ARM Instruction Sets and Program

Jin-Fu Li
Department of Electrical Engineering
National Central University

Adopted from National Chiao-Tung University
IP Core Design

PN PN PN e "

Outline

dProgrammer’s model
d32-bit instruction set
d16-bit instruction set
dSummary

CONL™ ™ v~ s a

Programmer’s model

e Y ol o Yy L. o U W [.y | ~

ARM Ltd

1 ARM was originally developed at Acron Computer Limited, of
Cambridge, England between 1983 and 1985.

— 1980, RISC concept at Stanford and Berkeley universities.
— First RISC processor for commercial use

1990 Nov, ARM Ltd was founded
1 ARM cores
— Licensed to partners who fabricate and sell to customers.

1 Technologies assist to design in the ARM application

— Software tools, boards, debug hardware, application software, bus
architectures, peripherals etc...

L Modification of the acronym expansion to Advanced RISC
Machine.

RISC architecture

dBerkeley incorporated a Reduced Instruction Set
Computer (RISC) architecture.

It had the following key features:

— A fixed (32-bit) instruction size with few formats;

» CISC processors typically had variable length instruction sets with
many formats.

— A load-store architecture were instructions that process
data operate only on registers and are separate from
Instructions that access memory;,

» CISC processors typically allowed values in memory to be used
as operands in data processing instructions.

— A large register bank of thirty-two 32-bit registers, all of
which could be used for any purpose, to allow the load-
store architecture to operate efficiently;

o CISC register sets were getting larger, but none was this large
and most had different registers for different purposes

CONL™ ™ v~ s a e e~ PRy | r

RISC organization

dHard-wired instruction decode logic

— CISC processor used large microcode ROMs to decode
their instructions

dPipelined execution

— CISC processors allowed little, if any, overlap between
consecutive instructions (though they do now)

Single-cycle execution

— CISC processors typically took many clock cycles to
completes a single instruction

e Y ol o Yy L. o U W [.y |

ARM Architecture vs. Berkeley RISC (1/2) ﬁ

J Features used
— Load/Store architecture
— Fixed-length 32-bit instructions
— 3-address instruction formats

f bits n bits n bits n bits
function| op 1 addr | op 2 addr | dest. addr

ADD d, S1, S2 - d = S1 + S2

e Y ol o Yy L. o U W [.y | -

ARM Architecture vs. Berkeley RISC (2/2) ﬁ

d Features rejected

— Register windows - costly
» Use shadow registers in ARM
— Delay branch
« Badly with branch prediction
— Single-cycle execution of all instructions
» Most single cycle, many other take multiple clock cycles

ﬁ

Data Size and Instruction set

JARM processor is a 32-bit architecture

dMost ARM’s implement two instruction sets
— 32-bit ARM Instruction set
— 16-bit Thumb instruction set

e Y ol o Yy L. o U W [.y | aY

Data Types

JARM processor supports 6 data types
— 8-bits signed and unsigned bytes

— 16-bits signed and unsigned half-word, aligned on 2-byte
boundaries

— 32-bits signed and unsigned words, aligned on 4-byte
boundaries

JARM instructions are all 32-bit words, word-aligned,;
Thumb instructions are half-words, aligned on 2-
byte boundaries

JARM coprocessor supports floating-point values

e Y ol o Yy L. o U W [.y | 1N

The Registers

JARM has 37 registers, all of which are 32 bits long
— 1 dedicated program counter
— 1 dedicated current program status register
— 5 dedicated saved program status registers
— 31 general purpose registers

dThe current processor mode governs which bank is
accessible

— User mode can access
e A particular set of rO — rl12 registers
« A particular r13 (stack pointer, SP) and r14 (link register. LR)
* The program counter, r15 (PC)
 The curent program status register, CPSR
— Privileged modes (except system) can access
« A particular SPSR (Saved Program Status Register)

e Y ol o Yy L. o U W [.y |

Register Banking

ﬁ

ro
rl

r2
r3
r4
rs
ré
r7
r8
ro
rio
ril
ri2
ri3
ri4
r15 (PC)

usable in user mode

. system modes only

fig svC abort irq undefined
mode mode mode mode mode

user mode

e Y ol o Yy L. o U W [.y |] N

Program Counter (r15)

dWhen the processor is executing in ARM state:
— All Instructions are 32 bits wide
— All instructions must be word-aligned
— Therefore the PC value is stored in bits [32:2] with bits
[1:0] undefined (as instruction cannot be halfword)
dWhen the processor Is executing in Thumb state:
— All instructions are 16 bits wide
— All instructions must be halfword-aligned

— Therefore the PC value is stored in bits [32:1] with bits [0]
undefined (as instruction cannot be byte-aligned)

e Y ol o Yy L. o U W [.y |

Current Program Status Registers (CPSR)ﬁ

N LT U] U I o (" I | n < C I | I+ I 'l...-\.
I . 'lL L . i I !]] 1]
[; | .

1 Condition code flags A Interrupt disable bits

— N: Negative result form ALU — | =1, disable the IRQ
— Z: Zero result from ALU — F =1, disable the FIQ

— C: ALU Operation Carried out] T Bit

— V: ALU operation oVerflowed — Architecture xT only

— T =0, processor in ARM state

4 Sticky overflow flag — Q — T =1, processor in Thumb
flag State
— Architecture 5TE only Mode bits
— Indicates if saturation has — Specify the processor mode

occurred during certain
operations

Saved Program Status Register (SPSR)

d Each privileged mode (except system mode) has
assoclated with it a SPSR

dThis SPSR Is used to save the state of CPSR when
the privileged mode is entered in order that the user

state can be fully restored when the user process is
resumed

dOften the SPSR may be untouched from the time
the privileged mode is entered to the time it is used
to restore the CPSR, but if the privileged supervisor
calls to itself the SPSR must be copied into a
general register and saved

e Y ol o Yy L. o U W [.y |

Processor Modes

JARM has seven basic operation modes
dMode changes by software control or external

Interrupts

CPRS[4:0] Mode Use Registers
10000 User Normal user code User
10001 FIQ Processing fast interrupts _fiq
10010 IRQ Processing standard interrupts _irp
10011 SVC Processing software interrupts (SWils) _SVC
10111 Abort Processing memory faults _abt
11011 Undef Handling undefined instruction traps _und
11111 System Running privileged operating system user

Privileged Modes

foc
dMost programs operate in user mode. ARM has
other privileges operating modes which are used to
handle exceptions, supervisor calls (software
Interrupt), and system mode.

dMore access rights to memory systems and
COpProcessors.

d Current operating mode is defined by CPSR[4:0].

e Y ol o Yy L. o U W [.y | 1 =7

Exceptions

d Exceptions are usually used to handle unexpected
events which arise during the execution of a
program, such as interrupts or memory faults, also
cover software interrupts, undefined instruction
traps, and the system reset

dThree groups:

— EXxceptions generated as the direct effect of execution an
Instruction
« Software interrupts, undefined instructions, and prefetch abort

— EXceptions generated as a side effect of an instruction
e Data aborts

— EXceptions generated externally
* Reset, IRQ and FIQ

Exception Entry (1/2)

1 When an exception arises, ARM completes the current
Instruction as best it can (except that reset exception
terminates the current instruction immediately) and then
departs from the current instruction sequence to handle the
exception which starts from a specific location (exception
vector).

