
SOC Consortium Course Material

ARM Instruction Sets and ProgramARM Instruction Sets and Program

Adopted from National Chiao-Tung University
IP Core Design

Jin-Fu Li
Department of Electrical Engineering

National Central University

2SOC Consortium Course Material

Outline
Programmer’s model
32-bit instruction set
16-bit instruction set
Summary

3SOC Consortium Course Material

Programmer’s model

4SOC Consortium Course Material

ARM Ltd
ARM was originally developed at Acron Computer Limited, of
Cambridge, England between 1983 and 1985.
– 1980, RISC concept at Stanford and Berkeley universities.
– First RISC processor for commercial use

1990 Nov, ARM Ltd was founded
ARM cores
– Licensed to partners who fabricate and sell to customers.

Technologies assist to design in the ARM application
– Software tools, boards, debug hardware, application software, bus

architectures, peripherals etc…

Modification of the acronym expansion to Advanced RISC
Machine.

5SOC Consortium Course Material

RISC architecture

Berkeley incorporated a Reduced Instruction Set
Computer (RISC) architecture.
It had the following key features:
– A fixed (32-bit) instruction size with few formats;

• CISC processors typically had variable length instruction sets with
many formats.

– A load–store architecture were instructions that process
data operate only on registers and are separate from
instructions that access memory;

• CISC processors typically allowed values in memory to be used
as operands in data processing instructions.

– A large register bank of thirty-two 32-bit registers, all of
which could be used for any purpose, to allow the load-
store architecture to operate efficiently;

• CISC register sets were getting larger, but none was this large
and most had different registers for different purposes

6SOC Consortium Course Material

RISC organization
Hard-wired instruction decode logic
– CISC processor used large microcode ROMs to decode

their instructions
Pipelined execution
– CISC processors allowed little, if any, overlap between

consecutive instructions (though they do now)
Single-cycle execution
– CISC processors typically took many clock cycles to

completes a single instruction

7SOC Consortium Course Material

ARM Architecture vs. Berkeley RISC (1/2)
Features used
– Load/Store architecture
– Fixed-length 32-bit instructions
– 3-address instruction formats

function op 1 addr. op 2 addr. dest. addr.
n bitsn bitsn bitsf bits

ADD d, S1, S2 ; d := S1 + S2

8SOC Consortium Course Material

ARM Architecture vs. Berkeley RISC (2/2)
Features rejected
– Register windows → costly

• Use shadow registers in ARM
– Delay branch

• Badly with branch prediction
– Single-cycle execution of all instructions

• Most single cycle, many other take multiple clock cycles

9SOC Consortium Course Material

Data Size and Instruction set
ARM processor is a 32-bit architecture
Most ARM’s implement two instruction sets
– 32-bit ARM instruction set
– 16-bit Thumb instruction set

10SOC Consortium Course Material

Data Types
ARM processor supports 6 data types
– 8-bits signed and unsigned bytes
– 16-bits signed and unsigned half-word, aligned on 2-byte

boundaries
– 32-bits signed and unsigned words, aligned on 4-byte

boundaries
ARM instructions are all 32-bit words, word-aligned;
Thumb instructions are half-words, aligned on 2-
byte boundaries
ARM coprocessor supports floating-point values

11SOC Consortium Course Material

The Registers

ARM has 37 registers, all of which are 32 bits long
– 1 dedicated program counter
– 1 dedicated current program status register
– 5 dedicated saved program status registers
– 31 general purpose registers

The current processor mode governs which bank is
accessible
– User mode can access

• A particular set of r0 – r12 registers
• A particular r13 (stack pointer, SP) and r14 (link register. LR)
• The program counter, r15 (PC)
• The curent program status register, CPSR

– Privileged modes (except system) can access
• A particular SPSR (Saved Program Status Register)

12SOC Consortium Course Material

Register Banking

r13_und
r14_und r14_irq

r13_irq

SPSR_und

r14_abt r14_svc

user mode
fiq

mode
svc

mode
abort
mode

irq
mode

undefined
mode

usable in user mode

system modes only

r13_abt r13_svc

r8_fiq
r9_fiq

r10_fiq
r11_fiq

SPSR_irqSPSR_abtSPSR_svcSPSR_fiqCPSR

r14_fiq
r13_fiq
r12_fiq

r0
r1
r2
r3
r4
r5
r6
r7
r8
r9
r10
r11
r12
r13
r14
r15 (PC)

13SOC Consortium Course Material

Program Counter (r15)
When the processor is executing in ARM state:
– All instructions are 32 bits wide
– All instructions must be word-aligned
– Therefore the PC value is stored in bits [32:2] with bits

[1:0] undefined (as instruction cannot be halfword)
When the processor is executing in Thumb state:
– All instructions are 16 bits wide
– All instructions must be halfword-aligned
– Therefore the PC value is stored in bits [32:1] with bits [0]

undefined (as instruction cannot be byte-aligned)

14SOC Consortium Course Material

Current Program Status Registers (CPSR)

Condition code flags
– N: Negative result form ALU
– Z: Zero result from ALU
– C: ALU Operation Carried out
– V: ALU operation oVerflowed

Sticky overflow flag – Q
flag
– Architecture 5TE only
– Indicates if saturation has

occurred during certain
operations

Interrupt disable bits
– I = 1, disable the IRQ
– F = 1, disable the FIQ

T Bit
– Architecture xT only
– T = 0, processor in ARM state
– T = 1, processor in Thumb

state

Mode bits
– Specify the processor mode

15SOC Consortium Course Material

Saved Program Status Register (SPSR)
Each privileged mode (except system mode) has
associated with it a SPSR
This SPSR is used to save the state of CPSR when
the privileged mode is entered in order that the user
state can be fully restored when the user process is
resumed
Often the SPSR may be untouched from the time
the privileged mode is entered to the time it is used
to restore the CPSR, but if the privileged supervisor
calls to itself the SPSR must be copied into a
general register and saved

16SOC Consortium Course Material

Processor Modes
ARM has seven basic operation modes
Mode changes by software control or external
interrupts

17SOC Consortium Course Material

Privileged Modes
Most programs operate in user mode. ARM has
other privileges operating modes which are used to
handle exceptions, supervisor calls (software
interrupt), and system mode.
More access rights to memory systems and
coprocessors.
Current operating mode is defined by CPSR[4:0].

