Code Development

Speaker: Juin-Nan Liu

Adopted from National Chiao-Tung University
IP Core Design

PN PN PN e "

Goal of This Lab

d Familiarize with ARM software development tools:
ARM Development Suite (ADS)

— Project management
— Configuring the settings of build targets for your project

JWriting code for ARM-based platform design

JMixed instruction sets, ARM and Thumb

Interworking, Is learned to balance the performance
and code density of an application.

re Y Y o PPy L. o U N [[y |

Outline

dBasic Code Development
JARM/Thumb Interworking
dLabl — Code Development

N ™ et it aram S s svr e~~~ N2

PRy |

The Structure of ARM Tools

C/C++ source

C libraries __.=""""| asmsource

N e l

C compiler assembler

.0
ELF object file
With DWARF2 debug tables

linker Librarian

v
.axf,/ debug
ELF/DWARF2 image

object libraries

ARMsd

System models

~,

development l

ARMulator board

DWARF: Debug With Arbitrary Record Format ELF: Executable and linking format

e Y ol o Yy L. o U W [.y |

Main Components in ADS (1/2)

Q
JANSI C compilers — armcc and tcc
dISO/Embedded C++ compilers — armcpp and tcpp
JARM/Thumb assembler - armasm
dLinker - armlink

dProject management tool for windows -
CodeWarrior

dInstruction set simulator - ARMulator

1 Debuggers - AXD, ADW, ADU and armsd

J Format converter - fromelf

dLibrarian — armar

OARM profiler . armprof ADS: ARM Developer Suite

e Y ol o Yy L. o U W [.y |

Main Components in ADS (2/2)

dC and C++ libraries
JROM-based debug tools (ARM Firmware Suite, AFS
dReal Time Debug and Trace support

dSupport for all ARM cores and processors including
ARM9E, ARM10, Jazelle, StrongARM and Intel
Xscale

e Y ol o Yy L. o U W [.y |

View In CodeWarrier

dThe CodeWarrior IDE provides a simple, versatile,

graphical user interface for managing your software
development projects.

dDevelop C, C++, and ARM assembly language
code

dtargeted at ARM and Thumb processors.
It speeds up your build cycle by providing:

— comprehensive project management capabilities

— code navigation routines to help you locate routines
quickly.

CMNL™ ™ mvmrmrrrd i s avmm S~ s

CodeWarrior Desktop

Create a new project

L T S A ey

ant main (vaid) %
SEmmE] et

A8 mAiR QECGTER, :nu—ruﬁ-:.h.d.t 1o precslices
¢ % Hmin samd Proc_0 in the &ds sersicn

Cne Fitty Iu.t_l_:r.n:
FEL D Faf by

—ditor windewszms I“‘Iﬂaﬁ"

Enumerat1on Iu.'u.l._l'.n:-
Sex 30
Str_a0

I_ : Z |« Target $kttings
' ; e

roject Files view

e Y ol o Yy L. o U W [.y | -

Views in AXD

Q

dVarious views allow you to examine and control
the processes you are debugging.

d1n the main menu bar, two menus contain items that
display views:
— The items in the Processor Views menu display views
that apply to the current processor only

— The items in the System Views menu display views that
apply to the entire, possibly multiprocessor, target
system

AXD: the ARM eXtended Debugger

e Y ol o Yy L. o U W [.y | (o)

AXD Desktop

ﬁenu To;lbar

ESrE o) o = L R IENEAN TSR I_ ul_ Hlle Ce] TR D] = I .
Terget |buege |Bds | Clw | ARMIT_] - oo oo Bl RHIADSY 11 s kst hrwmat] T=E]
ﬁmuﬁ1 112 f Waz migaing in published program, Without thig i=)
. - 113 f® Are 2 Zlobk [B] (7] weould have an undefined wvalua
ContrOI Stem view 114 /* Warning: With l&-8it processors and Munberc OF R
g P _Of_
115 f* pverflow nay oocur for this arcay elensnt. -
ARHTT_| - Vershks 11&
Lol | Ghobal | Cles | 117 printf ("\n");
Yariabla 118 praintT ("Dheyatons Benchmack, Verslien 2.1 (Languags: Sk
119 praimtt ("wmT) g
_ _ o if (Rag) +—— Source procqg@8Sor view
: 1
Varlabl(’ processor VIEW 122 printf [“Program compiled with fragistaer’ attributa\n®
123 printf [("\n");
al | -+
TN I i : e 3 TR
Tk 1 |'|'|:|.:|; | Tak3 | Tabd | 0000E1dd [Oneladflds] MoV pcerld
Hatch Pros 5 [OxaSLEOLOD] 14r g0, OxDO00A0eD] : = S#0x0ODOC400
goooBelde [Ome3a01041] MW rl, ¥0x41
I f OD00Els0 [OneSc0l000] strhk cl; [cD, #0] D bl .
. 0000Eled [Oxe3anloon] (| EegY £l, #0 |Isassem FOCessor view
Watch processor view BRRNN oio20101¢] sor c1lre0, S0xid) yp
' | M Q000Blec [Onelalflide] mow per rld /
M nain [Dxaf3Z2d44CT0] * stnld 13l 1rd=rll, rld]
Syl Waish Q000B1E4 [OneZdddbéc] sub rl3, r13, §onéc
[Tebl |Tbz |Tab3 | Tabe | ODO0B1EE [0xe3aldlDA0] mov i, #0x30 -
Watch system view | _.|| (DDOOBIEE [OxebD003ac] Bl mallos H
4 E] =
Syviem Cmipot Mocsior ARHTT | - Comends
RD{Log | Debng Log | =
filr
Pagetzbles, InhCi, Tracer, Milisecond |206000 opdes_per_milisecond), =] Console processor view
Serrihiost /
RH RO 1B == ASTYHC RO Protocol Corvartar ADS «1.1 [Build numbes 7049] C"F”""i'“'ji' -
3 | o |l .