 Processor performs the following sequence:

— Change to the operating mode corresponding to the particular
exception

— Save the address of the instruction following the exception entry
Instruction in r14 of the new mode

— Save the old value of CPSR in the SPSR of the new mode

— Disable IRQs by setting bit 7 of the CPSR and, if the exception is a
fast interrupt, disable further faster interrupt by setting bit 6 of the
CPSR

ﬁ

Exception Entry (2/2)

— Force the PC to begin execution at the relevant vector address

Exception Mode Vector address
Reset SVC 0x00000000
Undefined instruction UND Ox00000004
Software interrupt (SWI) SVC Ox00000008
Prefetch abort (instruction fetch memaory fault) Abort Ox0000000C
Data abort (data access memory fault) Abort O0x00000010
IRQ (normal interrupt) IRQ 0x00000018
FIQ (fast interrupt) FIQ 0x0000001C

1 Normally the vector address contains a branch to the
relevant routine

1 Two banked registers in each of the privilege modes are
used to hold the return address and stack point

Exception Return

dOnce the exception has been handled, the user task
IS normally resumed

dThe sequence is

— Any modified user registers must be restored from the
handler’s stack

— CPSR must be restored from the appropriate SPSR
— PC must be changed back to the relevant instruction
address
dThe last two steps happen atomically as part of a
single instruction

e Y ol o Yy L. o U W [.y | N1

ARM Exceptions

foc

d Exception handler use r13 _<mode> which will
normally have been initialized to point a dedicated
stack in memory, to save some user register for use
as work registers

e Y ol o Yy L. o U W [.y |

Exception Priorities

 Priority order
— Reset (highest priority)
— Data abort
— FIQ
— IRQ
— Prefetch abort
— SWI, undefined instruction

e Y ol o Yy L. o U W [.y | laXe)

Memory Organization

: . bit 31
| [—bit 31 bit 0 .]
| | '
)
23 | 22 0 .

4

17 ™ 10
|9 5 W, .

word16 word16
15 14 13 |12 13 14 15
half-word14 half-word12 METEne) 2 IEE ey
- - ! 9 10 |
[0 g ot
] — word B
5 |
) 5 i i /
e 3 .
bytet half-word4 - Dtes _halt-Words byte
- - yte 0 | 5 3 -——— _ ———
(| — address

] . ; ' address "
byte3 byte? byte1 bytel bytel bytel byted byted

(a) Little-endian memory (b) Big-endian memory
orgamzation organization

dWord, half-word alignment (xxxx00 or xxxxx0)

JARM can be set up to access data in either little-
endian or big-endian format, through they default to
little-endian.

e Y ol o Yy L. o U W [.y | la W, |

Features of the ARM Instruction Set

 Load-store architecture
— Process values which are in registers
— Load, store instructions for memory data accesses

J3-address data processing instructions

d Conditional execution of every instruction
dLoad and store multiple registers

A Shift, ALU operation in a single instruction

[Open instruction set extension through the
coprocessor instruction

dVery dense 16-bit compressed instruction set
(Thumb)

e Y ol o Yy L. o U W [.y |

.
Coprocessors %
Handshaking
s1gnals
ARM core Coprocessor X Coprocessor Y

Flp |-_| I

B

] h

[J

— Up to 16 coprocessors can be defined
— Expands the ARM instruction set
— Each coprocessor can have up to 16 private registers of

any reasonable size

— Load-store architecture

Databus

Thumb

dThumb is a 16-bit instruction set
— Optimized for code density from C code
— Improved performance form narrow memory
— Subset of the functionality of the ARM instruction set

1 Core has two execution states — ARM and Thumb
— Switch between them using BX instruction

d Thumb has characteristic features:
— Most Thumb instruction are executed unconditionally

— Many Thumb data process instruction use a 2-address
format

— Thumb instruction formats are less regular than ARM
Instruction formats, as a result of the dense encoding.

e Y ol o Yy L. o U W [.y | ~N~7

/O System

JARM handles input/output peripherals as memory-
mapped with interrupt support

dInternal registers in 1/O devices as addressable
locations with ARM’s memory map read and written
using load-store instructions

dInterrupt by normal interrupt (IRQ) or fast interrupt
(FIQ)

dInput signals are level-sensitive and maskable

dMay include Direct Memory Access (DMA)
hardware

e Y ol o Yy L. o U W [.y |

ARM Processor Cores (1/2)

JARM Processor core + cache + MMU
- ARM CPU cores

JARM6 - ARMY
— 3-stage pipeline

— Keep its instructions and data in the same memory
system

— Thumb 16-bit compressed instruction set

— on-chip Debug support, enabling the processor to halt in
response to a debug request

— enhanced Multiplier, 64-bit result

— EmbeddedICE hardware, give on-chip breakpoint and
watchpoint support

e Y ol o Yy L. o U W [.y | N

ARM Processor Cores (2/2)

JARM8 - ARM9

- ARM10

JARM9

— 5-stage pipeline (130 MHz or 200MHz)

— Using separate instruction and data memory ports
JARM 10 (1998. Oct.)

— High performance, 300 MHz
— Multimedia digital consumer applications
— Optional vector floating-point unit

e Y ol o Yy L. o U W [.y |

ARM Architecture Version (1/5)

dVersion 1

— The first ARM processor, developed at Acorn Computers
Limited 1983-1985

— 26-bit address, no multiply or coprocessor support

dVersion 2

— Sold in volume in the Acorn Archimedes and A3000
products

— 26-bit addressing, including 32-bit result multiply and
coprocessor

dVersion 2a

— Coprocessor 15 as the system control coprocessor to
manage cache

— Add the atomic load store (SWP) Instruction

e Y ol o Yy L. o U W [.y | N1

ARM Architecture Version (2/5)

dVersion 3
— First ARM processor designed by ARM Limited (1990)
— ARMG6 (macro cell)

ARMG60 (stand-alone processor)

ARMG600 (an integrated CPU with on-chip cache, MMU,
write buffer)

ARMG610 (used in Apple Newton)
— 32-bit addressing, separate CPSR and SPSRs

— Add the undefined and abort modes to allow coprocessor
emulation and virtual memory support in supervisor mode

dVersion 3M

— Introduce the signed and unsigned multiply and multiply-
accumulate instructions that generate the full 64-bit result

e Y ol o Yy L. o U W [.y | N

ARM Architecture Version (3/5)

foc
dVersion 4

— Add the signed, unsigned half-word and signed byte load
and store instructions

— Reserve some of SWI space for architecturally defined
operation

— System mode is introduced

dVersion 4T

— 16-bit Thumb compressed form of the instruction set is
Introduced

e Y ol o Yy L. o U W [.y | N

ARM Architecture Version (4/5) ﬁ
dVersion 5T

— Introduced recently, a superset of version 4T adding the
BLX, CLZ and BRK instructions

dVersion 5TE
— Add the signal processing instruction set extension

e Y ol o Yy L. o U W [.y | S A

ARM Architecture Version (5/5)