18SOC Consortium Course Material

Exceptions
Exceptions are usually used to handle unexpected
events which arise during the execution of a
program, such as interrupts or memory faults, also
cover software interrupts, undefined instruction
traps, and the system reset
Three groups:
– Exceptions generated as the direct effect of execution an

instruction
• Software interrupts, undefined instructions, and prefetch abort

– Exceptions generated as a side effect of an instruction
• Data aborts

– Exceptions generated externally
• Reset, IRQ and FIQ

19SOC Consortium Course Material

Exception Entry (1/2)
When an exception arises, ARM completes the current
instruction as best it can (except that reset exception
terminates the current instruction immediately) and then
departs from the current instruction sequence to handle the
exception which starts from a specific location (exception
vector).
Processor performs the following sequence:
– Change to the operating mode corresponding to the particular

exception
– Save the address of the instruction following the exception entry

instruction in r14 of the new mode
– Save the old value of CPSR in the SPSR of the new mode
– Disable IRQs by setting bit 7 of the CPSR and, if the exception is a

fast interrupt, disable further faster interrupt by setting bit 6 of the
CPSR

20SOC Consortium Course Material

Exception Entry (2/2)
– Force the PC to begin execution at the relevant vector address

Normally the vector address contains a branch to the
relevant routine
Two banked registers in each of the privilege modes are
used to hold the return address and stack point

21SOC Consortium Course Material

Exception Return
Once the exception has been handled, the user task
is normally resumed
The sequence is
– Any modified user registers must be restored from the

handler’s stack
– CPSR must be restored from the appropriate SPSR
– PC must be changed back to the relevant instruction

address
The last two steps happen atomically as part of a
single instruction

22SOC Consortium Course Material

ARM Exceptions
Exception handler use r13_<mode> which will
normally have been initialized to point a dedicated
stack in memory, to save some user register for use
as work registers

23SOC Consortium Course Material

Exception Priorities
Priority order
– Reset (highest priority)
– Data abort
– FIQ
– IRQ
– Prefetch abort
– SWI, undefined instruction

24SOC Consortium Course Material

Memory Organization

Word, half-word alignment (xxxx00 or xxxxx0)
ARM can be set up to access data in either little-
endian or big-endian format, through they default to
little-endian.

25SOC Consortium Course Material

Features of the ARM Instruction Set
Load-store architecture
– Process values which are in registers
– Load, store instructions for memory data accesses

3-address data processing instructions
Conditional execution of every instruction
Load and store multiple registers
Shift, ALU operation in a single instruction
Open instruction set extension through the
coprocessor instruction
Very dense 16-bit compressed instruction set
(Thumb)

26SOC Consortium Course Material

Coprocessors

– Up to 16 coprocessors can be defined
– Expands the ARM instruction set
– Each coprocessor can have up to 16 private registers of

any reasonable size
– Load-store architecture

27SOC Consortium Course Material

Thumb
Thumb is a 16-bit instruction set
– Optimized for code density from C code
– Improved performance form narrow memory
– Subset of the functionality of the ARM instruction set

Core has two execution states – ARM and Thumb
– Switch between them using BX instruction

Thumb has characteristic features:
– Most Thumb instruction are executed unconditionally
– Many Thumb data process instruction use a 2-address

format
– Thumb instruction formats are less regular than ARM

instruction formats, as a result of the dense encoding.

28SOC Consortium Course Material

I/O System
ARM handles input/output peripherals as memory-
mapped with interrupt support
Internal registers in I/O devices as addressable
locations with ARM’s memory map read and written
using load-store instructions
Interrupt by normal interrupt (IRQ) or fast interrupt
(FIQ)
Input signals are level-sensitive and maskable
May include Direct Memory Access (DMA)
hardware

29SOC Consortium Course Material

ARM Processor Cores (1/2)
ARM Processor core + cache + MMU
→ ARM CPU cores
ARM6 → ARM7
– 3-stage pipeline
– Keep its instructions and data in the same memory

system
– Thumb 16-bit compressed instruction set
– on-chip Debug support, enabling the processor to halt in

response to a debug request
– enhanced Multiplier, 64-bit result
– EmbeddedICE hardware, give on-chip breakpoint and

watchpoint support

30SOC Consortium Course Material

ARM Processor Cores (2/2)
ARM8 → ARM9
→ ARM10

ARM9
– 5-stage pipeline (130 MHz or 200MHz)
– Using separate instruction and data memory ports

ARM 10 (1998. Oct.)
– High performance, 300 MHz
– Multimedia digital consumer applications
– Optional vector floating-point unit

31SOC Consortium Course Material

ARM Architecture Version (1/5)
Version 1
– The first ARM processor, developed at Acorn Computers

Limited 1983-1985
– 26-bit address, no multiply or coprocessor support

Version 2
– Sold in volume in the Acorn Archimedes and A3000

products
– 26-bit addressing, including 32-bit result multiply and

coprocessor
Version 2a
– Coprocessor 15 as the system control coprocessor to

manage cache
– Add the atomic load store (SWP) instruction

32SOC Consortium Course Material

ARM Architecture Version (2/5)
Version 3
– First ARM processor designed by ARM Limited (1990)
– ARM6 (macro cell)

