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Goal of This Lab
Familiarize with ARM software development tools: 
ARM Development Suite (ADS)
– Project management
– Configuring the settings of build targets for your project

Writing code for ARM-based platform design
Mixed instruction sets, ARM and Thumb 
interworking, is learned to balance the performance 
and code density of an application.
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Outline
Basic Code Development
ARM/Thumb Interworking
Lab1 – Code Development
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The Structure of ARM Tools

C/C++ source C libraries asm source

object libraries

C compiler assembler

linker Librarian

.o
ELF object file

With DWARF2 debug tables

.axf
ELF/DWARF2 image

debug

ARMsd

ARMulator

System models

development
board

ELF: Executable and linking formatDWARF: Debug With Arbitrary Record Format
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Main Components in ADS (1/2)
ANSI C compilers – armcc and tcc
ISO/Embedded C++ compilers – armcpp and tcpp
ARM/Thumb assembler - armasm
Linker - armlink
Project management tool for windows -
CodeWarrior
Instruction set simulator - ARMulator
Debuggers - AXD, ADW, ADU and armsd
Format converter - fromelf
Librarian – armar
ARM profiler - armprof ADS: ARM Developer Suite
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Main Components in ADS (2/2)
C and C++ libraries
ROM-based debug tools (ARM Firmware Suite, AFS)
Real Time Debug and Trace support 
Support for all ARM cores and processors including 
ARM9E, ARM10, Jazelle, StrongARM and Intel 
Xscale
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View in CodeWarrier
The CodeWarrior IDE provides a simple, versatile, 
graphical user interface for managing your software 
development projects.
Develop C, C++, and ARM assembly language 
code
targeted at ARM and Thumb processors.
It speeds up your build cycle by providing:
– comprehensive project management capabilities
– code navigation routines to help you locate routines 

quickly.
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CodeWarrior Desktop
ToolbarMenu Create a new project

Project Files view

Target Settings

Editor windows
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Views in AXD
Various views allow you to examine and control
the processes you are debugging.
In the main menu bar, two menus contain items that 
display views:
– The items in the Processor Views menu display views 

that apply to the current processor only
– The items in the System Views menu display views that 

apply to the entire, possibly multiprocessor, target 
system

AXD: the ARM eXtended Debugger
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AXD Desktop
ToolbarMenu

Status bar

Disassembly processor view

Source processor view

Console processor view

Control System view

Control System view

Variable processor view

Watch processor view

Watch system view
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ARM Emulator: ARMulator (1/2)
A suite of programs that models the behavior of 
various ARM processor cores and system 
architecture in software on a host system
Can be operates at various levels of accuracy
– Instruction accurate
– Cycle accurate
– Timing accurate
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ARM Emulator: ARMulator (2/2)
Benchmarking before hardware is available
– Instruction count or number of cycles can be measured 

for a program.
– Performance analysis.

Run software on ARMulator
– Through ARMsd or ARM GUI debuggers, e.g., AXD
– The processor core model incorporates the remote debug 

interface, so the processor and the system state are 
visible from the ARM symbolic debugger

– Supports a C library to allow complete C programs to run 
on the simulated system
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ARM Symbolic Debugger
ARMsd: ARM and Thumb symbolic debugger
– can single-step through C or assembly language sources, 
– set break-points and watch-points, and 
– examine program variables or memory

It is a front-end interface to debug program running either
– under emulation (on the ARMulator) or
– remotely on a ARM development board (via a serial line or 

through JTAG test interface) 
It allows the setting of
– breakpoints, addresses in the code
– watchpoints, memory address if accessed as data address

cause exception to halt so that the processor state can be 
examined
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Basic Debug Requirements
Control of program execution
– set watchpoints on interesting data accesses
– set breakpoints on interesting instructions
– single step through code

Examine and change processor state
– read and write register values

Examine and change system state
– access to system memory

• download initial code
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Debugger (1/2)
A debugger is software that enables you to make use of a debug agent in 
order to examine and control the execution of software running on a 
debug target
Different forms of the debug target
– early stage of product development, software
– prototype, on a PCB including one or more processors
– final product

The debugger issues instructions that can
– load software into memory on the target
– start and stop execution of that software
– display the contents of memory, registers, and variables
– allow you to change stored values

A debug agent performs the actions requested by the debugger, such as
– setting breakpoints
– reading from / writing to memory
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Debugger (2/2)

Examples of debug 
agents
– Multi-ICE
– Embedded ICE
– ARMulator
– BATS
– Angle

Remote Debug Interface 
(RDI) is an open ARM 
standard procedural 
interface between a 
debugger and the 
debug agent

RDI

Target
emulated in

Software

ARMulator
RDI

Target
emulated in

Software

BATS
RDI

ARM
development

board

Multi-ICE

ARM
development

board

RDI
Remote_A

Angel

Target (software) Target (hoftware)

Remote Debug Interface (RDI)

