Content s

2. Debugging and Evaluation..........ccccccoevviiiiviiiinneeennn, 2-1
2. L. e 2-1

2. 2. e 2-1
2.3, e 2-4
2.3.1. Debugging SkKills ... 2-4

2.3.2. Software Quality Measurement .................... 2-19

2 e e 2-29

2. D e 2-29

2. D, e 2-30



Debugging and Evaluation

2. Debugging and Evaluation
2.1.

This Lab gives step-by-step instructions to perform a variety of debugging
tasks and Software quality evaluation. Thought in this Lab the debugger target
is ARMulator, but the skills can be applied to Multi-ICE/Angel with the ARM
development board(s). The following instructions are based on the
demonstration program that runs the Dhrystone test software, which is the
same to that used in Lab 1. For details of the Dhrystone test program, please
refer to the readme.txt file and the various source files in its subdirectory (e.g.,
C:\Program Files\ARM\ADSv1_ 2\Examples\dhryansi\).

Debugging skills you will learn

e  Set breakpoints and watchpoints

* Locate, examine and change the contents of variables, registers and
memory

The skills you will learn to evaluate software quality:

*  Memory requirement of the program

* Profiling: Build up a picture of the percentage of time spent in each
procedure.

e Evaluate software performance prior to implement on hardware

2.2.

The MIPS figures which ARM (and most of the industry) quotes are
"Dhrystone VAX MIPs". The idea behind this measure is to compare the
performance of a machine (in our case, an ARM system) against the
performance of a reference machine. The industry adopted the VAX 11/780
as the reference 1 MIP machine. The benchmark is calculated by measuring
the number of Dhrystones per second for the system, and then dividing that
figure by the number of Dhrystones per second achieved by the reference
machine. So "80 MIPS" means "80 Dhrystone VAX MIPS", which means 80
times faster than a VAX 11/780. The reason for comparing against a
reference machine is that it avoids the need to argue about differences in
instruction sets. RISC processors tend to have lots of simple instructions.
CISC machines like x86 and VAX tend to have more complex instructions. If
you just counted the number of instructions per second of a machine directly,
then machines with simple instructions would get higher instructions-per-
second results, even though it would not be telling you whether it gets the job
done any faster. By comparing how fast a machine gets a given piece of work

SOC 2-1



Debugging and Evaluation

done against how fast other machines get that piece of work done, the
question of the different instruction sets is avoided.

There are two different versions of the Dhrystone benchmark commonly
quoted:

 Dhrystone 1.1

e Dhrystone 2.1

ARM quotes Dhrystone 2.1 figures. The VAX 11/780 achieves 1757
Dhrystones per second. The maximum performance of the ARM7 family is 0.9
Dhrystone VAX MIPS per MHz. The maximum performance of the ARM9
family is 1.1 Dhrystone VAX MIPS per MHz. These figures assume ARM code
running from 32-bit wide, zero wait-state memory. If there are wait-states, or
(for cores with caches) the caches are disabled, then the performance figures
will be lower. To estimate how many ARM instructions are executed per
second then simply divide the frequency by the average CPI (Cycles Per
Instruction) for the core. For example:

The average CPI for the ARM7 family is about 1.9 cycles per instruction.

The average CPI for the ARM9 family is about 1.5 cycles per instruction.

What is fixed point?

Fixed Point numbers are a simply way to store floating point information in
an integer number. They are a very useful in computing resource limited
device. They only store a set number of decimal places, and are therefore
slightly inaccurate. But they can reduce so many computing power and time.
Some describe as follow.

The first example are in base 10. This is an easy base for humans to deal
with, but is very cumbersome with computers. Therefore, in real applications
we use base 2.

Example 1:
Suppose you have the following number : 180.4527

Because you are working with performance intensive applications, you
need good performance. Naturally, you try to us integer math. Unfortunately,
you find that the ".4527" is an important part of the information. So you do the
following:

IntX = 1804527,

You could see that the number above is that same number as the one
farther above, it is just "shifted" four places to the left. This leaves you with a
(bigger) integer number. But how do you print it out?