ARM60 (stand-alone processor)
ARM600 (an integrated CPU with on-chip cache, MMU,
write buffer)
ARM610 (used in Apple Newton)

– 32-bit addressing, separate CPSR and SPSRs
– Add the undefined and abort modes to allow coprocessor

emulation and virtual memory support in supervisor mode
Version 3M
– Introduce the signed and unsigned multiply and multiply-

accumulate instructions that generate the full 64-bit result

33SOC Consortium Course Material

ARM Architecture Version (3/5)
Version 4
– Add the signed, unsigned half-word and signed byte load

and store instructions
– Reserve some of SWI space for architecturally defined

operation
– System mode is introduced

Version 4T
– 16-bit Thumb compressed form of the instruction set is

introduced

34SOC Consortium Course Material

ARM Architecture Version (4/5)
Version 5T
– Introduced recently, a superset of version 4T adding the

BLX, CLZ and BRK instructions
Version 5TE
– Add the signal processing instruction set extension

35SOC Consortium Course Material

ARM Architecture Version (5/5)

v3ARM7, ARM700, ARM710

v2aARM2as, ARM3

v5TEARM10TDMI, ARM1020E
v5TEARM9E-S, ARM10TDMI, ARM1020E
V4TARM9TDMI, ARM920T, ARM940T
v4StrongARM, ARM8, ARM810

v4TARM7TDMI, ARM710T, ARM720T, ARM740T

v3ARM6, ARM600, ARM610

v2ARM2
v1ARM1

ArchitectureCore

36SOC Consortium Course Material

32-bit instruction set

37SOC Consortium Course Material

ARM assembly language program
– ARM development board or ARM emulator

ARM instruction set
– Standard ARM instruction set
– A compressed form of the instruction set, a subset of the

full ARM instruction set is encoded into 16-bit
instructions – Thumb instruction

– Some ARM cores support instruction set extensions to
enhance signal processing capabilities

38SOC Consortium Course Material

Instructions
Data processing instructions
Data transfer instructions
Control flow instructions

39SOC Consortium Course Material

ARM Instruction Set Summary (1/4)

40SOC Consortium Course Material

ARM Instruction Set Summary (2/4)

41SOC Consortium Course Material

ARM Instruction Set Summary (3/4)

42SOC Consortium Course Material

ARM Instruction Set Summary (4/4)

43SOC Consortium Course Material

ARM Instruction Set Format

44SOC Consortium Course Material

Data Processing Instruction
Consist of
– Arithmetic (ADD, SUB, RSB)
– Logical (BIC, AND)
– Compare (CMP, TST)
– Register movement (MOV, MVN)

All operands are 32-bit wide; come from registers or
specified as literal in the instruction itself
Second operand sent to ALU via barrel shifter
32-bit result placed in register; long multiply
instruction produces 64-bit result
3-address instruction format

45SOC Consortium Course Material

Conditional Execution (1/2)
Most instruction sets only allow branches to be executed
conditionally.
However by reusing the condition evaluation hardware, ARM
effectively increase number of instruction
– All instructions contain a condition field which determines whether the

CPU will execute them
– Non-executed instruction still take up 1 cycle

• To allow other stages in the pipeline to complete

This reduces the number of branches which would stall the
pipeline
– Allows very dense in-line code
– The time penalty of not executing several conditional instructions is

frequently less than overhead of the branch or instruction call that
would otherwise be needed

46SOC Consortium Course Material

Conditional Execution (2/2)

47SOC Consortium Course Material

Data Processing Instructions
Simple register operands
Immediate operands
Shifted register operands
Multiply

48SOC Consortium Course Material

Simple Register Operands (1/2)
Arithmetic Operations

ADD r0,r1,r2 ;r0:=r1+r2
ADC r0,r1,r2 ;r0:=r1+r2+C
SUB r0,r1,r2 ;r0:=r1–r2
SBC r0,r1,r2 ;r0:=r1–r2+C–1
RSB r0,r1,r2 ;r0:=r2–r1, reverse subtraction
RSC r0,r1,r2 ;r0:=r2–r1+C–1

– By default data processing operations do no affect the
condition flags

Bit-wise Logical Operations
AND r0,r1,r2 ;r0:=r1ANDr2
ORR r0,r1,r2 ;r0:=r1ORr2
EOR r0,r1,r2 ;r0:=r1XORr2
BIC r0,r1,r2 ;r0:=r1AND (NOT r2), bit clear

49SOC Consortium Course Material

Simple Register Operands (2/2)
Register Movement Operations
– Omit 1st source operand from the format

MOV r0,r2 ;r0:=r2
MVN r0,r2 ;r0:=NOT r2, move 1’s complement

Comparison Operations
– Not produce result; omit the destination from the format
– Just set the condition code bits (N, Z, C and V) in CPSR

CMP r1,r2 ;set cc on r1 - r2, compare
CMN r1,r2 ;set cc on r1 + r2, compare negated
TST r1,r2 ;set cc on r1 AND r2, bit test
TEQ r1,r2 ;set cc on r1 XOR r2, test equal

50SOC Consortium Course Material

Immediate Operands
Replace the second source operand with an
immediate operand, which is a literal constant,
preceded by “#”

ADD r3,r3,#1 ;r3:=r3+1
AND r8,r7,#&FF ;r8:=r7[7:0], &:hexadecimal

Since the immediate value is coded within the 32
bits of the instruction, it is not possible to enter
every possible 32-bit value as an immediate.