50¢

ARM1 vl
ARM2 V2
ARM2as, ARM3 vZa
ARM6, ARM600, ARM610 v3
ARM7, ARM700, ARM710 v3
ARM7TDMI, ARM710T, ARM720T, ARM740T v4T
StrongARM, ARM8, ARM810 v4
ARMOTDMI, ARM920T, ARM940T VAT
ARMO9E-S, ARM10TDMI, ARM1020E vbTE
ARM10TDMI, ARM1020E v5TE

32-bit instruction set

e Y ol o Yy L. o U W [.y | la YAl

JARM assembly language program
— ARM development board or ARM emulator

JARM Instruction set
— Standard ARM instruction set

— A compressed form of the instruction set, a subset of the
full ARM instruction set is encoded into 16-bit
Instructions — Thumb instruction

— Some ARM cores support instruction set extensions to
enhance signal processing capabilities

e Y ol o Yy L. o U W [.y | ~N~7

Instructions

dData processing instructions
J Data transfer instructions
1 Control flow instructions

CONL™ ™ vttt amm S

PRSP Y B Ry |

ARM Instruction Set Summary (1/4)

Mnemonic Instruction Action
ADC Add with carry Rd:=Rn+0p2+Carry
ADD Add Rd:=Rn+0p2
AND AND Rd:=Rn AND Op2
B Branch R15:=address
BIC Bit Clear Rd:=Rn AND NOT Op2
BL Branch with Link R14:=R15
R15:=address
BX Branch and Exchange R15:=Rn
T bit:=Rn[0]
CDP Coprocessor Data Processing (Coprocessor-specific)
CMN Compare Negative CPSR flags:=Rn+0p2

CMP Compare CPSR flags:=Rn-Op2

e Y ol o Yy L. o U W [.y | N

ARM Instruction Set Summary (2/4)

Mnemonic
EOR
LDC
LDM
LDR
MCR

MLA
MOV
MRC

MRS
MSR

Instruction Action

Exclusive OR Rd:=Rn*Op2

Load Coprocessor from memory (Coprocessor load)

Load multiple registers Stack Manipulation (Pop)
Load register from memory Rd:=(address)

Move CPU register to coprocessor CRn:=rRn{<op>cRm}
register

Multiply Accumulate Rd:=(Rm*Rs)+Rn
Move register or constant Rd:=0p2

Move from coprocessor register to rRn:=cRn{<op>cRm}
CPU register
Move PSR status/flags to register Rn:=PSR

Move register to PSR status/flags PSR:=Rm

e Y ol o Yy L. o U W [.y | AN

ARM Instruction Set Summary (3/4)

Mnemonic
MUL
MVN
ORR
RSB
RSC
SBC
STC

STM

Instruction

Multiply

Move negative register

OR

Reverse Subtract

Reverse Subtract with Carry
Subtract with Carry

Store coprocessor register to
memory
Store Multiple

Action

Rd:=Rm*Rs
Rd:=~0p2

Rd:=Rn OR Op2
Rd:=0Op2-Rn
Rd:=0p2-Rn-1+Carry
Rd:=Rn-Op2-1+Carry

address:=cRn

Stack manipulation (Push)

e Y ol o Yy L. o U W [.y | N1

ARM Instruction Set Summary (4/4)

Mnemonic
STR

SUB

SWI

SWP

TEQ
TST

Instruction

Store register to memory
Subtract

Software Interrupt

Swap register with memory

Test bitwise equality

Test bits

Action
<address>:=Rd
Rd:=Rn-Op2
0S call

Rd:=[Rn]
[Rn]:=Rm
CPSR flags:=Rn EOR Op2

CPSR flags:=Rn AND Op2

ARM Instruction Set Format

Duala prooessing snd
FER wanalar

Mulliply

Musiply leng

Byl chili Swap

Bemneh anid axchangs

Hatwnrd data transiar,
regaler offas]

Haltwaord dats trandsler,
immadiate of fus)

Singls dala wanalar

Lhranabree

Block dala Fanalar

Branch

Coprocesecs dala
ranafar

Coproceseor dala
operaton

COpromssand rayslar
ranalar

Saltwans nlernp

NI/ ITHHI52423 221 201891817 161514 13121110 9 8

TES5S 43210

Cond 0l0|1| Opcode |S Rn Rd Oparand 2

Cond gjojofo|0|0|AlS Rd Rn Rs 1|]0]0(1 Rm
Cond glojofo|1|Uu|AlS RdHi Rdlo Rin 1|0|0]1 Rm
Cond gjojof1|0|B|O|O Rn Rd ojojoj1jojo|1 Rm
Cond gjojof1|ojoj1|o 11 (1f111|1 (1 1j1|j1|ojojo|1 Rn
Cond gjojo{P|U|OW|L Rn Rd ojojoj1|S|H|1 Rm
Cond gjojofP{uU]1 WL Rn Rd Off=at 1|5|H|1 Dftsat
Cond gf1|1|P|U BIW L Rn Rd Ciffsal

Cond o111 1

Cond 1jojo|P(uU 5|W L Rn Registar list

Cond 1({0)1|L Offs et

Cond 1(1|0|P(U H|'|'|.I' L Rn CRd CP# Ofiset
Cond 1({1|1|0| CP Opec CRn CRd CP# CPh |0 CRm
Cond 1{1)1|0(CPOpc|L CRn Rd CP# CP 1 CRm
Cond 1{1]1]1 lgnored by pracessar

e Y ol o Yy L. o U W [.y |

NWOWVBITHI5MH232 2120191817 1615141312111089 8 7 6 5 4 2 2 1 0

Data Processing Instruction

dConsist of
— Arithmetic (ADD, SUB, RSB)
— Logical (BIC, AND)
— Compare (CMP, TST)
— Register movement (MOV, MVN)

Al operands are 32-bit wide; come from registers or
specified as literal in the instruction itself

dSecond operand sent to ALU via barrel shifter

132-bit result placed in register; long multiply
Instruction produces 64-bit result

J3-address instruction format

e Y ol o Yy L. o U W [.y |

Conditional Execution (1/2)

 Most instruction sets only allow branches to be executed
conditionally.

 However by reusing the condition evaluation hardware, ARM
effectively increase number of instruction

— All instructions contain a condition field which determines whether the
CPU will execute them

— Non-executed instruction still take up 1 cycle
« To allow other stages in the pipeline to complete

1 This reduces the number of branches which would stall the
pipeline
— Allows very dense in-line code

— The time penalty of not executing several conditional instructions is
frequently less than overhead of the branch or instruction call that
would otherwise be needed

e Y ol o Yy L. o U W [.y | nAr

Conditional Execution (2/2)

3 28 27 0
| cond ‘ i
Opcode Mnemonic Status Hag state for
|31:2%] extension Interpretation execution
0000 EC) Equal / equals zero 2 st
(D 1 NE Mot equal £ clcar
ooln C8/HS Carry set / unsigned higher or same C set
o011 CCALO Carry clear / unsigned lower C ¢lear
0100 Ml Minus / negative N set
o1ol PL Plus / positive or zéro ™ clear
0110 Vs Overflow V zet
0111 v No overflow V clear
10040 Hi Unsigned higher C set and £ clear
1001 LS Unsigned lower or same C clear or £ set
10140 GE Signed greater than or equal N equals V
1011 LT Signed less than N is not equal to V
110:0 GT Signed greater than Z clear and N equals V
1101 LE Signed less than or equal Z set or M is not equal to ¥V
1110 AL Always any
1111 NV Mever (do not uscl) none

e Y ol o Yy L. o U W [.y | nr

Data Processing Instructions

L Simple register operands
dImmediate operands

1 Shifted register operands
d Multiply

e Y ol o Yy L. o U W [.y |

ﬁ

Simple Register Operands (1/2)

dArithmetic Operations
ADD rO,rl1,r2 ;rO:z=rl+r2
ADC rO,rl1,r2 ;rO:=rl1+r2+C
SUB rO,rl1,r2 ;rO:=rl-r2
SBC rO,rl1,r2 ;rO0:=rl-r2+C-1
RSB rO,rl,r2 ;rO0:=r2-rl, reverse subtraction
RSC rO,rl1,r2 ;rO:=r2-r1+C-1