WRITELN('This number was stored in an integer: ', IntX / (10%);

{ "Shifted" four places }

What is great about this system is that you can add numbers very easily:

IntX := 1804527, {180.4527 }

IntY := 0005473; { 0.5473}

IntZ := IntX+IntY;  {IntZ now = 1810000 }

RealZ := IntZ / (10*); { RealZ = 181.0 }

2-2 SOC



Debugging and Evaluation

You can multiply two numbers with integer routines. You can also divide
two numbers with integer instructions. This is what makes fixed point SO fast.
Examples:

IntZ := (IntX*(10%) DIV IntY;

IntZ := (IntX*IntY) DIV (10%);

Example2:
Suppose you have the following number : 0.125

In reality, we will be using base 2 fixed point numbers. So you can see the
following:

IntX =1

And shifted 3 place

WRITELN('This number was stored in an integer: ', IntX / (2°));

{ "Shifted" three places }

You can describe numbers very easily, and without floating point:

IntX = 1; {0.125 (1 /2%, 0.5 (1/2), and so on}

IntY = 3; {0.375 (3/2%), 0.1875 (1/2%), and so on}

IntZ = 5; {0.15625 (5/2°), 0.3125 (1/2%), and so on}

This means that we will use this for divide and multiply.

Example3:
Suppose:
0.125+0.375=0.5
If we want to compute the result. The hardware will need floating units.
If it don’t have them, that will cost a lot of time to compute floating result.

So see the following:
IntQ = (IntX*(23)) DIV IntY;

2  IntQ = (IntX*IntY) DIV (2%); More easily!! We just need “add” and “shift”
Except that instead of shifting three places to the left, we will shift 16
places to the left (and use 32 bit numbers). This is commonly called 16.16

fixed point numbers...

IntQ = (IntX*(2'%)) DIV IntY;

IntQ = (IntX*IntY) DIV (2'°);

Another thing that makes FP numbers go so fast is that the math above
simplifies to the following:

IntQ = (IntX SHL 16) DIV IntY;

IntQ = (IntX*IntY) SHR 16;

Conveniant, isn't it! Well this is a huge improvement over using floating
point. It also lets people without a coprocessor create and use high
performance graphics routines (ex: DCT).

SOC 2-3



Debugging and Evaluation

2.3.

2.3.1. Debugging skills

Initial setup

1. Make your working directory, e.g., CAARMSoC\Lab_02\

2.Copy all files in C:\Program Files\ARM\ADSv1_2\Examples\dhryansi\ to
your working directory.

3. Double click on dhryansi.mcp

4.Make dhryansi.mcp and then Select Project - Debug (Ctrl + F5) to
launch AXD.
4.1 A Disassembly processor view of the image is displayed and a blue
arrow indicates the current execution point.

5. Select Execute — Go from the menu (or press F5, or from toolbar) to begin
execution on the target processor.
5.1 Execution stops at the beginning of function main(), where a breakpoint
is set by default. A red disc indicates the line where a breakpoint is set.
5.2 Also, a Source processor view of the relevant few lines of the relevant
file is displayed. If it is not, right-click in the Disassembly processor
view and select Source from the pop-up menu. Again, a red disc
indicates the line where a breakpoint is set, and a blue arrow indicates
the current execution point.

6. Select Go again to continue execution.
6.1 You are prompted, in the Console processor view, for the number of
runs through the benchmark that you want performed.
6.2 Enter 8000. The program runs for a few seconds, displays some
diagnostic messages, and shows the test results.

7.To repeat the execution of the program, select Reload Current Image from
the File menu or toolbar shown in Figure 1, then repeat Steps 5 and 6.
7.1 You do not have to open the Source process view again. Once
opened, it remains displayed.

2-4 SOC



Debugging and Evaluation

GECEE - o) & 0w e Gl

Fie Zmrch  Fooceoos Vs |
Loaal [ ‘—,

Download an image to the Flash
Lo Fezmee memory of the processor

o

Tewih  Prooe=or
e
Meraary

r T w T

[ rdovsad i eruest v g
[rmpar Fareap

Exi

Figure 1. File and Search Menu, and their corresponding Toolbar.

Setting a breakpoint

1. Select Reload Current Image

2.Select Go to reach the first breakpoint, set by default at the beginning of
function main() and indicated by a red disc. You can see the source file
dhry_1.c with a breakpoint and the current position indicated at line number
87.

3. Scroll down through the source file until line number 159 is visible. This is a
call to Proc_4(), and is inside the loop to be executed the number of times

you specify.
3.1 Alternatively, you may use Search in Source by Search string set as

“Proc_4()”, as shown in Figure 2.
TR 1]
..... i

froessc  |[ARMTT L
R P FTET sl |

Eewh drkng SRR =

Siarh dinkrs [ B |
1 Bkh, bl s |

I akch g = fiowm

[ Epa

(CHJER|

Figure 2. Search in Source.

4.Right-click on line 159 to position the cursor there and display the pop-up
menu, and select Toggle Breakpoint (or left-click on the line and press F9,
or double-click in the margin next to the line).
4.1 Another red disc indicates that you have set a second breakpoint.

