mwW
vdd 3.3V Clock Oto66 MHz MIPSW 690

e Y ol o Yy L. o U W [.y | O

Memory Access

d The ARM7 is a Von Neumann, load/store Ox1A
architecture, i.e., 0x19
— Only 32 bit data bus for both inst. And data. 0x18
— Only the load/store inst. (and SWP) access 0x17
memory. 0x16 Byte Line
1 Memory is addressed as a 32 bit address ::i
space acts
d Data type can be 8 bit bytes, 16 bit half-words 0x12
or 32 bit words, and may be seen as a byte
line folded into 4-byte words Ox11
O Words must be aligned to 4 byte boundaries, L
and half-words to 2 byte boundaries.) 5t :]:;2
d Always ensure that memory controller 0x08
supports all three access sizes i 0x04
x40

Memory as words

ARM Memory Interface

O Sequential (S cycle)

foc
— (hMREQ, SEQ) = (0, 1)

— The ARM core requests a transfer to or from an address which is either the
same, or one word or one-half-word greater than the preceding address.

O Non-sequential (N cycle)
— (nMREQ, SEQ) = (0, 0)

— The ARM core requests a transfer to or from an address which is unrelated to
the address used in the preceding address.

d Internal (I cycle)
— (NMREQ, SEQ) = (1, 0)

— The ARM core does not require a transfer, as it performing an internal
function, and no useful prefetching can be performed at the same time

O Coprocessor register transfer (C cycle)
— (nNMREQ, SEQ) = (1, 1)

— The ARM core wished to use the data bus to communicate with a
coprocessor, but does no require any action by the memory system.

e Y ol o Yy L. o U W [.y | AN

Cached ARM7TDMI Macrocells

JTAG and non-AMBA signals

EmbeddedICE & JTAG

ARMTTDMI

AMEB A
Address

Interf
nterface AMBA

Inst. & data Data

Inst. & data cache

d ARM710T d ARM720T
— 8K unified write through cache — As ARM 710T but with WIinCE
— Full memory management unit support
supporting virtual memory 3 ARM 740T
— Wiite buffer — 8K unified write through cache

— Memory protection unit

— Write buffer

N1

ARMS

 Higher performance than ARM7
— By increasing the clock rate
— By reducing the CPI
e Higher memory bandwidth, 64-bit wide memory
« Separate memories for instruction and data accesses

D ARM \; ARM9TDMI <:> prefe_ttch
8 ARM10TDMI 0 addresses
d Core Organization e |- %U
— The prefetch unit is responsible for memory nteger
fetching instructions from memory and bg%%‘j\ﬁ'(i}l) read data unit
buffering them (exploiting the double (! st CPdata
bandwidth memory) rite data I

— Itis also responsible for branch prediction
and use static prediction based on the
branch prediction (backward: predicted
‘taken’; forward: predicted ‘not taken’)

coprocessor(s)

e Y ol o Yy L. o U W [.y | NN

Pipeline Organization

ﬁ

d5-stage, prefetch unit occupies the 1st stage,
Integer unit occupies the remainder

(1) Instruction prefetch > Prefetch Unit

(2) Instruction decode and register read ™

(3) Execute (shift and ALU)
Integer Unit
(4) Data memory access -

(5) Write back results

e Y ol o Yy L. o U W [.y | NN

Integer Unit Organization

instructions PC+8
coprocessor
instructions
<: inst. decode
|
decode
register read
i -
coproc multiplier
N % Jﬁ
\ ALU/sh|fter / execute
:> write
pipeline
i
< Pt | data
>address memory
N\ p read
' l') (‘ data
—
forwarding rot/sgn ex
paths
> I
V4 write

register write

e Y ol o Yy L. o U W [.y | NA

ARMS8 Macrocell

50«

virtual address

[

prefetch

unit

A
N\

8 Kbyte cache
(double-
bandwidth)

WRY

PAN
o=

copy-back tag~y,

copy-back data:

JTAG

data in

PC instructions

read data ARMS integer
_l unit
| write data | |
<1' CPinst. CPdata
—| | — ﬁ_ CP15
) '
write buffer :: MMU
physical address {}
address buffer
Vv
data out address

d ARM810

8Kbyte unified instruction
and data cache

Copy-back
Double-bandwidth
MMU
Coprocessor
Write buffer

e Y ol o Yy L. o U W [.y | nAr

ARMOTDMI

ﬁ

dHarvard architecture

— Increases available memory bandwidth
* Instruction memory interface
« Data memory interface