51SOC Consortium Course Material

Shift Register Operands
– ADD r3,r2,r2,LSL#3

;r3 := r2 + 8 * r1
• A single instruction executed in

a single cycle

LSL: Logical Shift Left by 0 to
31 places, 0 filled at the lsb
end
LSR, ASL (Arithmetic Shift
Left), ASR, ROR (Rotate
Right), RRX (Rotate Right
eXtended by 1 place)
– ADD r5,r5,r3,LSL r2 ;
r5:=r5+r3*2r2

– MOV r12,r4,ROR r3
;r12:=r4 rotated right
by value of r3

031

00000

LSL #5

031

00000

LSR #5

031

11111 1

ASR #5, negative operand

031

00000 0

ASR #5, positive operand

0 1

031

ROR #5

031

RRX

C

C C

52SOC Consortium Course Material

Using the Barrel Shifter: the 2nd Operand

Register, optionally with shift
operation applied
– Shift value can be either

• 5-bit unsigned integer
• Specified in bottom byte of another

register
– Used for multiplication by constant

Immediate value
– 8-bit number, with a range of 0 -

255
• Rotated right through even number

of positions
– Allows increased range of 32-bit

constants to be loaded directly into
registers

53SOC Consortium Course Material

Multiply
Multiply

MUL r4,r3,r2 ;r4:=(r3*r2)[31:0]

Multiply-Accumulate
MLA r4,r3,r2,r1 ;r4:=(r3*r2+r1)[31:0]

54SOC Consortium Course Material

Multiplication by a Constant
Multiplication by a constant equals to a ((power of 2)
+/- 1) can be done in a single cycle
– Using MOV, ADD or RSBs with an inline shift

Example: r0 = r1 * 5
Example: r0 = r1 + (r1 * 4)
– ADD r0,r1,r1,LSL #2

Can combine several instruction to carry out other
multiplies
Example: r2 = r3 * 119
Example: r2 = r3 * 17 * 7
Example: r2 = r3 * (16 + 1) * (8 - 1)
– ADD r2,r3,r3,LSL #4 ;r2:=r3*17
– RSB r2,r2,r2,LSL #3 ;r2:=r2*7

55SOC Consortium Course Material

Data Processing Instructions (1/3)
<op>{<cond>}{S} Rd,Rn,#<32-bit immediate>
<op>{<cond>}{S} Rd,Rn,Rm,{<shift>}
– Omit Rn when the instruction is monadic (MOV, MVN)
– Omit Rd when the instruction is a comparison, producing only

condition code outputs (CMP, CMN, TST, TEQ)
– <shift> specifies the shift type (LSL, LSR, ASL, ASR, ROR or RRX)

and in all cases but RRX, the shift amount which may be a 5-bit
immediate (# < # shift>) or a register Rs

3-address format
– 2 source operands and 1 destination register
– One source is always a register, the second may be a register, a

shifted register or an immediate value

56SOC Consortium Course Material

Data Processing Instructions (2/3)
Opcode
[24:21]

Mnemoni c Meani ng Effect

0000 AND Logical bit-wise AND Rd := Rn AND Op2
0001 EOR Logical bit-wise exclusive OR Rd := Rn EOR Op2
0010 SUB Subtract Rd := Rn - Op2
0011 RSB Reverse subtract Rd := Op2 - Rn
0100 ADD Add Rd := Rn + Op2
0101 ADC Add with carry Rd := Rn + Op2 + C
0110 SBC Subtract with carry Rd := Rn - Op2 + C - 1
0111 RSC Reverse subtract with carry Rd := Op2 - Rn + C - 1
1000 TST Test Scc on Rn AND Op2
1001 TEQ Test equivalence Scc on Rn EOR Op2
1010 CMP Compare Scc on Rn - Op2
1011 CMN Compare negated Scc on Rn + Op2
1100 ORR Logical bit-wise OR Rd := Rn OR Op2
1101 MOV Move Rd := Op2
1110 BIC Bit clear Rd := Rn AND NOT Op2
1111 MVN Move negated Rd := NOT Op2

57SOC Consortium Course Material

Data Processing Instructions (3/3)
Allows direct control of whether or not the condition codes
are affected by S bit (condition code unchanged when S = 0)
– N = 1 if the result is negative; 0 otherwise (i.e. N = bit 31 of the result)
– Z = 1 if the result is zero; 0 otherwise
– C = 1 carry out from the ALU when ADD, ADC, SUB, SBC, RSB,

RSC, CMP, or CMN; carry out from the shifter
– V = 1 if overflow from bit 30 to bit 31; 0 if no overflow

(V is preserved in non-arithmetic operations)
PC may be used as a source operand (address of the
instruction plus 8) except when a register-specified shift
amount is used
PC may be specified as the destination register, the
instruction is a form of branch (return from a subroutine)

58SOC Consortium Course Material

Multiply Instructions (1/2)
32-bit product (Least Significant)
– MUL{<cond>}{S} Rd,Rm,Rs
– MLA{<cond>}{S} Rd,Rm,Rs,Rn

64-bit Product
– <mul>{<cond>}{S} RdHi,RdLo,Rm,Rs
– <mul> is UMULL,UMLAC,SMULL,SMLAL

Opcode
[23:21]

Mnemoni c Meani ng Effect

000 MUL Multiply (32-bit result) Rd := (Rm * Rs) [31:0]
001 MLA Multiply-accumulate (32-bit result) Rd := (Rm * Rs + Rn) [31:0]
100 UMULL Unsigned multiply long RdHi:RdLo := Rm * Rs
101 UMLAL Unsigned multiply-accumulate long RdHi:RdLo += Rm * Rs
110 SMULL Signed multiply long RdHi:RdLo := Rm * Rs
111 SMLAL Signed multiply-accumulate long RdHi:RdLo += Rm * Rs