Bar Hilp, preze F1

[Law 8T, Cal D [ARMUL AEMTI_I [Wy_Fosjeciusd

Control System view

Status bar

e Y ol o Yy L. o U W [.y | aY

ARM Emulator: ARMulator (1/2)

Q

A suite of programs that models the behavior of
various ARM processor cores and system
architecture in software on a host system

[Can be operates at various levels of accuracy
— Instruction accurate
— Cycle accurate
— Timing accurate

e Y ol o Yy L. o U W [.y | 1N

ARM Emulator: ARMulator (2/2)

dBenchmarking before hardware is available

— Instruction count or number of cycles can be measured
for a program.

— Performance analysis.

dRun software on ARMulator
— Through ARMsd or ARM GUI debuggers, e.g., AXD

— The processor core model incorporates the remote debug
Interface, so the processor and the system state are
visible from the ARM symbolic debugger

— Supports a C library to allow complete C programs to run
on the simulated system

e Y ol o Yy L. o U W [.y |

ARM Symbolic Debugger

d ARMsd: ARM and Thumb symbolic debugger
— can single-step through C or assembly language sources,
— set break-points and watch-points, and
— examine program variables or memory

4 It is a front-end interface to debug program running either
— under emulation (on the ARMulator) or

— remotely on a ARM development board (via a serial line or
through JTAG test interface)

4 It allows the setting of
— breakpoints, addresses in the code

— watchpoints, memory address if accessed as data address

=» cause exception to halt so that the processor state can be
examined

e Y ol o Yy L. o U W [.y |

Basic Debug Requirements

d Control of program execution
— set watchpoints on interesting data accesses
— set breakpoints on interesting instructions
— single step through code

d Examine and change processor state
— read and write register values

d Examine and change system state

— access to system memaory
» download initial code

e Y ol o Yy L. o U W [.y | q N

Debugger (1/2)

O A debugger is software that enables you to make use of a debug agent in
order to examine and control the execution of software running on a
debug target

O Different forms of the debug target

— early stage of product development, software
— prototype, on a PCB including one or more processors
— final product

O The debugger issues instructions that can
— load software into memory on the target
— start and stop execution of that software
— display the contents of memory, registers, and variables
— allow you to change stored values

O A debug agent performs the actions requested by the debugger, such as
— setting breakpoints
— reading from / writing to memory

Debugger (2/2)

1 Examples of debug

agents

—~ Multi-ICE AN

— Embedded ICE

— ARMulator RO

- BATS ... RemoteDebugnterface®D)

o Angle Target (software) E Target (hoftware)
L Remote Debug Interface armuiator BATS Multi-ICE Angel

(RDI) is an open ARM RD! ROl | | [ROl RD!

standard procedural et

interface between a . T I . .

debugger and the “momae | | “Soteae | 1| oo || oo

debug agent

e Y ol o Yy L. o U W [.y | 10

Program Design

4 Start with understanding the requirements, translate the
requirements into an unambiguous specifications

1 Define a program structure, the data structure and the
algorithms that are used to perform the required operations
on the data

 The algorithms may be expressed in pseudo-code
 Individual modules should be coded, tested and documented

1 Nearly all programming is based on high-level languages,
however it may be necessary to develop small software
components in assembly language to get the best
performance

e Y ol o Yy L. o U W [.y | W ad

Outline

dBasic Code Development
JARM/Thumb Interworking
dLabl — Code Development

N ™ et it trmm S s svr e~~~ N2

PRy |

ARM Instruction Sets

JARM processor is a 32-bit architecture, most ARM’s
Implement two Instruction sets

— 32-bit ARM instruction set
— 16-bit Thumb Instruction set

e Y ol o Yy L. o U W [.y | 10

ARM and Thumb Code Size

The equivalent ARM assembly

/ labs CMP r0,#0 ;Compare r0 to zero
S| m p | eCro Utl ne RSBLT r0,r0,#0 ;If r0<0 (less than=LT) then do r0= 0-r0

it (X>=O) MOV pc,Ir :Move Link Register to PC (Return)
return X;]

else The equivalent Thumb assembly
return -x; CODEL16 ;Directive specifying 16-bit (Thumb) instructions

labs CMP r0,#0 ;Compare r0 to zero
BGE return ;Jump to Return if greater or
;equal to zero
NEG r0,r0 ;If not, negate r0
return MOV pc,Ir ;Move Link register to PC (Return)