— Simultaneous accesses to instruction and data memory
can be achieved

1 5-stage pipeline
d Changes implemented to

— Improve CPIto ~1.5
— Improve maximum clock frequency

ARMOTDMI Organization

next
pc

pc+4

B, BL
MOV pc
SUBS pc

LDR pc

<1—

—érV—

N

pc +8

I-cache

—— =

| decode

0r15

fetch

{} instruction

register read

; reg
shift shift

Vv
ALU / forwarding
paths

load/store
address

> D-cache

Z\

CONL™ ™ et s s S o~

decode

immediate

execute

buffer/
data

register write write-back

v rme~ Ml At~ o~

N~7

ARMOTDMI Pipeline Operations (1/2)

ﬁ

ARM/TDMIE Fetch Decode Execute
instruction Thumb | ARM reg | | reg
fetch decompress | decode read shift/ALU wrlte
ARMITDMI: / /
instruction I_r. rgad_ _ data memory|| reg |
fetch decode shift/ALU access write |
Fetch Decode Execute Memory Write

Not sufficient slack time to translate Thumb instructions into ARM instructions and
then decode, instead the hardware decode both ARM and Thumb instructions
directly

e Y ol o Yy L. o U W [.y | No

ARMOTDMI Pipeline Operations (2/2) ﬁ
d Coprocessor support

— Coprocessors: floating-point, digital signal processing, special-
purpose hardware accelerator

dOn-chip debugger

— Additional features compared to ARM7TDMI
« Hardware single stepping
* Breakpoint can be set on exceptions

JARMO9TDMI characteristics

Process 0.25um Trandgors 110,00(?2J MIPS 220
Metal layers 3 Corearea 21mm Power 150 mw
vdd 25V Clock 0to200MHz MIPSW 1500

ARMOTDMI Macrocells (1/2)

ﬁ

d ARM920T

AN — 2 x 16K caches
data
instructions | —_
- <:t>t (emal <:§\<:> Full memory |
instuction interface e management unit
< B supporting virtual
g s A E addressing and
el | = memory protection
instruction ||| e data .
MMU —| |3 ARMOTDMI [— :) MMU — Write buffer
— f‘) Emgesj%egCE <I> %
VQ\‘; physical
. dd ta
— AMBA interface <: write <: RS
<:>bUffer copy-back DA

U

AMBA AMBA
address data

CONL™ ™ et s s S o~

v rme~ Ml At~ o~

ARMOTDMI Macrocells (2/2)

d ARM 940T
DS — 2 x 4K caches

ﬁ

external A .
ﬁ cc;r[])trg;:f:izor <:> — mr?:;nory protectlon
K—

— Write buffer

Protection Unit

I
;
I

instruction data
cache cache

<
&

1P arverom K| [P
0

7]

S :> o

! EmbeddedICE

g ” & JTAG AN E
g 8 s ||
S i=} T
2 B o
2 - \V \/
: AMBA interface : write
<:>buffer

Ly

AMBA AMBA
address data

e Y ol o Yy L. o U W [.y | 1

ARMO9E-S Family Overview

1 ARM9E-S is based on an ARM9TDMI with the following
extensions:

— Single cycle 32*6 multiplier implementation
— EmbeddedICE logic RT

— Improved ARM/Thumb interworking

— New 32*16 and 16*16 multiply instruction
— New count leading zero instruction

— New saturated math instructions

J ARMO946E-S
— ARMO9E-S core
— Instruction and data caches, selectable sizes
— Instruction and data RAMSs, selectable sizes
— Protection unit
— AHB bus interface

ﬁ

Architecture Vv5TE

ARM10TDMI (1/2)

d Current high-end ARM processor core
dPerformance on the same IC process

CONL™ ™ v mr~re oy

Y o W B [y Ry |

ARM10TDMI > ARM9TDMI " ARM7TDMI
Q300MHz, 0.25um CMOS
dIncrease clock rate
ARM10TDMI
branch addr. data memory data |
prediction calc. access write |
instruction decode :_r read| shift/ALU mqltiplier reg I
fetch decode multiply partials add || write |
Fetch |ssue Decode Execute Memory Write

ARM10TDMI (2/2)

JReduce CPI
— Branch prediction
— Non-blocking load and store execution
— 64-bit data memory - transfer 2 registers in each cycle

50«

e Y ol o Yy L. o U W [.y |

ARM1020T Overview

'EI Architecture v5T
— ARM1020E will be Vv5TE

QCPI~1.3
1 6-stage pipeline
1 Static branch prediction
1 32KB instruction and 32KB data caches
— ‘hit under miss’ support
1 64 bits per cycle LDM/STM operations
1 EmbeddedICE Logic RT-lI
O Support for new VFPv1 architecture
d ARM10200 test chip
— ARM1020T
— VFP10

— SDRAM memory interface
— PLL .