59SOC Consortium Course Material

Multiply Instructions (2/2)
Accumulation is denoted by “+=”
Example: form a scalar product of two vectors

MOV r11,#20 ;initialize loop counter

MOV r10,#0 ;initialize total

Loop LDR r0,[r8],#4 ;get first component

LDR r1,[r9],#4 ;get second component

MLA r10,r0,r1,r10 ;accumulate product

SUBS r11,r11,#1 ;decrement loop counter

BNE Loop

60SOC Consortium Course Material

Data Transfer Instructions
Three basic forms to move data between ARM
registers and memory
– Single register load and store instruction

• A byte, a 16-bit half word, a 32-bit word

– Multiple register load and store instruction
• To save or restore workspace registers for procedure entry and

exit
• To copy clocks of data

– Single register swap instruction
• A value in a register to be exchanged with a value in memory
• To implement semaphores to ensure mutual exclusion on

accesses

61SOC Consortium Course Material

Single Register Data Transfer
Word transfer
– LDR / STR

Byte transfer
– LDRB / STRB

Halfword transfer
– LDRH / STRH

Load singled byte or halfword-load value and sign
extended to 32 bits
– LDRSB / LDRSH

All of these can be conditionally executed by
inserting the appropriate condition code after
STR/LDR
– LDREQB

62SOC Consortium Course Material

Addressing
Register-indirect addressing
Base-plus-offset addressing
– Base register

• r0 – r15

– Offset, and or subtract an unsigned number
• Immediate
• Register (not PC)
• Scaled register (only available for word and unsigned byte

instructions)

Stack addressing
Block-copy addressing

63SOC Consortium Course Material

Register-Indirect Addressing
Use a value in one register (base register) as a
memory address
LDR r0,[r1] ;r0:=mem32[r1]
STR r0,[r1] ;mem32[r1]:=r0

Other forms
– Adding immediate or register offsets to the base address

64SOC Consortium Course Material

Initializing an Address Pointer
A small offset to the program counter, r15
– ARM assembler has a “pseudo” instruction, ADR

As an example, a program which must copy data
from TABLE1 to TABLE2, both of which are near to
the code

Copy ADR r1,TABLE1 ;r1 points to TABLE1

ADR r2,TABLE2 ;r2 points to TABLE2

…

TABLE1

… ;<source>

TABLE2

… ;<destination>

65SOC Consortium Course Material

Single Register Load and Store

A base register, and offset which may be another
register or an immediate value

Copy ADR r1,TABLE1

ADR r2,TABLE2

Loop LDR r0,[r1]

STR r0,[r2]

ADD r1,r1,#4

ADD r2,r2,#4

???

…

TABLE1

…

TABLE2

…

66SOC Consortium Course Material

Base-plus-offset Addressing (1/2)
Pre-indexing
LDR r0,[r1,#4] ;r0:=mem32[r1+4]

– Offset up to 4K, added or subtracted, (# -4)

Post-indexing
LDR r0,[r1],#4 ;r0:=mem32[r1], r1:=r1+4

– Equivalent to a simple register-indirect load, but faster,
less code space

Auto-indexing
LDR r0, [r1,#4]! ;r0:=mem32[r1+4], r1:=r1+4

– No extra time, auto-indexing performed while the data is
being fetched from memory

67SOC Consortium Course Material

Base-plus-offset Addressing (2/2)

68SOC Consortium Course Material

Loading Constants (1/2)
No single ARM instruction can load a 32-bit immediate
constant directly into a register
– All ARM instructions are 32-bit long
– ARM instructions do not use the instruction stream as data

The data processing instruction format has 12 bits available
for operand 2
– If used directly, this would only give a range of 4096

Instead it is used to store 8-bit constants, give a range of 0-
255
These 8 bits can then be rotated right through an even
number of positions
This gives a much larger range of constants that can be
directly loaded, through some constants will still need to be
loaded from memory

69SOC Consortium Course Material

Loading Constant (2/2)
To load a constant, simply move the required value
into a register – the assembler will convert to the
rotate form for us
– MOV r0,#4096 ;MOV r0,#0x1000 (0x40 ror 26)

The bitwise complements can also be formed using
MVN:
– MOV r0,#&FFFFFFFF ;MVN r0,#0

Value that cannot be generated in this way will
cause an error

70SOC Consortium Course Material

Loading 32-bit Constants
To allow larger constants to be loaded, the
assembler offers a pseudo-instruction:
– LDR Rd,=const

This will either:
– Produce a MOV or MVN instruction to generate the value

(if possible) or
– Generate a LDR instruction with a PC-relative address to

read the constant from a literal pool (constant data area
embedded in the code)

For example
– MOV r0,=&FF ;MOV r0,#0xFF
– LDR r0,=&55555555 ;LDR r0,[PC,#Imm10]

71SOC Consortium Course Material

Multiple Register Data Transfer (1/2)
The load and store multiple instructions (LDM/STM) allow
between 1 and 16 registers to be transferred to or from
memory
– Order of register transfer cannot be specified, order in the list is

insignificant
– Lowest register number is always transferred to/form lowest memory

location accessed

The transferred registers can be either
– Any subset of the current bank of registers (default)
– Any subset of the user mode bank of registers when in a privileged

mode (postfix instruction with a “^”)

Base register used to determine where memory access
should occur
– 4 different addressing modes
– Base register can e optionally updated following the transfer (using “!”)