— By default data processing operations do no affect the
condition flags

Bit-wise Logical Operations
AND rO,rl1,r2 ;rO:=rl1ANDr2
ORR rO,rl1,r2 ;rO:=r10Rr2
EOR rO,rl,r2 ;rO0:=rl1XORr2
BIC rO,rl1,r2 ;rO:=rl1AND (NOT r2), bit clear

e Y ol o Yy L. o U W [.y | No

Simple Register Operands (2/2)

dRegister Movement Operations

— Omit 18t source operand from the format
MOV rO,r2 ;ro-=r2
MVN rO,r2 ;rO-=NOT r2, move 1’s complement

d Comparison Operations

— Not produce result; omit the destination from the format
— Just set the condition code bits (N, Z, C and V) in CPSR

CMP ri1,r2 ;set cc on rl - r2, compare
CMN ril,r2 ,set cc on rl + r2, compare negated
TST rl,r2 ;set cc on r1 AND r2, bit test

TEQ ri,r2 ;set cc on rl1 XOR r2, test equal

Immediate Operands

dReplace the second source operand with an
Immediate operand, which is a literal constant,

preceded by “#”
ADD r3,r3,#1 -r3:=r3+1
AND r8,r7 ,#&FF ,r8:=r7[7:0], &:hexadecimal

dSince the iImmediate value is coded within the 32
bits of the instruction, it is not possible to enter
every possible 32-bit value as an immediate.

e Y ol o Yy L. o U W [.y |

Shift Register Operands

— ADD r3,r2,r2,LSL#3
;r3 :=r2 + 8 *rl

* A single instruction executed in
a single cycle

QO LSL: Logical Shift Leftby 0t =22 0|

31 places, O filled at the Isb
end

d LSR, ASL (Arithmetic Shift
Left), ASR, ROR (Rotate
Right), RRX (Rotate Right
eXtended by 1 place)

31 0 31 0
— ADD r5,r5,r3,LSL r2 ; | cl
~ MOV r12,r4,ROR r3 A R
;rl2:=r4 rotated right m——— ﬁ@memmmmmmm
by value of r3 ROR #5 RRX

e Y ol o Yy L. o U W [.y | 1

Using the Barrel Shifter: the 2"4 Operand ﬁ

1 Register, optionally with shift
Jperand Operand operation applied

1 < — Shift value can be either
+ » 5-bit unsigned integer

Barrel » Specified in bottom byte of another
register

Shifter — Used for multiplication by constant
d Immediate value
— 8-bit number, with a range of O -

ALU 255

* » Rotated right through even number

of positions

Result — Allows increased range of 32-bit
constants to be loaded directly into
registers

e Y ol o Yy L. o U W [.y | N

Multiply

A Multiply
MUL r4,r3,r2 ;r4:=(r3*r2) .o

1 Multiply-Accumulate
MLA r4,r3,r2,rl S rAz=(r3*r2+ril)z;.q

ﬁ

Multiplication by a Constant

d Multiplication by a constant equals to a ((power of 2)
+/- 1) can be done in a single cycle

— Using MOV, ADD or RSBs with an inline shift
dExample: r0=r1*5
dExample: rO =rl + (rl * 4)

— ADD rO,rl,rl1,LSL #2

d Can combine several instruction to carry out other
multiplies

JdExample: r2 =r3*119
JdExample: r2=r3*17*7
dExample:r2=r3*(16 +1) *(8-1)
— ADD r2,r3,r3,LSL #4 r2:=r3*17
— RSB r2,r2,r2,LSL #3 r2 —r2*7

CONL™ ™ vttt avmm S o 1 0r r~~

Data Processing Instructions (1/3)

d <op>{<cond>}{S} Rd,Rn,#<32-bit immmediate>
4 <op>{<cond>}{S} Rd,Rn,Rm,{<shift>}

— Omit Rn when the instruction is monadic (MOV, MVN)

— Omit Rd when the instruction is a comparison, producing only
condition code outputs (CMP, CMN, TST, TEQ)

— <shift> specifies the shift type (LSL, LSR, ASL, ASR, ROR or RRX)
and in all cases but RRX, the shift amount which may be a 5-bit
iImmediate (# < # shift>) or a register Rs

] 3-address format
— 2 source operands and 1 destination register

— One source is always a register, the second may be a register, a
shifted register or an immediate value

ﬁ

Data Processing Instructions (2/3)

Opcode Mnemonic Meaning Effect

[24:21]

0000 AND Logicd bit-wise AND Rd:=Rn AND Op2
0001 EOR Logicd bit-wiseexclusiveOR Rd:=Rn EOR Op2
0010 SUB Subtract Rd:=Rn - 0Op2

0011 RSB Reverse subtract Rd:=0p2-Rn

0100 ADD Add Rd:=Rn+0Op2

0101 ADC Addwith carry Rd:=Rn+0p2+C
0110 SBC Subtract with carry Rd:=Rn-0p2+C-1
0111 RSC Reverse subtract with carry Rd:=0p2-Rn+C-1
1000 TST Test Sccon Rn AND Op2
1001 TEQ Test equivdence Sccon Rn EOR Op2
1010 CMP Compare Sccon Rn - Op2

1011 CMN Compare negated Sccon Rn + Op2
1100 ORR Logicd bit-wise OR Rd:=Rn OR Op2
1101 MOV Move Rd:=0p2

1110 BIC Bit clear Rd:=Rn AND NOT Op2

1111 MVN Movenegated Rd:=NOT Op2

Data Processing Instructions (3/3)

 Allows direct control of whether or not the condition codes
are affected by S bit (condition code unchanged when S = 0)
— N =1 if the result is negative; 0 otherwise (i.e. N = bit 31 of the result)
— Z =1 if the result is zero; 0 otherwise

— C =1 carry out from the ALU when ADD, ADC, SUB, SBC, RSB,
RSC, CMP, or CMN; carry out from the shifter

— V =1 if overflow from bit 30 to bit 31; O if no overflow
(V is preserved in non-arithmetic operations)

 PC may be used as a source operand (address of the
Instruction plus 8) except when a register-specified shift
amount Is used

1 PC may be specified as the destination register, the
Instruction is a form of branch (return from a subroutine)

Multiply Instructions (1/2)

132-bit product (Least Significant)
— MUL{<cond>}{S} Rd,Rm,Rs
— MLA{<cond>}{S} Rd,Rm,Rs,Rn

1 64-bit Product
— <mul>{<cond>}{S} RdH1,RdLo,Rm,Rs
— <mul> i1s UMULL,UMLAC,SMULL ,SMLAL