Y o YIRS B [y Ry |

Memory Hierarchy

e Y ol o Yy L. o U W [.y | —r

Memory Size and Speed

egisters
i | Y

On-chip cache memory

|

2nd-level off chip cache

v
Main memory

$ 3 i
v disk

Access
time

capacity Cost

e Y ol o Yy L. o U W [.y | =7

Caches (1/2)

A cache memory is a small, very fast memory that
retains copies of recently used memory values.

It usually implemented on the same chip as the
processor.

d Caches work because programs normally display
the property of locality, which means that at any
particular time they tend to execute the same
Instruction many times on the same areas of data.

JAn access to an item which iIs in the cache iIs called
a hit, and an access to an item which is not in the
cache is a miss.

e Y ol o Yy L. o U W [.y |

Caches (2/2)

ﬁ

A processor can have one of the following two
organizations:
— A unified cache
e This is a single cache for both instructions and data

— Separate instruction and data caches

* This organization is sometimes called a modified Harvard
architectures

ﬁ

Unified instruction and data cache

FE.FF¢
registers
instructions
processor
dd Instructions
adaress and data
data
copies of
instructions address
copies of
data /I >
memory
cache
\'l : 00..00,
instructions 6

and data

50«

Separate data and instruction caches

- FF.FF ¢

copies of

instructions address
/i]nstructions
cache \1
address instructions _ _
instructions

registers

processor

address & @ data data
address>

copies of
data Jata
cache memory

e Y ol o Yy L. o U W [.y | n1

00..004¢

ﬁ

L The index address bits are
used to access the cache
entry

1 The top address bit are
then compared with the
stored tag

A If they are equal, the item is
In the cache

1 The lowest address bit can
be used to access the
desired item with in the line.

The direct-mapped cache

address:

data RAMI

|

hit data

ﬁ

0 The 8Kbytes of data in
line 16-byte lines. There
would therefore be 512
lines

O A 32-bit address:

|| 512 — 4 bits to address bytes
D within the line

lines — 9 bits to select the line
— 19-bit tag

data RAMI

The set-associlative cache

ﬁ

A 2-way set-associative
cache

d This form of cache is
effectively two direct-
mapped caches operating
In parallel.

data RAM

/ mux %
it At o Al

|
data RAM

e Y ol o Yy L. o U W [.y | NnA

Example

ﬁ

line O The 8Kbytes of data in

) 16-byte lines. There
would therefore be 256
Bs lines in each half of the
i lines Cache

O A 32-bit address:

— 4 Dbits to address bytes
within the line

— 8 hits to select the line
data — 20-bit tag

mux \\
B

_______________ Jam—
At AR

256

lines

| I I
I data RAM

i I IS o~ o~ e ~r

ﬁ

Fully associative cache

d A CAM (Content Addressed
address Memory) cell is a RAM cell
{7 with an inbuilt comparator,

so a CAM based tag store

tag CAM | data RAM|
can perform a parallel

search to locate an address
In any location

1 The address bit are
compared with the stored

VYUV | oo

— 4 If they are equal, the item is
! {) in the cache

hit data L The lowest address bit can
be used to access the
deswed item with in the I|ne

CONL™ ™ v~ s a P PRy |

Example ﬁ
I 28 4 I
address __—line 0 The 8Kbytes of data in
{7 Ps 16-byte lines. There
— - — ~ would therefore be 512
tag CAM | data RAM | lines
- 256 O A 32-bit address:
- — 4 Dbits to address bytes
{ lines within the line

TULY

mux /Q—

: V

hit data

CONL™ ™ v mr~rr ot 1 o~

— 28-bit tag

Write Strategies

ﬁ

dWrite-through
— All write operations are passed to main memory

dWrite-through with buffered write

— All write operations are still passed to main memory and
the cache updated as appropriate, but instead of slowing
the processor down to main memory speed the write
address and data are stored in a write buffer which can
accept the write information at high speed.

dCopy-back (write-back)

— No kept coherent with main memory

CONL™ ™ et smm S

PR Y By Ry | 'aJo)

Software Development

e Y ol o Yy L. o U W [.y | 'adaY

ARM Tools

ﬁ

Csource /£ C libraries £ _»/asm source £

C compiler assembler

aof: ARM object format

object /i
libraries 4

aif: ARM image format

system model

development |
board

d ARM software development — ADS
O ARM system development — ICE and trace
1 ARM-based SoC development — modeling, tools, design flow

e Y ol o Yy L. o U W [.y |

ARMulator

ARM Development Suite (ADS), ﬁ
ARM Software Development Toolkit (SDT) (1/3)

dDevelop and debug C/C++ or assembly language
program

darmcc ARM C compiler
armecpp ARM C++ compiler
tcc Thumb C compiler
tcop Thumb C++ compiler
armasm ARM and Thumb assembler
armlink ARM linker

armsd ARM and Thumb symbolic debugger

e Y ol o Yy L. o U W [.y |

ARM Development Suite (ADS), ﬁ
ARM Software Development Toolkit (SDT) (2/3) ,

.aof ARM object format file
aif ARM image format file

dThe .aif file can be built to include the debug tables
— ARM symbolic debugger, ARMsd