ARM debugger
AxD

RDI
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Program Design
Start with understanding the requirements, translate the 
requirements into an unambiguous specifications
Define a program structure, the data structure and the 
algorithms that are used to perform the required operations 
on the data
The algorithms may be expressed in pseudo-code
Individual modules should be coded, tested and documented
Nearly all programming is based on high-level languages, 
however it may be necessary to develop small software 
components in assembly language to get the best 
performance
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Outline
Basic Code Development
ARM/Thumb Interworking
Lab1 – Code Development



18SOC Consortium Course Material

ARM Instruction Sets
ARM processor is a 32-bit architecture, most ARM’s 
implement two instruction sets
– 32-bit ARM instruction set
– 16-bit Thumb instruction set
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ARM and Thumb Code Size

Simple C routine
if (x>=0)

return x;
else

return -x;

The equivalent ARM assembly
Iabs CMP r0,#0 ;Compare r0 to zero

RSBLT r0,r0,#0 ;If r0<0 (less than=LT) then do r0= 0-r0
MOV pc,lr ;Move Link Register to PC (Return)

The equivalent Thumb assembly
CODE16 ;Directive specifying 16-bit (Thumb) instructions

iabs CMP r0,#0 ;Compare r0 to zero
BGE return ;Jump to Return if greater or

;equal to zero
NEG r0,r0 ;If not, negate r0

return MOV pc,lr ;Move Link register to PC (Return)
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The Need for Interworking
The code density of Thumb and its performance from narrow 
memory make it ideal for the bulk of C code in many systems.  
However there is still a need to change between ARM and 
Thumb state within most applications:
– ARM code provides better performance from wide memory

• therefore ideal for speed-critical parts of an application
– some functions can only be performed with ARM instructions, 

e.g.
• access to CPSR (to enable/disable interrupts & to change mode)
• access to coprocessors

– exception Handling
• ARM state is automatically entered for exception handling, but system 

specification may require usage of Thumb code for main handler
– simple standalone Thumb programs will also need an ARM 

assembler header to change state and call the Thumb routine
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Interworking Instructions
Interworking is achieved using the Branch 
Exchange instructions
– in Thumb state

BX Rn

– in ARM state (on Thumb-aware cores only)
BX<condition> Rn

where Rn can be any registers (r0 to r15)

This performs a branch to an absolute address in 
4GB address space by copying Rn to the program 
counter
Bit 0 of Rn specifies the state to be changed to
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Switching between States

For most instruction generated by compiler:
• Conditional execution is not used
• Source and destination registers identical
• Only Low registers used
• Constants are of limited size
• Inline barrel shifter not used
16-bit Thumb instruction

32-bit ARM instructionADDS r2,r2,#1

ADD r2,#1

031

15 0
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Example
;start off in ARM state

CODE32
ADR r0,Into_Thumb+1 ;generate branch target 

;address & set bit 0,
;hence arrive Thumb state

BX r0 ;branch exchange to Thumb

…
CODE16 ;assemble subsequent as 

;Thumb
Into_Thumb …

ADR r5,Back_to_ARM ;generate branch target to

;word-aligned address,
;hence bit 0 is cleared.

BX r5 ;branch exchange to ARM

…
CODE32 ;assemble subsequent as

;ARM

Back_to_ARM …
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ARM/Thumb Interworking
between C/C++ and ASM

C code compiled to run in one state may call 
assembler to execute in the other state, and vice-
versa. 
– If the callee is in C, compile it using –apcs /interwork
– If the callee is in ASM, assemble it using –apcs

/interwork and return using BX LR
Any assembler code used in this manner must 
conform to ATPCS where appropriate, e.g., function 
parameters passed in r0-r3 & r12 corruptible
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Interworking Calls

Thumb-Thumb 
calls permitted

Non-interworking
Thumb code

Non-interworking
ARM code

Interworking
Thumb code

Interworking
ARM code

No calls 
possible

ARM-ARM
calls permitted

ARM-Thumb
calls permitted

Non-interworking to interworking
ARM/Thumb calls permitted

Modules that are compiled for interworking generate slightly larger 
code, typically 2% larger for Thumb and less than 1% larger for ARM.
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Outline
Basic Code Development
ARM/Thumb Interworking
Lab1 – Code Development
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Lab 1: Code Development
Goal
– How to create an application 

using ARM Developer Suite 
(ADS) 

– How to change between ARM 
state and Thumb state when 
writing code for different 
instruction sets

Principles
– Processor’s organization
– ARM/Thumb Procedure Call 

Standard (ATPCS)
Guidance 
– Flow diagram of this Lab
– Preconfigured project 

stationery files

Steps
– Basic software development 

(tool chain) flow
– ARM/Thumb Interworking

Requirements and 
Exercises
– See next slide 

Discussion
– The advantages and 

disadvantages of ARM and 
Thumb instruction sets.
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Lab 1: Code Development (cont’)
ARM/Thumb Interworking
– Exercise 1: C/C++ for “Hello” program

• Caller: Thumb
• Callee: ARM 

– Exercise 2: Assembly for “SWAP” program, w/wo veneers
• Caller: Thumb
• Callee: ARM

– Exercise 3: Mixed language for “SWAP” program, ATPCS 
for parameters passing

• Caller: Thumb in Assembly
• Callee: ARM in C/C++
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