72SOC Consortium Course Material

Multiple Register Data Transfer (2/2)
These instruction are very efficient for
– Moving block of data around memory
– Saving and restoring context – stack

Allow any subset (or all, r0 to r15) of the 16
registers to be transferred with a single instruction

LDMIA r1,{r0,r2,r5} ;r0:=mem32[r1]

;r2:=mem32[r1+4]
;r5:=mem32[r1+8]

73SOC Consortium Course Material

Stack Processing
A stack is usually implemented as a linear data structure
which grows up (an ascending stack) or down (a descending
stack) memory
A stack pointer holds the address of the current top of the
stack, either by pointing to the last valid data item pushed
onto the stack (a full stack), or by pointing to the vacant slot
where the next data item will be placed (an empty stack)
ARM multiple register transfer instructions support all four
forms of stacks
– Full ascending: grows up; base register points to the highest

address containing a valid item
– empty ascending: grows up; base register points to the first empty

location above the stack
– Full descending: grows down; base register points to the lowest

address containing a valid data
– empty descending: grows down; base register points to the first

empty location below the stack

74SOC Consortium Course Material

Block Copy Addressing

75SOC Consortium Course Material

Single Word and Unsigned Byte Data Transfer
instructions

Pre-indexed form
– LDR|STR{<cond>}{B} Rd, [Rn, <offset>]{!}

Post-indexed form
– LDR|STR{<cond>}{B} Rd, [Rn], <offset>

PC-relative form
– LDR|STR{<cond>}{B} Rd, LABEL

– LDR: ’load register’; STR: ’store register’
– ‘B’ unsigned byte transfer, default is word;
– <offset> may be # +/-<12-bit immediate> or +/- Rm{, shift}
– !: auto-indexing
– T flag selects the user view of the memory translation and

protection system

76SOC Consortium Course Material

Example
Store a byte in r0 to a peripheral

LDR r1, UARTADD ; UART address into r1
STRB r0, [r1] ; store data to UART

UARTADD & &10000000 ; address literal

77SOC Consortium Course Material

Half-word and Signed Byte Data Transfer
Instructions

Pre-indexed form
– LDR|STR{<cond>}H|SH|SB Rd,[Rn,<offset>]{!}

Post-indexed form
– LDR|STR{<cond>}H|SH|SB Rd,[Rn],<offset>

– <offset> is # +/-<8-bit immediate> or +/- Rm
– H|SH|SB selects the data type

• Unsigned half-word
• Signed half-word and
• Signed byte
• Otherwise the assumble format is for word and unsigned byte

transfer

78SOC Consortium Course Material

Example
Expand an array of signed half-words into an array
of words

ADR r1,ARRAY1 ;half-word array start
ADR r2,ARRAY2 ;word array start
ADR r3,ENDARR1 ;ARRAY1 end + 2

Loop LDRSH r0,[r1],#2;get signed half-word
STR r0,[r2],#4 ;save word
CMP r1,r3 ;check for end of array
BLT Loop ;if not finished, loop

79SOC Consortium Course Material

Multiple Register Transfer instructions
LDR|STR{<cond>}{B}<add mode> Rn{!},
<register>
– <add mode> specifies one of the addressing modes
– ‘!’: auto-indexing
– <registers> a list of registers, e.g., {r0, r3-r7, pc}

In non-user mode, the CPSR may be restored by
LDM{<cond>}<add mode> Rn{!}, <registers +
PC>^

In non-user mode, the user registers may be saved or
restored by
LDM|STM{<cond>}<add mode> Rn, <registers -
PC>^

– The register list must not contain PC and write-back is no allowed

80SOC Consortium Course Material

Example
Save 3 work registers and the return address upon
entering a subroutine (assume r13 has been
initialized for use as a stack pointer)

STMFD r13!,{r0-r2,r14}

Restore the work registers and return
LDMFD r13!,{r0-r2,PC}

81SOC Consortium Course Material

Swap Memory and Register Instructions
SWP{<cond>}{B} Rd,Rm,[Rn]
Rd <- [Rn], [Rn] <- Rm

Combine a load and a store of a word or an
unsigned byte in a single instruction
Example
ADR r0,SEMAPHORE
SWPB r1,r1,[r0] ;exchange byte

82SOC Consortium Course Material

Status Register to General Register Transfer
instructions
MRS{<cond>} Rd,CPSR|SPSR

The CPSR or the current mode SPSR is copied into
the destination register. All 32 bits are copied.

Example
MRS r0,CPSR
MRS r3,SPSR

83SOC Consortium Course Material

General Register to Status Register Transfer
instructions
MSR{<cond>} CPSR_<field>|SPSR_<field>,#<32-
bit immediate>
MSR{<cond>} CPSR_<field>|SPSR_<field>,Rm

– <field> is one of
• c – the control field PSR[7:0]
• x – the extension field PSR[15:8]
• s – the status field PSR[23:16]
• f – the flag field PSR[31:24]

Example
– Set N, X, C, V flags

• MSR CPSR_f,#&f0000000

84SOC Consortium Course Material

Control Flow Instructions
Branch instructions
Conditional branches
Conditional execution
Branch and link instructions
Subroutine return instructions
Supervisor calls
Jump tables

85SOC Consortium Course Material

Branch Instructions
B LABEL
…

LABEL …

– LABEL comes after or before the branch instruction

86SOC Consortium Course Material

Conditional Branches
The branch has a condition associated with it and it
is only executed if the condition codes have the
correct value – taken or not taken

MOV r0,#0 ;initialize counter
Loop …

ADD r0,r0,#1 ;increment loop counter
CMP r0,#10 ;compare with limit
BNE Loop ;repeat if not equal