Opcode Mnemonic Meaning Effect

[23:21]

000 MUL Mutiply (32-bit resut) Rd:=(Rm* Rs)[31:0]

001 MLA Mutiply-accumu ate (32-bit resut) Rd:=(Rm* Rs+Rn)[31:0]
100 UMULL Unsignedmutiply long RdHi:RdLo :=Rm* Rs

101 UMLAL Unsignedmutiply-accumdaelong RdHi:RdLo +=Rm* Rs
110 SMULL Sgnedmutiply long RdHi:RdLo :=Rm* Rs

111 SMLAL Sgnedmutiply-accumuaelong RdHi:RdLo +=Rm* Rs

ﬁ

Multiply Instructions (2/2)

d Accumulation is denoted by “+="
dExample: form a scalar product of two vectors

MOV r11,#20 ;initialize loop counter
MOV r10,#0 ;initialize total

Loop LDR rO,[r8],#4 ;get First component
LDR r1,[r9].,#4 ;get second component

MLA r10,r0O,rl1,r10 ;accumulate product
SUBS rl1l1,rl1l1,#1 ;decrement loop counter
BNE Loop

Data Transfer Instructions

d Three basic forms to move data between ARM
registers and memory

— Single register load and store instruction
* A byte, a 16-bit half word, a 32-bit word

— Multiple register load and store instruction
* To save or restore workspace registers for procedure entry and
exit
» To copy clocks of data
— Single register swap instruction
e A value in a register to be exchanged with a value in memory

* To implement semaphores to ensure mutual exclusion on
accesses

Single Register Data Transfer

QWord transfer
_ LDR / STR

Byte transfer
— LDRB / STRB

d Halfword transfer
— LDRH / STRH

dLoad singled byte or halfword-load value and sign
extended to 32 bits
— LDRSB / LDRSH

Al of these can be conditionally executed by

Inserting the appropriate condition code after
STR/LDR

— I nppnp CMNL™ ™ mvmrmrmrrt i s armnm S it tvrr~~ N1 ~+ [y |

Addressing

dRegister-indirect addressing

d Base-plus-offset addressing
— Base register
e 10—rl15

— Offset, and or subtract an unsigned number
* Immediate
* Register (not PC)
» Scaled register (only available for word and unsigned byte
Instructions)

1 Stack addressing
dBlock-copy addressing

ﬁ

Register-Indirect Addressing

dUse a value in one register (base register) as a
memory address
LDR rO,[ri] ;rOz=mem,,[ri]
STR rO,[ri] ;mem;,[r1]:=r0
dOther forms
— Adding immediate or register offsets to the base address

e Y ol o Yy L. o U W [.y | nn

ﬁ

Initializing an Address Pointer

A small offset to the program counter, r15
— ARM assembler has a “pseudo” instruction, ADR

dAs an example, a program which must copy data
from TABLE1 to TABLEZ2, both of which are near to

the code
Copy ADR rl1,TABLEl ;rl points to TABLE1l

ADR r2,TABLE2 ;r2 points to TABLEZ2

TABLE1
;<source>
TABLE?2

:<destination>

e Y ol o Yy L. o U W [.y | NnA

Single Register Load and Store

ﬁ

A base register, and offset which may be another

register or an immediate value

Copy

Loop

TABLE1

TABLEZ2

ADR
ADR
LDR
STR
ADD
ADD

?7?7?

rl

ro
ro

, TABLE1
r2,
,[ri]

,[r2]
rl,

r2,

TABLEZ2

rl,#4
r2,#4

Base-plus-offset Addressing (1/2)

dPre-indexing
LDR rO,|[rl,#4] ;rOz=mem,, [ri+4]
— Offset up to 4K, added or subtracted, (# -4)

dPost-indexing
LDR rO,[rl1].#4 ;roz=mem,,[rl], rl:=rl+4

— Equivalent to a simple register-indirect load, but faster,
less code space

 Auto-indexing
LDR rO, [ri1,#4]! ;rO:=memg,[ri+4], rl:z=rl+4

— No extra time, auto-indexing performed while the data is
being fetched from memory

e Y ol o Yy L. o U W [.y | ner

Base-plus-offset Addressing (2/2)

ﬁ

*Pre-indexed: STR 0, [r1, #12]

Offset r0 uiiiig
12 — (0x20c | 0x5 |4—]| 0x5 |[Register
for STR
B g T
ase
Regixter 0x200 » 0x200
Auto-update from: STR r0, [r1, #12] ! |
*Post-indexed: STR r0, [r1], #12
Updated r1 Offset |
Base | 0x20c |+ 12 0x20c
Register
Original r T r0 Source
Base | 0x200 » 0x200 O0x5 |<4—]| O0x5 | Register

Register for STR

Loading Constants (1/2)

1 No single ARM instruction can load a 32-bit immediate
constant directly into a register
— All ARM instructions are 32-bit long
— ARM instructions do not use the instruction stream as data

1 The data processing instruction format has 12 bits available
for operand 2
— If used directly, this would only give a range of 4096

4 Instead it is used to store 8-bit constants, give a range of O-
255

1 These 8 bits can then be rotated right through an even
number of positions

4 This gives a much larger range of constants that can be
directly loaded, through some constants will still need to be
loaded from memory

e Y ol o Yy L. o U W [.y | 'aJo)

Loading Constant (2/2)

dTo load a constant, simply move the required value
Into a register — the assembler will convert to the
rotate form for us
— MOV r0,#4096 ;MOV r0,#0x1000 (0x40 ror 26)

dThe bitwise complements can also be formed using
MVN:
— MOV rO,#&FFFFFFFF ;MVN rO,#0

dValue that cannot be generated in this way will
cause an error

e Y ol o Yy L. o U W [.y | 'adaY

Loading 32-bit Constants

dTo allow larger constants to be loaded, the
assembler offers a pseudo-instruction:
— LDR Rd,=const

dThis will either:

— Produce a MOV or MVN instruction to generate the value
(if possible) or
— Generate a LDR instruction with a PC-relative address to
read the constant from a literal pool (constant data area
embedded in the code)
dFor example
— MOV rO,=&FF MOV rO,#0xFF

— LDR r0,=&55555555 ;LDR rO, [PC,#1mm10]

e Y ol o Yy L. o U W [.y | 7N

Multiple Register Data Transfer (1/2)

 The load and store multiple instructions (LDM/STM) allow
between 1 and 16 registers to be transferred to or from
memory
— Order of register transfer cannot be specified, order in the list is
Insignificant
— Lowest register number is always transferred to/form lowest memory
location accessed
d The transferred registers can be either
— Any subset of the current bank of registers (default)
— Any subset of the user mode bank of registers when in a privileged
mode (postfix instruction with a “*")
] Base register used to determine where memory access
should occur
— 4 different addressing modes
— Base register can e optionally updated following the transfer (using “!”

e Y ol o Yy L. o U W [.y | -71

ﬁ

Multiple Register Data Transfer (2/2)

dThese instruction are very efficient for
— Moving block of data around memory
— Saving and restoring context — stack

dAllow any subset (or all, rO to r15) of the 16
registers to be transferred with a single instruction