SOC 2-5



Debugging and Evaluation

154
155
156
157
158
1539
1e0
LEL
1E2
13
1Ed
1E5S
LEE
1E7
LEB
1LE89
1o
171
172
173

4]

153

far

ganditf

grum Flrh E RO D | _ | B p sl hrpuardd e |

|

{Run_Indax = 1) Run_Indaw <= Hunbar OF_R

Pracs Bk
Proc_ 46|
f* h_1 Bk |l @10k = "B, B
Int_1_Loe  Feppigbods L |
Int_Z_Loe
atespy (B HE PROTRAM, Z'H
Enun_Laco [ R ra—
Hoal &lal | Lo, Bte 2 Lac
f* Baol s Broscntion Conies]
whila (In RSNy =3 #* loop bad
: ek .
Int_3 L Wah. - Int_2_ Loz
£ In
Brac 7 Loz, &Int_3_Lac
f* In
Int_1 L+ Freparias =

Ll -2

Figure 3. Set Breakpoint.

5.To edit the details of the new breakpoint, select Breakpoints from the
System Views menu (Figure 4). The breakpoints pane is displayed (Figure

5).

5.1 Double-click on the line in the breakpoints pane that describes the new
breakpoint, or right-click on it and select Properties (Figure 5), to
display a Breakpoint Properties dialog.

5.2 Enter 750 in the out of field in the Conditions box, as shown in Figure
6. This is the number of times execution has to arrive at the breakpoint

to trigger it.
5.3 Click OK.

tmen Ve B Oiiow ML [ A[@E QA
¥ Corbal Maninr P 1T
Ble gk ABE
» Mkl ABE
Bresfpodnk ARrE
Padohpadak
W Dyl AWy e/
Corurasd Lra | il
Cebngper tnisrsds PN Y]

Figure 4. System View Menu and its corresponding Toolbar.

2-6

SOC



Debugging and Evaluation

ra grwe. Pl B0 et B srplediiirseneysl ey 1.0

160 j+ cn 1 4 M Clok
i -
151 Int 1 Lo :
- " Dnlen
162 Int_2_Loc @ paln
153 atropy (B o HE DROC
164 Enum_Loo = ke
1G5 Bool Glob @ Relmsh Lo, ©
1EE D |
Brsrpams Fleetd seithin putin wiebire
State Fraces,.. | Position # K livesr o i
. ARMT.. My Posjectz e 041 FO
- = Tkt |

il j il

Figure 5. Breakpoints pane (the lower window).

[Emapam Froperie =
:B:;:I:ltn' |_|.EH?[_| --I
e = e Concal |

IHI-| Fosotad =] | O Halp |
B [
e [

o
o oot [l T}—

whan ||

. Zmbm i

F Eralld i~ AEM

[~ Berler  Thak
HW weID | i° huiggs
 hction

= Hmak

" log Taes |

Figure 6. Setting breakpoint details.

6. Press F5 (Go) to resume execution, and enter the smaller number of 5000
this time for the number of runs required.
6.1 Execution stops when the 750" time your new breakpoint is reached.

7.Select Variables from the Processor Views menu (Figure 7) to check
progress. Reposition or resize the window if necessary.
7.1 Click the Local tab and look for the Run_Index variable. Its value is
shown as Ox2EE (hexadecimal).

SOC 2-7



Debugging and Evaluation

7.2 Right-click on the variable so that it is selected and a pop-up menu
appears (Figure 8). Select Format — Decimal and the value is now

displayed as 750 (decimal).

Prscewar Feas Sy Virer E || = | jaf=y Bl

Beghiers CiltE
HRach CHlkE
Farukle: ClkF
Einchirura Cidi 1
Harere CiliH

Lrw Lavul Spmbody ABE
Cermre Charral  ZidiH

Coperds CuliH
Doy D
el Cilel

Figure 7. Processor View Menu and its corresponding Toolbar.

AFRMIT_] - Varikles
locdl | dlckal | Che |

| Varliabla Value
Th_TInd=x variable nct u=ed
H-Enum_Lac 0l
Int_1 Lac Qe OOQ0000S
Int_2_Las wariable net curr

Int_3_Lac e Q000007
Hunksrc Of Runs D000 36

1] "DEEYETOHE PI

- I :.
-Gy A T e B [#1] “DHEYSTONE FI
ET - -
Losssies Tos Hscmary
]
Bhaa
Fafrarh
i s
TRt o
SwlEm W b (]
Taki Fleal stkn man +reow :muh“
| Fegitn ¥
v e dockmg —
[Hate Hila Q-Fomead Fllua
. e F
e W T TR

Figure 8. Pop-up menu for Local variable in Processor View.

