
SOC Consortium Course Material

Code DevelopmentCode Development

Speaker: Juin-Nan Liu

Adopted from National Chiao-Tung University
IP Core Design

1SOC Consortium Course Material

Goal of This Lab
Familiarize with ARM software development tools:
ARM Development Suite (ADS)
– Project management
– Configuring the settings of build targets for your project

Writing code for ARM-based platform design
Mixed instruction sets, ARM and Thumb
interworking, is learned to balance the performance
and code density of an application.

2SOC Consortium Course Material

Outline
Basic Code Development
ARM/Thumb Interworking
Lab1 – Code Development

3SOC Consortium Course Material

The Structure of ARM Tools

C/C++ source C libraries asm source

object libraries

C compiler assembler

linker Librarian

.o
ELF object file

With DWARF2 debug tables

.axf
ELF/DWARF2 image

debug

ARMsd

ARMulator

System models

development
board

ELF: Executable and linking formatDWARF: Debug With Arbitrary Record Format

4SOC Consortium Course Material

Main Components in ADS (1/2)
ANSI C compilers – armcc and tcc
ISO/Embedded C++ compilers – armcpp and tcpp
ARM/Thumb assembler - armasm
Linker - armlink
Project management tool for windows -
CodeWarrior
Instruction set simulator - ARMulator
Debuggers - AXD, ADW, ADU and armsd
Format converter - fromelf
Librarian – armar
ARM profiler - armprof ADS: ARM Developer Suite

5SOC Consortium Course Material

Main Components in ADS (2/2)
C and C++ libraries
ROM-based debug tools (ARM Firmware Suite, AFS)
Real Time Debug and Trace support
Support for all ARM cores and processors including
ARM9E, ARM10, Jazelle, StrongARM and Intel
Xscale

6SOC Consortium Course Material

View in CodeWarrier
The CodeWarrior IDE provides a simple, versatile,
graphical user interface for managing your software
development projects.
Develop C, C++, and ARM assembly language
code
targeted at ARM and Thumb processors.
It speeds up your build cycle by providing:
– comprehensive project management capabilities
– code navigation routines to help you locate routines

quickly.

7SOC Consortium Course Material

CodeWarrior Desktop
ToolbarMenu Create a new project

Project Files view

Target Settings

Editor windows

8SOC Consortium Course Material

Views in AXD
Various views allow you to examine and control
the processes you are debugging.
In the main menu bar, two menus contain items that
display views:
– The items in the Processor Views menu display views

that apply to the current processor only
– The items in the System Views menu display views that

apply to the entire, possibly multiprocessor, target
system

AXD: the ARM eXtended Debugger

9SOC Consortium Course Material

AXD Desktop
ToolbarMenu

Status bar

Disassembly processor view

Source processor view

Console processor view

Control System view

Control System view

Variable processor view

Watch processor view

Watch system view

10SOC Consortium Course Material

ARM Emulator: ARMulator (1/2)
A suite of programs that models the behavior of
various ARM processor cores and system
architecture in software on a host system
Can be operates at various levels of accuracy
– Instruction accurate
– Cycle accurate
– Timing accurate

11SOC Consortium Course Material

ARM Emulator: ARMulator (2/2)
Benchmarking before hardware is available
– Instruction count or number of cycles can be measured

for a program.
– Performance analysis.

Run software on ARMulator
– Through ARMsd or ARM GUI debuggers, e.g., AXD
– The processor core model incorporates the remote debug

interface, so the processor and the system state are
visible from the ARM symbolic debugger

– Supports a C library to allow complete C programs to run
on the simulated system

12SOC Consortium Course Material

ARM Symbolic Debugger
ARMsd: ARM and Thumb symbolic debugger
– can single-step through C or assembly language sources,
– set break-points and watch-points, and
– examine program variables or memory

It is a front-end interface to debug program running either
– under emulation (on the ARMulator) or
– remotely on a ARM development board (via a serial line or

through JTAG test interface)
It allows the setting of
– breakpoints, addresses in the code
– watchpoints, memory address if accessed as data address

cause exception to halt so that the processor state can be
examined

13SOC Consortium Course Material

Basic Debug Requirements
Control of program execution
– set watchpoints on interesting data accesses
– set breakpoints on interesting instructions
– single step through code

Examine and change processor state
– read and write register values

Examine and change system state
– access to system memory

• download initial code

14SOC Consortium Course Material

Debugger (1/2)
A debugger is software that enables you to make use of a debug agent in
order to examine and control the execution of software running on a
debug target
Different forms of the debug target
– early stage of product development, software
– prototype, on a PCB including one or more processors
– final product

The debugger issues instructions that can
– load software into memory on the target
– start and stop execution of that software
– display the contents of memory, registers, and variables
– allow you to change stored values

A debug agent performs the actions requested by the debugger, such as
– setting breakpoints
– reading from / writing to memory

15SOC Consortium Course Material

Debugger (2/2)

Examples of debug
agents
– Multi-ICE
– Embedded ICE
– ARMulator
– BATS
– Angle

Remote Debug Interface
(RDI) is an open ARM
standard procedural
interface between a
debugger and the
debug agent

RDI

Target
emulated in

Software

ARMulator
RDI

Target
emulated in

Software

BATS
RDI

ARM
development

board

Multi-ICE

ARM
development

board

RDI
Remote_A

Angel

Target (software) Target (hoftware)

Remote Debug Interface (RDI)

ARM debugger
AxD

RDI

16SOC Consortium Course Material

Program Design
Start with understanding the requirements, translate the
requirements into an unambiguous specifications
Define a program structure, the data structure and the
algorithms that are used to perform the required operations
on the data
The algorithms may be expressed in pseudo-code
Individual modules should be coded, tested and documented
Nearly all programming is based on high-level languages,
however it may be necessary to develop small software
components in assembly language to get the best
performance