LDMIA r1,{rO,r2,r5} ;rO0z=memg,[ri]
;r2:=memg,[ri1+4]
;r5:=mem,, [r1+8]

e Y ol o Yy L. o U W [.y | -

Stack Processing

1 A stack is usually implemented as a linear data structure
which grows up (an ascending stack) or down (a descending
stack) memory

1 A stack pointer holds the address of the current top of the
stack, either by pointing to the last valid data item pushed
onto the stack (a full stack), or by pointing to the vacant slot
where the next data item will be placed (an empty stack)

1 ARM multiple register transfer instructions support all four
forms of stacks

— Full ascending: grows up; base register points to the highest
address containing a valid item

— empty ascending: grows up; base register points to the first empty
location above the stack

— Full descending: grows down; base register points to the lowest
address containing a valid data

— empty descending: grows down; base register points to the first
empty location below the stack

e Y ol o Yy L. o U W [.y | -

Block Copy Addressing

ﬁ

L

r5

ri

R 0

1018,

100c,

1000,

STMIA r9!, {r0, 1, 5}

L 5

ri

rl)

i -iﬂ

STMDA 9!, {r0, r1, r5)

1018,

100c,,

1000,

rd = r5

ri

0 =

Addressing modes

STMIB r9!, {r0, r1, r5}

0 =

rs

ri

L | rl)

STMDB r9!, {r0, r1, r5}

1018,
Ascending Descending
s Full | Empty | Full | Empty
1000, Before | STMIB LDMIB
STMFA LDMED
Increment
s STMIA | LDMIA
STMEA | LDMFD
1018
" oo LDMDB | STMDB
fime LDMEA | STMFD
¥ Decrement
After | LDMDA STMDA
Kl LDMFA STMED

e Y ol o Yy L. o U W [.y |

Single Word and Unsigned Byte Data Transfer ﬁ
instructions ,
JPre-indexed form

— LDR|STR{<cond>}{B} Rd, [Rn, <offset>]{!'}
J Post-indexed form

— LDR|STR{<cond>}{B} Rd, [Rn], <offset>

A PC-relative form
— LDR|STR{<cond>}{B} Rd, LABEL

— LDR: ’load register’; STR: 'store register’

— ‘B’ unsigned byte transfer, default is word,;

— <offset> may be # +/-<12-bit immediate> or +/- Rm{, shift}
— I: auto-indexing

— T flag selects the user view of the memory translation and
protection system

e Y ol o Yy L. o U W [.y | -~r

ﬁ

Example

d Store a byte in rO to a peripheral

LDR r1, UARTADD - UART address i1into rl
STRB rO, [r1] , Store data to UART
UARTADD & &10000000 - address literal

Half-word and Signed Byte Data Transfer
Instructions

JdPre-indexed form

— LDR|STR{<cond>}H|SH|SB Rd, [Rn,<offset>]{!}

d Post-indexed form
— LDR|STR{<cond>}H|SH|SB Rd, [Rn],<offset>

— <offset> Is # +/-<8-bit iImmediate> or +/- Rm

— H|SH|SB selects the data type
» Unsigned half-word
» Signed half-word and
« Signed byte
e Otherwise the assumble format is for word and unsigned byte
transfer

e Y ol o Yy L. o U W [.y | -7=7

Example

dExpand an array of signed half-words into an array

of words
ADR rl1,ARRAY1 ;half-word array start
ADR r2,ARRAY2 ;word array start
ADR r3,ENDARR1 ;ARRAY1 end + 2

Loop LDRSH ro,[rl1],#2;get signed half-word
STR rO0,[r2].#4 ;save word
CMP rl1,r3 ,check for end of array

BLT Loop ;1T not finished, loop

ﬁ

Multiple Register Transfer instructions

d LDR]STR{<cond>}{B}<add mode> Rn{!},
<register>
— <add mode> specifies one of the addressing modes
— ‘I’ auto-indexing
— <registers> a list of registers, e.g., {r0, r3-r7, pc}
4 In non-user mode, the CPSR may be restored by
LDM{<cond>}<add mode> Rn{!}, <registers +
PC>"
4 In non-user mode, the user registers may be saved or
restored by
LDM | STM{<cond>}<add mode> Rn, <registers -
PC>N
— The register list must not contain PC and write-back is no allowed

e Y ol o Yy L. o U W [.y | -0\

Example

dSave 3 work registers and the return address upon
entering a subroutine (assume rl13 has been
Initialized for use as a stack pointer)
STMFD r13!,{r0-r2,rl4}

d Restore the work registers and return
LDMFD r13!,{r0-r2,PC}

e Y ol o Yy L. o U W [.y | onNn

Swap Memory and Register Instructions ﬁ

IE]SWP{<cond>}{B} Rd,Rm, [Rn]
dRd <- [Rn], [Rn] <- Rm

(1 Combine a load and a store of a word or an
unsigned byte In a single instruction

dExample
ADR rO,SEMAPHORE

SWPB ri1,rl,[r0O] ,exchange byte

e Y ol o Yy L. o U W [.y | o1

Status Register to General Register Transfer
instructions

d MRS{<cond>} Rd,CPSR|]SPSR

1 L

dThe CPSR or the current mode SPSR is copied into
the destination register. All 32 bits are copied.

dExample
MRS rO,CPSR
MRS r3,SPSR

CMNL™ ™ mvmrmrmrrt i s armnm S it tvrr~~ N1 ~+ [y |

General Register to Status Register Transfer
instructions
QO MSR{<cond>} CPSR <field>|SPSR_<Field>,#<32-
bit 1mmediate>
MSR{<cond>} CPSR_<fi1eld>|]|SPSR_<field>,Rm

— <field> is one of
e C — the control field PSR[7:0]
* X —the extension field PSR[15:8]
e s —the status field PSR[23:16]
o f—the flag field PSR[31:24]

dExample

— Set N, X, C, V flags
« MSR CPSR_f,#&f0000000

. L

e Y ol o Yy L. o U W [.y | 0N

Control Flow Instructions

d Branch instructions

J Conditional branches

J Conditional execution
dBranch and link instructions
d Subroutine return instructions
d Supervisor calls

JJump tables

COMNL™ ™ vt i s avmm S o e [W, PP Ry |

Branch Instructions

B LABEL

LABEL

— LABEL comes after or before the branch instruction

e Y ol o Yy L. o U W [.y | or-

Conditional Branches

1 The branch has a condition associated with it and it
IS only executed if the condition codes have the
correct value — taken or not taken

MOV rO,#0 ;initialize counter
Loop ..