;else fail through

87SOC Consortium Course Material

Conditional Branch

88SOC Consortium Course Material

Conditional Execution
An unusual feature of the ARM instruction set is that
conditional execution applies no only to branches but to all
ARM instructions

Whenever the conditional sequence is 3 instructions for
fewer it is better (smaller and faster) to exploit conditional
execution than to use a branch

CMP r0,#5

BEQ Bypass ;if (r0!=5)

ADD r1,r1,r0 ;{r1=r1+r0}

SUB r1,r1,r2

Bypass …

CMP r0,#5

ADDNE r1,r1,r0

SUBNE r1,r1,r2

if((a==b)&&(c==d)) e++; CMP r0,r1

CMPEQ r2,r3

ADDEQ r4,r4,#1

89SOC Consortium Course Material

Branch and Link Instructions
Perform a branch, save the address following the
branch in the link register, r14

BL SUBR ;branch to SUBR
… ;return here

SUBR … ;subroutine entry point
MOV PC,r14 ;return

For nested subroutine, push r14 and some work
registers required to be saved onto a stack in
memory

BL SUB1
…

SUB1 STMFD r13!,{r0-r2,r14};save work and link regs
…

SUB2 …

90SOC Consortium Course Material

Subroutine Return Instructions
SUB …

MOV PC,r14 ;copy r14 into r15 to return

Where the return address has been pushed onto a
stack
SUB1 STMFD r13!,{r0-r2,r14} ;save work regs and link

BL SUB2
…
LDMFD r13!,{r0-r2,PC} ;restore work regs &

;return

91SOC Consortium Course Material

Branch and Branch with Link (B,BL)
B {L} {<cond>} <target address>
– <target address> is normally a label in the assembler code.

24-bit offset, sign-extended, shift left 2 places
+ PC (address of branch instruction + 8)

target address

92SOC Consortium Course Material

Examples
Unconditional jump

B LABEL
…

LABEL …

Loop ten times
MOV r0,#10

Loop …
SUBS r0,#1
BNE Loop
…

Conditional subroutine
call

CMP r0,#5
BLLT SUB1 ;if r0<5,

;call sub1
BLGE SUB2 ;else call

;SUB2

Call a subroutine
BL SUB
…

SUB …
MOV PC,r14

93SOC Consortium Course Material

Branch, Branch with Link and eXchange
B{L}X{<cond>} Rm
– The branch target is specified in a register, Rm
– Bit[0] of Rm is copied into the T bit in CPSR; bit[31:1] is moved into

PC
– If Rm[0] is 1, the processor switches to execute Thumb instructions

and begins executing at the address in Rm aligned to a half-word
boundary by clearing the bottom bit

– If Rm[0] is 0, the processor continues executing ARM instructions and
begins executing at the address in Rm aligned to a word boundary by
clearing Rm[1]

BLX <target address>
– Call Thumb subroutine from ARM
– The H bit (bit 24) is also added into bit 1 of the resulting addressing,

allowing an odd half-word address to be selected for the target
instruction which will always be a Thumb instruction

94SOC Consortium Course Material

Example
A call to a Thumb subroutine

CODE32
…
BLX TSUB ;call Thumb subroutine
…
CODE16 ;start of Thumb code

TSUB …
BX r14 ;return to ARM code

95SOC Consortium Course Material

Supervisor Calls
The supervisor is a program which operates at a
privileged level, which means that it can do things
that a use-level program cannot do directly (e.g.
input or output)
SWI instruction
– Software interrupt or supervisor call

SWI SWI_WriteC ;output r0[7:0]
SWI SWI_Exit ;return to monitor program

96SOC Consortium Course Material

Software Interrupt (SWI)
SWI{<cond>}<24-bit immediate>

– Used for calls to the operating system and is often called
a “supervisor call”

– It puts the processor into supervisor mode and begins
executing instruction from address 0x08

• Save the address of the instruction after SWI in r14_svc
• Save the CPSR in SPSR_svc
• Enter supervisor mode and disable IRQs by setting CPSR[4:0] to

100112 and CPSR[7] to 1
• Set PC to 0816 and begin executing the instruction there

– The 24-bit immediate does not influence the operation of
the instruction but may be interpreted by the system code

97SOC Consortium Course Material

Examples
Output the character ‘A’

A subroutine to output a text string

Finish executing the user program and return to the monitor

MOV r0,#’A’

SWI SWI_WriteC

SWI SWI_EXIT

BL STROUT

= “Hello World”, &0a, &0d,0

…

STROUT LDRB r0,[r14], #1 ;get character

CMP r0,#0 ;check for end marker

SWINE SWI_WriteC if not end, print

BNE STROUT ; … ,loop

ADD r14,#3 ;align to next word

BIC r14,#3

MOV PC,r14 ;return

98SOC Consortium Course Material

16-bit instruction set

99SOC Consortium Course Material

Thumb Instruction Set (1/3)

100SOC Consortium Course Material

Thumb Instruction Set (2/3)

101SOC Consortium Course Material

Thumb Instruction Set (3/3)

102SOC Consortium Course Material

Thumb Instruction Format

103SOC Consortium Course Material

Register Access in Thumb
Not all registers are directly accessible in Thumb
Low register r0 – r7: fully accessible
High register r8 – r12: only accessible with MOV,
ADD, CMP; only CMP sets the condition code flags
SP (Stack Pointer), LR (Link Register) & PC
(Program Counter): limited accessibility, certain
instructions have implicit access to these
CPSR: only indirect access
SPSR: no access