17SOC Consortium Course Material

Outline
Basic Code Development
ARM/Thumb Interworking
Lab1 – Code Development

18SOC Consortium Course Material

ARM Instruction Sets
ARM processor is a 32-bit architecture, most ARM’s
implement two instruction sets
– 32-bit ARM instruction set
– 16-bit Thumb instruction set

19SOC Consortium Course Material

ARM and Thumb Code Size

Simple C routine
if (x>=0)

return x;
else

return -x;

The equivalent ARM assembly
Iabs CMP r0,#0 ;Compare r0 to zero

RSBLT r0,r0,#0 ;If r0<0 (less than=LT) then do r0= 0-r0
MOV pc,lr ;Move Link Register to PC (Return)

The equivalent Thumb assembly
CODE16 ;Directive specifying 16-bit (Thumb) instructions

iabs CMP r0,#0 ;Compare r0 to zero
BGE return ;Jump to Return if greater or

;equal to zero
NEG r0,r0 ;If not, negate r0

return MOV pc,lr ;Move Link register to PC (Return)

20SOC Consortium Course Material

The Need for Interworking
The code density of Thumb and its performance from narrow
memory make it ideal for the bulk of C code in many systems.
However there is still a need to change between ARM and
Thumb state within most applications:
– ARM code provides better performance from wide memory

• therefore ideal for speed-critical parts of an application
– some functions can only be performed with ARM instructions,

e.g.
• access to CPSR (to enable/disable interrupts & to change mode)
• access to coprocessors

– exception Handling
• ARM state is automatically entered for exception handling, but system

specification may require usage of Thumb code for main handler
– simple standalone Thumb programs will also need an ARM

assembler header to change state and call the Thumb routine

21SOC Consortium Course Material

Interworking Instructions
Interworking is achieved using the Branch
Exchange instructions
– in Thumb state

BX Rn

– in ARM state (on Thumb-aware cores only)
BX<condition> Rn

where Rn can be any registers (r0 to r15)

This performs a branch to an absolute address in
4GB address space by copying Rn to the program
counter
Bit 0 of Rn specifies the state to be changed to

22SOC Consortium Course Material

Switching between States

For most instruction generated by compiler:
• Conditional execution is not used
• Source and destination registers identical
• Only Low registers used
• Constants are of limited size
• Inline barrel shifter not used
16-bit Thumb instruction

32-bit ARM instructionADDS r2,r2,#1

ADD r2,#1

031

15 0

23SOC Consortium Course Material

Example
;start off in ARM state

CODE32
ADR r0,Into_Thumb+1 ;generate branch target

;address & set bit 0,
;hence arrive Thumb state

BX r0 ;branch exchange to Thumb

…
CODE16 ;assemble subsequent as

;Thumb
Into_Thumb …

ADR r5,Back_to_ARM ;generate branch target to

;word-aligned address,
;hence bit 0 is cleared.

BX r5 ;branch exchange to ARM

…
CODE32 ;assemble subsequent as

;ARM

Back_to_ARM …

24SOC Consortium Course Material

ARM/Thumb Interworking
between C/C++ and ASM

C code compiled to run in one state may call
assembler to execute in the other state, and vice-
versa.
– If the callee is in C, compile it using –apcs /interwork
– If the callee is in ASM, assemble it using –apcs

/interwork and return using BX LR
Any assembler code used in this manner must
conform to ATPCS where appropriate, e.g., function
parameters passed in r0-r3 & r12 corruptible

25SOC Consortium Course Material

Interworking Calls

Thumb-Thumb
calls permitted

Non-interworking
Thumb code

Non-interworking
ARM code

Interworking
Thumb code

Interworking
ARM code

No calls
possible

ARM-ARM
calls permitted

ARM-Thumb
calls permitted

Non-interworking to interworking
ARM/Thumb calls permitted

Modules that are compiled for interworking generate slightly larger
code, typically 2% larger for Thumb and less than 1% larger for ARM.

26SOC Consortium Course Material

Outline
Basic Code Development
ARM/Thumb Interworking
Lab1 – Code Development

27SOC Consortium Course Material

Lab 1: Code Development
Goal
– How to create an application

using ARM Developer Suite
(ADS)

– How to change between ARM
state and Thumb state when
writing code for different
instruction sets

Principles
– Processor’s organization
– ARM/Thumb Procedure Call

Standard (ATPCS)
Guidance
– Flow diagram of this Lab
– Preconfigured project

stationery files

Steps
– Basic software development

(tool chain) flow
– ARM/Thumb Interworking

Requirements and
Exercises
– See next slide

Discussion
– The advantages and

disadvantages of ARM and
Thumb instruction sets.

28SOC Consortium Course Material

Lab 1: Code Development (cont’)
ARM/Thumb Interworking
– Exercise 1: C/C++ for “Hello” program

• Caller: Thumb
• Callee: ARM

– Exercise 2: Assembly for “SWAP” program, w/wo veneers
• Caller: Thumb
• Callee: ARM

– Exercise 3: Mixed language for “SWAP” program, ATPCS
for parameters passing

• Caller: Thumb in Assembly
• Callee: ARM in C/C++

29SOC Consortium Course Material

References
[1] http://twins.ee.nctu.edu.tw/courses/ip_core_02/index.html
[2] ADS_AssemblerGuide_A.pdf
[3] ADS_CodeWarriorIDEGuide_C.pdf
[4] ADS_DeveloperGuide_C.pdf
[5] ADS_GettingStarted_C.pdf
[6] ADS_LINKERGUIDE_A.pdf