ADD rO,r0,#1 ;Increment loop counter

CMP rO,#10 ;compare with limit

BNE Loop ,repeat 1T not equal

;else fail through

Conditional Branch

Branch Interpretation Normal uses

B Unconditional Alwavs take this branch

BAL Always Always take this branch

BEQ) Equal Comparison equal or zero result

BNE Not Equal Comparison equal or non-zero result

BPL Plus Result positive or zero

BMI Minus Result minus or negative

BCC Carry clear Arithmetic operation did not give carrv-out
BLO» Lower Linsigned comparison gave lower

BOS Carry set Arithmetic operation gave give carry-out

BHS Higher or same Lnsigned comparison gave higher or same

BVC Overflow clear Signed integer operation; no overflow oceurred
BVS Overflow set Signed integer operation; overflow occurred
BGT Goreater than Signed integer comparison gave greater than
BGE Goreater or equal Signed integer comparison gave greater or equal
BLT Less than Signed integer comparison gave less than

BLE Less or equal Signed integer comparison gave less than or equal
BHI Higher Unsigned comparison gave higher

BLS Lower or same Unsigned comparison gave lower or same

e Y ol o Yy L. o U W [.y | 0O~7

Conditional Execution

d An unusual feature of the ARM Instruction set is that
conditional execution applies no only to branches but to all

ARM instructions
CMP rO,#5

CMP rO,#5

BEQ Bypass ;1T (ro!=5) :> ADDNE r1,r1,r0
ADD r1,rl,rO0 ;{rl=rl1+r0} SUBNE rl1,rl,r2

SUB rl,rl,r2
Bypass ..

1 Whenever the conditional sequence is 3 instructions for
fewer it Is better (smaller and faster) to exploit conditional
execution than to use a branch

1T((a==b)&&(c==d)) e++;

CMP rO,ri

:> CMPEQ r2,r3

ADDEQ r4,r4,#1

e Y ol o Yy L. o U W [.y | 00

Branch and Link Instructions

dPerform a branch, save the address following the
branch in the link register, r14

BL SUBR -branch to SUBR
.return here
SUBR " ;Subroutine entry point
MOV PC,rl4 return

d For nested subroutine, push r14 and some work

registers required to be saved onto a stack in
memory

BL SUB1

SUB1 STMFD r13!,{r0O-r2,r14};save work and link regs

CliDD

ﬁ

MOV PC,rl14 ;Copy rl4 into rl15 to return

Subroutine Return Instructions

SUB

dWhere the return address has been pushed onto a
stack

SUB1 STMFD r13!,{rO-r2,rl14} ;save work regs and link
BL SUB2

LDMFD r13!,{rO-r2,PC} ;restore work regs &
;return

Branch and Branch with Link (B,BL)

d B {L} {<cond>} <target address>
— <target address> is normally a label in the assembler code.

24-bit signed word offset

24-bit offset, sign-extended, shift left 2 places
+ PC (address of branch instruction + 8)

target address

Examples

dUnconditional jump

B LABEL
LABEL ..
dLoop ten times
MOV rO,#10
Loop "
SUBS r0,#1
BNE Loop

A Call a subroutine
BL SUB

SUB "
MOV PC,rl14

J Conditional subroutine

call
CMP rO,#5
BLLT SUB1

BLGE SUBZ2

e Y ol o Yy L. o U W [.y |

-1 F ro<s,
-call subl

-else call
-SUB2

Branch, Branch with Link and eXchange

d B{L}X{<cond>} Rm
— The branch target is specified in a register, Rm
— Bit[0] of Rm is copied into the T bit in CPSR; bit[31:1] is moved into
PC

— If Rm[0] is 1, the processor switches to execute Thumb instructions
and begins executing at the address in Rm aligned to a half-word
boundary by clearing the bottom bit

— If Rm[O] is O, the processor continues executing ARM instructions and
begins executing at the address in Rm aligned to a word boundary by
clearing Rm[1]

U BLX <target address>

— Call Thumb subroutine from ARM

— The H bit (bit 24) is also added into bit 1 of the resulting addressing,
allowing an odd half-word address to be selected for the target
Instruction which will always be a Thumb instruction

Example

A call to a Thumb subroutine
CODE32
éLX TSUB ;call Thumb subroutine
éODE16 ;start of Thumb code

TSUB ..
BX rl4 -return to ARM code

Supervisor Calls

dThe supervisor is a program which operates at a
privileged level, which means that it can do things
that a use-level program cannot do directly (e.qg.
Input or output)

d SWI instruction
— Software interrupt or supervisor call

SWI SWI_WriteC ;output rOf[7:0]}
SWI SWI_Exit ;return to monitor program

e Y ol o Yy L. o U W [.y |

Software Interrupt (SWI)

d SWi{<cond>}<24-bit 1mmediate>

— Used for calls to the operating system and is often called
a “supervisor call”

— It puts the processor into supervisor mode and begins
executing instruction from address 0x08

o Save the address of the instruction after SWI in r14 svc
« Save the CPSR in SPSR_svc

* Enter supervisor mode and disable IRQs by setting CPSR[4:0] to
10011, and CPSR[7]to 1

« Set PC to 08,4 and begin executing the instruction there

— The 24-bit immediate does not influence the operation of
the instruction but may be interpreted by the system code

Examples

 Output the character ‘A’

MOV ro,#’A’
SWI SWI_WriteC

A Finish executing the user program and return to the monitor
SW1 SWI_EXIT

1 A subroutine to output a text string

BL STROUT

= “Hello World”,

STROUT LDRB rO,[r14], #1

CMP rO,#0

SWINE SWI_WriteC

BNE STROUT
ADD ri4,#3
BIC ril4,#3
MOV PC,rl14

CMNL ™ v e

&0a, &0d,O0

;get character
.check for end marker
1T not end, print

. ,loop

;align to next word

;return

HY - YR B [Ry | n=7

16-bit iInstruction set

e Y ol o Yy L. o U W [.y | no

Thumb Instruction Set (1/3)

Mnemonic Instruction Lo Hi Condition
Register Register Code

ADC Add with carry)

ADD Add

AND AND

ASR Arithmetic Shift Right

B Branch

Bxx Conditional Branch

BIC Bit Clear

BL Branch with Link

BX Branch and Exchange

CMN Compare Negative

CMP Compare

EOR EOR

LDMIA Load Multiple
LDR Load Word

Thumb Instruction Set (2/3)

ﬁ
Mnemonic Instruction Lo Hi Condition

Register Register Code
LDRB Load Byte
LDRH Load Halfword

LSL Logical Shift Left

LDSB Load Signed Byte
LDSH Load Signed Halfword
LSR Logical Shift Right

MOV Move Register

MUL Multiply

MVN Move Negative Register
NEG Negate

ORR OR

POP Pop Registers

PUSH Push Registers
ROR Rotate Right

Thumb Instruction Set (3/3)

Mnemonic Instruction Lo Hi Condition
Register Register Code

SBC Subtract with Carry

STMIA Store Multiple .