8.Press F5 to resume execution, and the value of the Run Index local
variable changes to 1500. It is now (red) colored to show that its value has
changed since the previous display.

9.Press F5 repeatedly until the value of Run_Index reaches the highest
multiple of 750 (1500=»2250=>3000=>»3750=>4500) before exceeding your
specified number of runs, then once more to allow the program to complete
execution.

10.Close down the Breakpoints system view, either by right-clicking and
selecting Close or by clicking on the Close button in the title bar if the view
IS not docked.

2-8 SOC



Debugging and Evaluation

Setting a watchpoint

1. Select Reload Current Image

2. Select Go to reach the first breakpoint, set by default at the beginning of
function main().

3. Select Go to continue execution.

4.When you are prompted for the number of runs to execute, enter 770.
Execution continues until it reaches the breakpoint at line 159 for the 750™
time. This is the breakpoint you defined in last section.

5. Select Watchpoints from the System Views menu/toolbar (Figure 4), right-
click in the Watchpoints system view (Figure 9), and select Add to display
the Watchpoint Properties dialog (Figure 10).

5.1 Enter Run_Index in the Item field in the Watch box.

5.2 Set the out of field in the Conditions box to a value of 6. This is the
number of times the watched value has to change to trigger the
watchpoint action.

5.3 Click the OK button. Take a look at the changes in Watchpoints view.

157
158 Proc_E{i)

o 153 B e oo (I
10 f* Ch_1 & | Slab ==
151 Int_1 Loo =
1652 Int_2 Loc = Daesdll

(o =
E ) | ttam | ‘Wiarhchil Condhion

Pl within. pein. vindre
¥ Al Jocking

Hid

o

L1l |

Figure 9. Watchpoints from the System Views.

SOC 2-9



Debugging and Evaluation

[Hakiors Froperie 2l
Wik
Eromssd JARMIT_1 'rl
. Cuncal |
S Hal
P
Walching I
Casdirn
L L I—
Gt [0 awlaf [f je—
e |
Sks A
& Eralld [~ Brcaiica i
- e
H s 1D | &
Rehen
= Hmak
™ leg r-u-dl

Figure 10. Watchpoint Properties dialog.

6. Show the Run_Index variable

6.1 If the Variables processor view is not already displayed, select
Variables from the Processor Views menu. Reposition or resize the
window if necessary.

6.2 Click the Local tab and look for the Run_Index variable. The value of
Run_Index is currently 750.

6.3 If it is displayed in hexadecimal notation, right-click on the value and
select Format — Decimal to change the display format to decimal.

7. Press F5 to resume execution.
7.1 Soon the value of the Run_Index local variable changes to 756. It is
now displayed in red to show that its value has changed since the
previous display. Execution stops.

8. Examine any displayed values, then press F5 again to resume execution
and perform six more runs.
8.1 When the value of Run_Index becomes greater than the number of
runs you specified (770 at step four), the test results are displayed in
console window and execution terminates.

9.Delete the watchpoint by right-clicking on its line in the Watchpoints
window and selecting Delete from the pop-up menu, then close down the
Watchpoints system view.

Examining the contents of variables

Two methods of examining the contents of variables are described in this
section:
Contents of variables (variable processor view): This method is simpler
and shows only the contents of the specified variables.

2-10 SOC



Debugging and Evaluation

Addresses and contents of variables (watch processor view): This
method shows the addresses of the variables as well as their contents.

I. Contents of variables

To examine the contents of variables as simply as possible, use the Variables
processor view.

1. Select Reload Current Image

2. Select Go to reach the first breakpoint, set by default at the beginning of
function main().

3. Select Go to continue execution.

4.When you are prompted for the number of runs to execute, enter 760.
Execution continues until it reaches the breakpoint at line 159 for the 750™
time. This is the breakpoint you defined in Setting a breakpoint at the step
of previous section.

5. If the Variables processor view is not already displayed, select Variables
from the Processor Views menu. Reposition or resize the window if
necessary. On the Local tabbed page, look for the Run_Index variable.
Other variables that you can see include Enum Loc, Int 1 Loc,
Int 2 Loc,and Int_3 Loc.

5.1 Right-click in the window, select Properties... — Dec and click OK.
The display is now in decimal format and is similar to that shown in
Figure 11.

(Tarablaa al
AREHT T - Yornbin
bimd | olaked | Cha |

Varishim Tulow

[h_l=des Tarlable oot wied ¥t |optiadsebios)
E'fnom_Lac

Ine_B_Loss ]

1aE_2_Lhie Vailapls HOT CUETERCLY Gfed (§PCimLlEarisn)

Ink_1 Lo ]

Dushisc [f Fur T

Faumy_ Ered e £k 1]
Brre § L [AL] “bERyETodE FRodiiE, 18T FrRdEee
E-Stc I loc [3l] "DERFSTTHE TROGRAE, I'ED STEING™

Figure 11. Examining the contents of variables.