104SOC Consortium Course Material

Thumb-ARM Difference
Thumb instruction set is a subset of the ARM instruction set
and the instructions operate on a restricted view of the ARM
registers
Most Thumb instructions are executed unconditionally (All
ARM instructions are executed conditionally)
Many Thumb data processing instructions use 2 2-address
format, i.e. the destination register is the same as one of the
source registers (ARM data processing instructions, with the
exception of the 64-bit multiplies, use a 3-address format)
Thumb instruction formats are less regular than ARM
instruction formats => dense encoding

105SOC Consortium Course Material

Thumb Accessible Registers

Shaded registers have
restricted access

106SOC Consortium Course Material

Branches
Thumb defines three PC-relative branch instructions, each of
which have different offset ranges
– Offset depends upon the number of available bits

Conditional Branches
– B<cond> label

– 8-bit offset: range of -128 to 127 instruction (+/-256 bytes)
– Only conditional Thumb instructions

Unconditional Branches
– B label

– 11-bit offset: range of -1024 to 1023 instructions (+/-2Kbytes)

Long Branches with Link
– BL subroutine

– Implemented as a pair of instructions
– 22-bit offset: range of -2097152 to 2097151 instruction (+/-4Mbytes)

107SOC Consortium Course Material

Data Processing Instruction
Subset of the ARM data processing instructions
Separate shift instructions (e.g. LSL, ASR, LSR,
ROR)

LSL Rd,Rs,#Imm5 ;Rd:=Rs <shift> #Imm5
ASR Rd,Rs ;Rd:=Rd <shift> Rs

Two operands for data processing instructions
– Act on low registers

BIC Rd,Rs ;Rd:=Rd AND NOT Rs
ADD Rd,#Imm8 ;Rd:=Rd+#Imm8

– Also three operand forms of add, subtract and shifts
ADD Rd,Rs,#Imm3 ;Rd:=Rs+#Imm3

Condition code always set by low register
operations

108SOC Consortium Course Material

Load or Store Register
Two pre-indexed addressing modes
– Base register + offset register
– Base register + 5-bit offset, where offset scaled by

• 4 for word accesses (range of 0-124 bytes / 0-31 words)
– STR Rd,[Rd,#Imm7]

• 2 for halfword accesses (range of 0-62 bytes / 0-31 halfwords)
– LDRH Rd,[Rb,#Imm6]

• 1 for bytes accesses (range of 0-31 bytes)
– LDRB Rd,[Rb,#Imm5]

Special forms:
– Load with PC as base with 1Kbyte immediate offset (word

aligned)
• Used for loading a value from a literal pool

– Load and store with SP as base with 1Kbyte immediate offset
(word aligned)

• Used for accessing local variables on the stack

109SOC Consortium Course Material

Block Data Transfers
Memory copy, incrementing base pointer after
transfer
– STMIA Rb!, {Low Reg list}
– LDMIA Rb!, {Low Reg list}

Full descending stack operations
– PUSH {Low Reg list}
– PUSH {Low Reg List, LR}
– POP {Low Reg list}
– POP {Low Reg List, PC}

The optional addition of the LR/PC provides support
for subroutine entry/exit

110SOC Consortium Course Material

Thumb Instruction Entry and Exit
T bit, bit 5 of CPSR
– If T = 1, the processor interprets the instruction stream as 16-bit

Thumb instruction
– If T = 0, the processor interprets if as standard ARM instructions

Thumb Entry
– ARM cores startup, after reset, execution ARM instructions
– Executing a branch and Exchange instruction (BX)

• Set the T bit if the bottom bit of the specified register was set
• Switch the PC to the address given in the remainder of the register

Thumb Exit
– Executing a thumb BX instruction

111SOC Consortium Course Material

The Need for Interworking
The code density of Thumb and its performance from narrow
memory make it ideal for the bulk of C code in many systems.
However there is still a need to change between ARM and
Thumb state within most applications:
– ARM code provides better performance from wide memory

• Therefore ideal for speed-critical parts of an application

– Some functions can only be performed with ARM instructions,
e.g.

• Access to CPSR (to enable/disable interrupts & to change mode)
• Access to coprocessors

– Exception Handling
• ARM state is automatically entered for exception handling, but system

specification may require usage of Thumb code for main handler

– Simple standalone Thumb programs will also need an ARM
assembler header to change state and call the Thumb routine

112SOC Consortium Course Material

Interworking Instructions
Interworking is achieved using the Branch
Exchange instructions
– In Thumb state

BX Rn

– In ARM state (on Thumb-aware cores only)
BX<condition> Rn

Where Rn can be any registers (R0 to R15)
The performs a branch to an absolute address in
4GB address space by copying Rn to the program
counter
Bit 0 of Rn specifies the state to change to

113SOC Consortium Course Material

Switching between States

114SOC Consortium Course Material

Example
;start off in ARM state

CODE32
ADR r0,Into_Thumb+1 ;generate branch target

;address & set bit 0
;hence arrive Thumb state

BX r0 ;branch exchange to Thumb
…
CODE16 ;assemble subsequent as Thumb

Into_Thumb …
ADR r5,Back_to_ARM ;generate branch target to

;word-aligned address,
;hence bit 0 is cleared.

BX r5 ;branch exchange to ARM
…
CODE32 ;assemble subsequent as ARM

Back_to_ARM …

115SOC Consortium Course Material

Summary
ARM architecture
– Load/Store architecture
– 32-bit instructions
– 3-address instruction formats
– 37 registers

Instruction set
– 32-bit ARM instruction
– 16-bit Thumb instruction

ARM/Thumb Interworking

116SOC Consortium Course Material

References
[1] http://twins.ee.nctu.edu.tw/courses/ip_core_02/index.html
[2] ARM System-on-Chip Architecture by S.Furber, Addison

Wesley Longman: ISBN 0-201-67519-6.
[3] www.arm.com