STR Store Word O

STRB Store Byte O

STRH Store Halfword

SWI Software Interrupt

SUB Subtract

TST Test Bits O

e Y ol o Yy L. o U W [Ry | 1 M1

Thumb Instruction Format

1 []
1
12
13
T4
15
16
r
18
12

15 4 A3 12 1 i B L] T] i 4 b z 1
0 o] op Offacts Rs Rd
0 61 1]1]1]|0p] RuoHeata Rs Ra
olo|1] op R Offsets
0|1]|0 0 Op s Rd
1 lo 1| Op [H1|H2| RamHs Rd/MHd
1100 Rd Wards
1 LI B|0O Ro Rb Rd
ol1|0|1|H|S]|1 Re | Rb Rd
al1]1]|B|L Offsets Rb Rd
slololo|L Offsets Rb Rd
1 [1 L Rd WesdB
ilol1lolsP| Rd WordB
1lol1l1|o|o]olo|s SwWord?
1101111 |L|1|D Flist
1l1lololL Rb Rlist
TEIRE Cond Sofsals
1 1 (i] 1 1 1 1 1 Waluzh
TEIERAL Offsst11
q 1 1 1 H Offeat
15 14 13 17 11 1m g n i i g d L] 2 i

e Y ol o Yy L. o U W [Ry |

Move shifted rogieter

Load address
Add offser lo stack polmber

1 NN

Register Access in Thumb

ﬁ

dNot all registers are directly accessible in Thumb
dLow register rO — r7/: fully accessible

dHigh register r8 — r12: only accessible with MOV,
ADD, CMP; only CMP sets the condition code flags

JSP (Stack Pointer), LR (Link Register) & PC
(Program Counter): limited accessibility, certain
Instructions have implicit access to these

JCPSR: only indirect access
JSPSR: no access

e Y ol o Yy L. o U W [Ry | 1 NN

Thumb-ARM Difference

J Thumb instruction set is a subset of the ARM Iinstruction set

and the instructions operate on a restricted view of the ARM
registers

L Most Thumb instructions are executed unconditionally (All
ARM instructions are executed conditionally)

d Many Thumb data processing instructions use 2 2-address
format, i.e. the destination register is the same as one of the
source registers (ARM data processing instructions, with the
exception of the 64-bit multiplies, use a 3-address format)

d Thumb instruction formats are less regular than ARM
Instruction formats => dense encoding

e Y ol o Yy L. o U W [Ry | 1M AN

Thumb Accessible Registers

I"ﬂ b
r1

Shaded registers have

r2 restricted access
r3

r4

r5

ré

K7

r8

r9

r10

r11

ri2

SP (r13)
LR (r14) CPSR
PC (r15) o

Lo registers

/\

Hi registers

e Y ol o Yy L. o U W [Ry | 1 NIr-

Branches

d Thumb defines three PC-relative branch instructions, each of
which have different offset ranges

— Offset depends upon the number of available bits
 Conditional Branches

— B<cond> label

— 8-bit offset: range of -128 to 127 instruction (+/-256 bytes)

— Only conditional Thumb instructions
1 Unconditional Branches

— B label

— 11-bit offset: range of -1024 to 1023 instructions (+/-2Kbytes)
 Long Branches with Link

— BL subroutine

— Implemented as a pair of instructions
— 22-bit offset: range of -2097152 to 2097151 instruction (+/-4Mbytes)

e Y ol o Yy L. o U W [Ry | LN aYad

Data Processing Instruction

dSubset of the ARM data processing instructions
 Separate shift instructions (e.g. LSL, ASR, LSR,

ROR)
LSL Rd,Rs,#Imm5 -Rd:=Rs <shift> #Imm5
ASR Rd,Rs -Rd:=Rd <shift> Rs

dTwo operands for data processing instructions

— Act on low registers
BIC Rd,Rs ;Rd-=Rd AND NOT Rs
ADD Rd,#Imm8 ;Rd:=Rd+#Imm8

— Also three operand forms of add, subtract and shifts
ADD Rd,Rs,#Imm3 -Rd :=Rs+#1mm3
d Condition code always set by low register
operations

e Y ol o Yy L. o U W [Ry | 1 MN~7

Load or Store Register

1 Two pre-indexed addressing modes
— Base register + offset register

— Base register + 5-bit offset, where offset scaled by

» 4 for word accesses (range of 0-124 bytes / 0-31 words)
— STR Rd, [Rd,#1mm7]

« 2 for halfword accesses (range of 0-62 bytes / 0-31 halfwords)
— LDRH Rd, [Rb,#Immé6]

« 1 for bytes accesses (range of 0-31 bytes)
— LDRB Rd, [Rb,#Imm5]

1 Special forms:

— Load with PC as base with 1Kbyte immediate offset (word
aligned)
» Used for loading a value from a literal pool
— Load and store with SP as base with 1Kbyte immediate offset
(word aligned)
 Used for accessing local variables on the stack

P o Y By o U W [R | 1MN0

Block Data Transfers

dMemory copy, incrementing base pointer after
transfer
— STMIA Rb!, {Low Reg list}
— LDMIA Rb!, {Low Reg list}

d Full descending stack operations
— PUSH {Low Reg list}
— PUSH {Low Reg List, LR}
— POP {Low Reg list}
— POP {Low Reg List, PC}

dThe optional addition of the LR/PC provides support
for subroutine entry/exit

e Y ol o Yy L. o U W [Ry | 1 NN

Thumb Instruction Entry and Exit

ﬁ

4 T bit, bit 5 of CPSR

— If T =1, the processor interprets the instruction stream as 16-bit
Thumb instruction

— If T =0, the processor interprets if as standard ARM instructions

d Thumb Entry

— ARM cores startup, after reset, execution ARM instructions

— Executing a branch and Exchange instruction (BX)
o Setthe T bit if the bottom bit of the specified register was set
« Switch the PC to the address given in the remainder of the register

 Thumb Exit
— Executing a thumb BX instruction

The Need for Interworking

 The code density of Thumb and its performance from narrow
memory make it ideal for the bulk of C code in many systems.
However there is still a need to change between ARM and
Thumb state within most applications:

— ARM code provides better performance from wide memory
* Therefore ideal for speed-critical parts of an application

— Some functions can only be performed with ARM instructions,
e.g.

» Access to CPSR (to enable/disable interrupts & to change mode)
« Access to coprocessors

— Exception Handling

 ARM state is automatically entered for exception handling, but system
specification may require usage of Thumb code for main handler

— Simple standalone Thumb programs will also need an ARM
assembler header to change state and call the Thumb routine

e Y ol o Yy L. o U W [Ry | 111

Interworking Instructions

dInterworking is achieved using the Branch
Exchange instructions

— In Thumb state
BX Rn

— In ARM state (on Thumb-aware cores only)
BX<condition> Rn

Where Rn can be any registers (RO to R15)

dThe performs a branch to an absolute address in
4GB address space by copying Rn to the program
counter

BIit O of Rn specifies the state to change to

e Y ol o Yy L. o U W [Ry |

Switching between States

31 1T @

|

ARM/Thumb Selection
0- ARM State
1- Thumb State

Rn

31 T 0 Destination
0| Address

Example

‘start off in ARM state
CODE32

ADR rO, Into_Thumb+1l ;generate branch target
;address & set bit O
;hence arrive Thumb state

BX rO ;branch exchange to Thumb
CODE16 ;assemble subsequent as Thumb
Into_ Thumb ...

ADR r5,Back _to ARM ;generate branch target to
;word-aligned address,
;hence bit O 1s cleared.
BX r5 ;branch exchange to ARM

CODE32 ;assemble subsequent as ARM
Back to ARM

Summary

JARM architecture
— Load/Store architecture
— 32-bit instructions
— 3-address instruction formats
— 37 registers

L Instruction set
— 32-bit ARM Instruction
— 16-bit Thumb instruction

dARM/Thumb Interworking

CONL™ ™ v mr~rr ot 1 2o~

r

o~ ar rme~ AN~~~

References

ﬁ

[1] http://twins.ee.nctu.edu.tw/courses/ip_core_02/index.htm|

[2] ARM System-on-Chip Architecture by S.Furber, Addison
Wesley Longman: ISBN 0-201-67519-6.

[3] www.arm.com

e Y ol o Yy L. o U W [Ry |