6. Press F10. This is equivalent to selecting Step from the Execute menu
(Figure 12). The program executes a single instruction and stops. Any
values that have changed in the Variables processor view are displayed
in red.

SOC 2-11



Debugging and Evaluation

Foacon Opons Wadte el G e N e O R |
1] F5 ‘—,‘—'

e Ju ]

oep Il

e Tl St

B ToCamar i)

how Brmeamee Coedd

Taggk Boesigea i)
=k e Al Eralpoine

Figure 12. Execute Menu and its corresponding Toolbar.

7.Press F10 repeatedly. As you execute the program, one instruction at a
time, the values of several of the variables change. After you have allowed
approximately 30 program instructions to execute, the value of Run_Index
increases by 1. The program has now completed one further execution of
the Dhrystone test.

8. Explore the various display options available from the pop-up menu (Figure
8). Try some other settings in both the Format submenu and the Default
Display Options dialog displayed when you select Properties....

9.Press F5 to allow the program to complete its execution, then close down
the Variables processor view.

Il. Addresses and contents of variables

An alternative method of examining a variable is to use a Watch processor
view. This allows you to see the memory address of the variable as well as its
value.

1. Select Reload Current Image

2. Select Go to reach the first breakpoint, set by default at the beginning of
function main().

3. Select Go to continue execution.

4.When you are prompted for the number of runs to execute, enter 760.
Execution continues until it reaches the breakpoint at line 159 for the 750"
time.

5. Select Watch from the Processor Views menu (Figure 7) and reposition or
resize the window if necessary. You can specify items to watch on several
tabbed pages. In this example you examine a few variables using the first
tabbed page only.

6. Right-click in the window, and select Add Watch from the pop-up menu
(Figure 13). A Watch dialog appears, prompting you to enter an

2-12 SOC



Debugging and Evaluation

expression. For this example you enter some valid variable names, most of
them preceded by an ampersand (&).
6.1 Enter the first expression in the Expression field (as shown in Figure 14)
by typing:
&Enum_Loc

Enum_Loc is a global variable, so it is stored in RAM at the address
&Enum_Loc.

These names are case-sensitive.

You can also add a variable to the Watch view by selecting it in the
source view using right-clicking and selecting Watch, as show in Figure
15. And then using the Add Watch pop-up menu command. € Try this.

=

LREMTT_1- ach
Tbd |ThE | Tk | Taaé |

Watch Walus

131 Ruch il |
Erprzan: rfEELq:— Al ToVies
Foetss  [ARHTT_I = | Tak=h I
% | ik | ="
B-AEMTT_1 ]
E3-&Erer_Lec [ATFRRFDO Hp |
B Ll Fion:
Dedr | Hark 3] = Pr
™ Garam
Ta
5 Tabl
r Tabd
r~ Tahd
I Tabd

Figure 14. Watch dialog.

SOC 2-13



Debugging and Evaluation

- ARMTT_L - Al e Pl AT
155 for (Faun_lmdsx = 1) o Ondes <= WemBer_0f_Ponsy ++Ron_
136 [}

157

118 Poac_S5iQ]z

158 Frao_diis =l
10 /T [ L Gloh == "A", C& 2 Gloh == "H°, Boal_Gloh ==
161 -

18z Int 2  Eedums F

152 ECH Fiepping Hods ¥ PROGEAN, 2°HB BTRIRG*|J
b TR TogeBegein B

155 Beoal_ ary_3_Lead s
el LT T JELEE

Doy
Thie Epesc b Conmon

Figure 15. Add a variable to the Watch view by selecting it in the source
view.

7.Press the Enter key or click on the Evaluate button. The expression you
entered appears in the Expression column, and its value, being the address
of the variable, appears in the Value column.
7.1 Click on the + symbol to expand the display, and another line appears
showing the contents of the variable in the Value column.
7.2 Enter, in a similar way:
&Int_1 Loc
&Int_3 Loc
Run_Index
7.3 Expand these lines. The result is shown in Figure 16.

Figure 16. Specifying variables to watch.

8. Select all the lines you have entered, as shown in Figure 16, ensure that
Proc is the selected View and Tab1 the selected Tab, then click the Add
To View button and the Close button.

2-14 SOC



Debugging and Evaluation

9. The variables you have specified are now displayed in the Watch
processor view (similar to that shown in Figure 17), and if you expand the
lines you can see both the addresses and the contents of the variables.