Code Instructions | Size (Bytes) | Normalised

ARNM 3 12 1.0
Thumkb 4 5] 0.67

e Y ol o Yy L. o U W [.y | 10

The Need for Interworking

1 The code density of Thumb and its performance from narrow
memory make it ideal for the bulk of C code in many systems.
However there is still a need to change between ARM and
Thumb state within most applications:

— ARM code provides better performance from wide memory
 therefore ideal for speed-critical parts of an application

— some functions can only be performed with ARM instructions,
e.g.
» access to CPSR (to enable/disable interrupts & to change mode)
e access to coprocessors
— exception Handling

 ARM state is automatically entered for exception handling, but system
specification may require usage of Thumb code for main handler

— simple standalone Thumb programs will also need an ARM
assembler header to change state and call the Thumb routine

Interworking Instructions

dInterworking is achieved using the Branch
Exchange Instructions

— In Thumb state
BX Rn

— In ARM state (on Thumb-aware cores only)
BX<condition> Rn

where Rn can be any registers (rO to r15)

dThis performs a branch to an absolute address Iin
4GB address space by copying Rn to the program
counter

Bit O of Rn specifies the state to be changed to

e Y ol o Yy L. o U W [.y |

Switching between States

31

0

ADDS r 2,

r 2| 3#2dt ARM instruction

For most instruction generated by compiler:
« Conditional execution is not used

» Source and destination registers identical
 Only Low registers used

. e Constants are of limited size

ADD r 2,

e |nline barrel shifter not used

7 1 16-bit Thumb instruction

Example

:start off 1n ARM state

CODE32

ADR rO, Into_Thumb+1 -generate branch target
;address & set bit O,
;hence arrive Thumb state

BX rO ;branch exchange to Thumb

CODE16 ;assemble subsequent as
> Thumb

Into_Thumb ..

ADR r5,Back to ARM ;generate branch target to
;word-aligned address,
;hence bit 0 1s cleared.

BX r5 ;branch exchange to ARM

CODE32 ;assemble subsequent as

- ARM
Back to ARM ..

ARM/ThumDb Interworking
between C/C++ and ASM

1 C code compiled to run in one state may call
assembler to execute Iin the other state, and vice-
versa.

— If the callee is In C, compile it using —apcs /interwork
— If the callee i1s In ASM, assemble it using —apcs
/interwork and return using BX LR

dAny assembler code used in this manner must

conform to ATPCS where appropriate, e.g., function

parameters passed in rO-r3 & r12 corruptible

e Y ol o Yy L. o U W [.y | la W, |

Interworking Calls

Non-interworking No calls Non-interworking
Thumb code possible ARM code
A /
Thumb-Thumb Non-interworking to |nterwork|ng ARM-ARM
calls permitted ARM/Thumb calls permitted calls permitted
Interworking ARM-Thumb Interworking
Thumb code [/s permitted g ARM code

Modules that are compiled for interworking generate slightly larger
code, typically 2% larger for Thumb and less than 1% larger for ARM.

e Y ol o Yy L. o U W [.y | oY

Outline

dBasic Code Development
JARM/Thumb Interworking
dLabl — Code Development

N ™ et it trmm S s svr e~~~ N2

PRy |

Lab 1: Code Development

4 Goal Steps
— How to create an application — Basic software development
using ARM Developer Suite (tool chain) flow
(ADS)

_ How to change between ARM — AR-M/Thumb Interworking
state and Thumb state when ~ d Requirements and

writing code for different Exercises
Instruction sets :
.. — See next slide
4 Principles QD .
— Processor’s organization Discussion
— ARM/Thumb Procedure Call — The advantages and
Standard (ATPCS) disadvantages of ARM and
O Guidance Thumb instruction sets.

— Flow diagram of this Lab

— Preconfigured project
stationery files

Lab 1: Code Development (cont’)

dARM/Thumb Interworking

— Exercise 1: C/C++ for “Hello” program
o Caller: Thumb
o Callee: ARM

— Exercise 2: Assembly for “SWAP” program, w/wo veneers
o Caller: Thumb
« Callee: ARM
— Exercise 3: Mixed language for “SWAP” program, ATPCS
for parameters passing

o Caller: Thumb in Assembly
o Callee: ARM in C/C++

e Y ol o Yy L. o U W [.y | [aY0)

References

http://twins.ee.nctu.edu.tw/courses/ip_core_02/index.html
ADS AssemblerGuide_A.pdf

ADS CodeWarriorIDEGuide C.pdf

ADS DeveloperGuide C.pdf

ADS GettingStarted C.pdf

ADS LINKERGUIDE_A.pdf

o U s W N e

e Y ol o Yy L. o U W [.y | N