JARMSsd can load, run and debug programs either on
hardware such as the ARM development board or
using the software emulation of the ARM

dAXD (ARM eXtended Debugger)

— ARM debugger for Windows and Unix with graphics user
Interface

— Debug C, C++, and assembly language source

CodeWarrior IDE
— Project management tool for windows

N ™ vt it armm S s sve e~~~ N2

PRy |

ARM Development Suite (ADS),
ARM Software Development Toolkit (SDT) (3/3)

QUtilities
armprof ARM profiler

Flash downloader download binary images to Flash
memory on

a development board

d Supporting software

— ARMulator ARM core simulator

* Provide instruction accurate simulation of ARM processors and
enable ARM and Thumb executable programs to be run on non-
native hardware

 Integrated with the ARM debugger

— Angle ARM debug monitor

* Run on target development hardware and enable you to develop
and debug applications on ARM-based hardware

e Y ol o Yy L. o U W [.y | -

i

ARM C Compiler

d Compiler is compliant with the ANSI standard for C
d Supported by the appropriate library of functions

JUse ARM Procedure Call Standard, APCS for all
external functions
— For procedure entry and exit

dMay produce assembly source output

— Can be inspected, hand optimized and then assembled
sequentially

dCan also produce Thumb codes

e Y ol o Yy L. o U W [.y |

Linker

dTake one or more object files and combine them

[Resolve symbolic references between the object
files and extract the object modules from libraries

dNormally the linker includes debug tables in the
output file

CMNL™ ™ mvmrmrmrrt i s srmm St tvrr~m~ N1 ~+ [y |

ARM Symbolic Debugger

A front-end interface to debug program running
either under emulator (on the ARMulator) or
remotely on a ARM development board (via a serial
line or through JTAG test interface)

JARMSsd allows an executable program to be loaded
Into the ARMulator or a development board and run.
It allows the setting of
— Breakpoints, addresses in the code

— Watchpoints, memory address if accessed as data
address

« Cause exception to halt so that the processor state can be
examined

e Y ol o Yy L. o U W [.y | -

ARM Emulator (1/2)

dJARMulator is a suite of programs that models the
behavior of various ARM processor cores Iin
software on a host system

It operates at various levels of accuracy
— Instruction accuracy
— Cycle accuracy

— Timing accuracy

* |nstruction count or number of cycles can be measured for a
program

» Performance analysis
dTiming accuracy model is used for cache, memory
management unit analysis, and so on

ARM Emulator (2/2)

dARMulator supports a C library to allow complete C
programs to run on the simulated system

dTo run software on ARMulator, through ARM
symbolic debugger or ARM GUI debuggers, AXD

It includes

— Processor core models which can emulate any ARM core

— A memory interface which allows the characteristics of the
target memory system to be modeled

— A coprocessor interface that supports custom
coprocessor models

— An OS interface that allows individual system calls to be
handled

e Y ol o Yy L. o U W [.y | -0

ARM Development Board

A circuit board including an ARM core (e.q.
ARM7TDMI), memory component, I/O and
electrically programmable devices

1t can support both hardware and software
development before the final application-specific
hardware Is available

e Y ol o Yy L. o U W [.y |

Summary (1/2)

JARM7TDMI
— Von Neumann architecture
— 3-stage pipeline
- CPI~1.9

JARMOTDMI, ARM9E-S
— Harvard architecture
— 5-stage pipeline
— CPI~1.5

JARM10TDMI
— Harvard architecture
— b6-stage pipeline
— CPI~1.3

CONL™ ™ v~ s a

S o~y 2 [W, PP .y |

Summary (2/2)

JCache

— Direct-mapped cache
— Set-associative cache
— Fully associative cache

U Software Development

— CodeWarrior
— AXD

e Y ol o Yy L. o U W [.y | o1

References

ﬁ

[1] http://twins.ee.nctu.edu.tw/courses/ip_core_02/index.htm|

[2] ARM System-on-Chip Architecture by S.Furber, Addison
Wesley Longman: ISBN 0-201-67519-6.

[3] www.arm.com

e Y ol o Yy L. o U W [.y |