9.1 Point to the value displayed for the Run_Index variable and right-click

10.

11.

12.

13.

to display the pop-up menu. Select Format — Decimal so that the
value of Run_Index is displayed as a decimal number.

El
AEHTTIAI - Waich
Tebl [Tabd | TakF §TaMA |
Hazch Vajus

Eulrem Loz [ g p ]
(rafl

aL | LisemE
Fulnt 1 Lac =NIFFrrd
L e IFFFFE-

Figure 17. Watch processor view.

Press F10. This is equivalent to selecting Step from the Execute menu.
The program executes a single instruction and stops. Any values that
have changed in the Watch processor view are displayed in (red )color.

Press F10 repeatedly. As you execute the program, one instruction at a
time, the values of several of the variables change. After you have
allowed approximately 30 program instructions to execute, the value of
Run_Index increases by 1. The program has now completed one further
execution of the Dhrystone test.

Explore the various display options available from the pop-up menu. Try
some other settings in both the Format submenu and the Default Display
Options dialog displayed when you select Properties....

Press F5 to allow the program to complete its execution, then close down
the Variables processor view.

Examining the contents of registers and memory

I. Examining the contents of registers

To examine the contents of registers used by the currently loaded program:
1. Select Reload Current Image

2. Select Go to reach the first breakpoint, set by default at the beginning of
function main().

3. Select Registers from the Processor Views menu (Figure 7) and
reposition or resize the window if necessary.
3.1 The registers are arranged in groups, with only the group names visible

at first. Click on the + symbol of any group name to see the registers of
that group displayed. An example is shown in Figure 18.

SOC 2-15



Debugging and Evaluation

CIT— |
ARMTT_] - Rnpbert
Regimter Wl s
E-Cuccent
—tD OxeO07FEEEDS
~rl Cxe0OODD00A
e She0DDD00O00
—T3 Dx000DD041
—rd C00000000
S CxO0OO0004%E

& 00000007
DuxonnoF400

—rB OxDODDDDZEFB

()
[ LU BUUE £E4
£ D0000Fpszc
— Ox000D00001
rlz Gl oonE400
rla Qo000 0DQ00
—r1d DxdnOonnaoo
—pc DxODO0DESSE0
aful i s RICwqIFT_2WT
EFIo I I
X P, |
Erawe s 5m )
Eabart i
Eipds I
Bcabeos 14 |

Figure 18. Examining contents of registers.

4.Press F10. This is equivalent to selecting Step from the Execute
menu/toolbar (Figure 12). The program executes a single instruction and
stops. Any values that have changed in the Registers processor view are
displayed in red.

5.Press F10 a few more times. As you execute the program, one instruction
at a time, you can see the values of some registers change.
5.1 You soon reach the point when you are prompted, in the Console
processor view, for the number of runs to perform. A very small number
(e.g., 300) is sufficient this time.

6. Explore the format options available from the Registers processor view
pop-up menu.

6.1 If you position the mouse pointer on a selectable line when you right-
click, the line is selected. You can change the display format of
selected lines only.

6.2 You can select multiple lines by holding down the Shift or Ctrl keys
while you click on the relevant lines, in the usual way.

6.3 If you select Add to System from the pop-up menu, the currently
selected register is added to the Registers system view window. This
is particularly useful when your target has multiple processors and
you want to examine the contents of some registers of each processor.
Collecting the registers of interest into a single Registers system view
avoids having to display many separate processor views.

6.4 You can also select Add Register from the pop-up menu of the
Registers system view. This allows you to select registers from any

2-16 SOC



Debugging and Evaluation

processor to add to those being displayed in the Registers processor
view.

7.Press F5 to allow the program to complete its execution, then close down
the Registers processor view.

[I. Examining the contents of memory
To examine the contents of memory used by the currently loaded program:

1. Select Reload Current Image

2. Select Go to reach the first breakpoint, set by default at the beginning of
function main().

3. Select Go to continue execution.

4.When you are prompted for the number of runs to execute, enter 760.
Execution continues until it reaches the breakpoint at line 159 for the 750™
time.

5. Select Memory from the Processor Views menu (Figure 7) and.
5.1 Addresses and contents of variables on Figure 19 shows that
addresses of interest are in the region of OxO07FFFFDO, so set the Start
address value to, say, 0xO7FFFFO0O.

e o
BEMTT | - e it e 7R l¢—
Teld - o - b it | Todd - - b i | Tl - M- W o || Tl - P - B s |

e FETT] [ L | -] i § 8 ! E J " (] |- P . I MOCLT £
2OTIFFIO0 OO0 4 0 A 1 O0 ¥ I =2 ] E ; T e .
eOTIEFTLD PR B2 1 : - ra s 11 pa W I .l Y f : :
(OTIFTTZ0 1 M FF ET 1 0 m oF & 't 1 np T ;
L OTIEETID0 B ; e = TN a s £ B . o : et - === :
«ITTITTTAD 3 u L 1 AL r T 1 7 r 0 1o A,

a ey r . ‘ - r P % i

__,____
-
T

=) = O i

T KB r . T =|

Figure 19. Examining contents of memory.

6.Press F10 (or Step from the Execute menu). The program executes a
single instruction and stops. Any values that have changed in the Memory
processor view are displayed in red.

7. Press F10 a few more times. As you execute the program, one instruction

at a time, you can see the values stored in several of the memory
addresses change.

SOC 2-17



Debugging and Evaluation

8. Explore the format options available in the Memory processor view pop-
up menu. Size settings appear both on the pop-up menu and in the dialog
displayed when you select Properties... from the pop-up menu.

lll. Locating and changing values and verifying changes
To locate a value (of a variable or string, for example) in memory and change it:

1. Select Reload Current Image

2. Select Go to reach the first breakpoint, set by default at the beginning of
function main().

3. Select Memory from the Search menu (Figure 1). A window shown in

Figure 20 appears.

3.1 Enter 2’ND in the Search for field, set the In range and to addresses
to Ox0 and OxFFFF,

3.2 Select ASCII for the Search string type, and click the Find button. A
Memory processor view opens and shows the contents of an area of
memory, with the string you specified highlighted. Reposition, resize
and/or adjust the resolution of the window if necessary.

To see a display similar to that in Figure 21, You might have to right-
click in the window to display the pop-up menu and set Size to 8 bit
and Format to Hex - No prefix.

3.3 Click Cancel to close Search Memory Window.

erTTEE 13

Boewser  [kRMTI_E = T
gushiar [TW1 =] —

Tt = L'
Emrh tiiag s .,il

L - ] ™ Sl e il Halp |

Figure 20. Search for a string in memory.

T s
L

RRHTE_ | - iy S s [T

Tl - = n-ﬂb_:'.:!.l Pim - B poin s Tabid - Byw - B o | T Brw: P i |

iﬁ.“.l'h-ll o fy | R L] REE; B ’ [ |. i d - 13
Da0EInETEl an | 10 " ik 1] ir 1. L] | 1 TH n re
ail i r T = i Ir =0 i 3 A E sk K T

]
-

&

5

-
-

-

B

m

-

R -
-.I
B
- W

- .
rFe o
-
« &
—)

Figure 21. Search for string in memory (2'ND).

2-18 SOC



Debugging and Evaluation

4.In Memory processor view, the four hexadecimal values highlighted are
32 27 4E 44.
4.1 An example of entering a hexadecimal value: Double-click on the
value 32 and type Ox4E and press Enter. The corresponding change in
ASCII column will be “2’ND” =» “N'ND”.

4.2 An example of entering an ASCII value: Double-click on the value 27
and type "o (a double quote followed by a lowercase letter o) and
press Enter. The corresponding change in ASCII column will be “N’'ND”
= “NoND”.

4.3 An example of entering a decimal value: Double-click on the value 4E
(the one before 44) and type 46 and press Enter. The corresponding
change in ASCII column will be “NoND” = “No.D".

4.4 An example of entering an octal value: Double-click on the value 44
and type 062 and press Enter. The corresponding change in ASCII
column will be “No.D” = “No.2".

5. Press F5 (or Go) to continue execution, and enter a value of, say, 100 when
you are prompted in the Console processor view for the number of runs to
perform.

When the program displays its messages in the Console Window after
completing its tests you can see that one of the lines that in earlier examples
included the text 2’ND STRING now has No.2 STRING instead because of
the change you made.

6. Close AXD and CodeWarrior

2.3.2. Software Quality Measurement

Memory requirement of the program

1. Double click on dhryansi.mcp, and then Make dhryansi.mcp
1.1 A compiling and linking status window would appear to indicate making
progress.
1.2 After finishing compiling and linking, the Errors and Warnings
window would appear, as shown in Figure 22.

SOC 2-19



Debugging and Evaluation

” : '|:| [E 1 warzing lor B Poajctoncg[] E

I

E CmagH coEparant rizar

2| Grdn ED Data ] 11 Dabm Cabreg

E aTam = o imzad LIS0= MAact Totmlr

E 50 T o plil ] ¥Igg Librury Tooimly

E - B O B L D L B o

ig| Crdn ED Dot B Dam 7T Dabm Dabeeg

E TARTE aci o LR C1™Em Grardd Toomly

E - B O B L D L B o

E Tooml B0 SizeiCade & B0 Debwd IRES | I DBD

E Teoml F¥  Size{F¥ Decs + I Cecwml INEEE | LD A

E Teaml RO SizeiCaods # R0 Debtw # FM Deowd INENd | IF. DiMRB)

E - RIS RIS EEEEEEEEEEE SRR
C1 18] Ll_l
-

bt w6, e @

=1
-
EEY - 1

Figure 22. Show Code and Data Size by using -info totals.

2. Select DebugRel Settings from Project Window
2.1 Change the ARM Linker option from —info totals to -info sizes in
Equivalent Command Line, as shown in Figure 23.
2.2 Make the project again and then check the Errors and Warnings
window. A much detailed memory requirement for each object file and
library file is listed.

T 2%
Tarpet
g -
Target Fatwge Cotpel | Cptions | Lovoud | Lintiegs | Bxims |
Accam Paiky Linkbgm Funph wnign
Frudd Fisg ™ Purkal Fil B EY By [ Bepm
Fuxione Srlings " Bungle ] | [ Hagi
Fikt: Blgping " Egatieml [ Epld [
Souwe Tee: ' '
E- Lanpuss Sebirgs Boaberdeanipton e | Cheooss. |
KFM Asmebier - —
LM C Congiler Bpokol defibons | toom_ |
AR o Cawpilen Swwbod | Chocas |
Thisah C Canipier Kikng
Thimah Cid Cangl_ wraskeni Corrasd Lam
El- Linkar L, : < a
FIP Farll.abar o 3
INAEL
.Hlbr :I

Figure 23. DebugRel Settings for ARM Link output

2-20 SOC



Debugging and Evaluation

Profiling

1. After making the project, launch AXD Debugger. Then
1.1 Select File=?Load Image to load image file from
C:\ARMSoC\Lab_02\dhryansi_Data\DebugRel\dhryansi.axf.
1.2 Check the Profile checkbox, as shown in Figure 24.

I xix
L0 Tl [l |_.ILFI-:-'J.|HI| j = 3 = E-

ylhmc ol

L 3 £ ) B T ———
WXEL T IJ.:-:H:u.- (L] ﬂ Ein I
Prum sy
R e e e T A e
{af | LI
'_ Call praph pacdiing ST |"" ke |
Nl paaieg

Figure 24. Load image with Profiling functionality.

1.3 Select Options =» Profiling =» Toggle Profiling if necessary to
ensure that Toggle Profiling is checked in the Profiling submenu of the
Options menu.

1.4 Select Options=»Profiling=®»Clear Collected to clear previous
profiling data if necessary.

1.5 Execute your program (Hit the Go button). Find your source file if
asked, and then Hit Go button again.

1.6 Type 8000 in the Console Window when be asked.

1.6 When the program terminates, select Options = Profiling = Write to
File.

1.7 A Save dialog appears. Enter a file name (e.g., dhryansi) and specify
a directory if necessary. Click the Save button.

1.8 Lunch DOS command line window and change to the directory you
specified in last directory. Type armprof dhryansi.prf under the DOS
command line to view the profiling information. Save the information. It
will be used later.

e You cannot display profiling information in AXD. Use the Profiling
functions on the Options menu to capture profiling information, then use
the armprof command-line tool.

To collect information on a specific part of the execution:
1. Load (or reload) the program with profiling enabled.

SOC 2-21



Debugging and Evaluation

2.0pen the Source Window (Ctrl+S, and then choose dhry 1.c). Set a
breakpoint at the beginning of the region of interest (e.g., start of for loop at
line number 155), and another at the end (e.g., the end of for loop at line
number 199, then a breakpoint icon will be shown at line number 213).

3. Execute the program and type 8000 in the Console Window when be
asked in Console.

3. Execute the program as far as the beginning of the region of interest. Clear
any profiling information already collected by selecting Options =
Profiling = Clear Collected, and ensure that Toggle Profiling is checked.

5. Execute the program as far as the breakpoint at the end of the region of
interest.

6. Select Options = Profiling = Write to File and specify the name of a file
in which to save the profiling information.

7. Compare this result with the one you saved before.

Performance benchmarking

This section is based on ARM Application Note 93: Benchmarking with
ARMulator, March 2002.

I. Cycle counting example: Dhrystone using the ARM7TDMI

1.If necessary, select File=Load Image to load image file from
C:\ARMSoC\Lab_02\dhryansi_Data\DebugRel\dhryansi.axf.

2. Within AXD select Options = Configure Target...

2.1 Select ARMUL as the target and click on the Configure button.

2.2 Select the ARM7TDMI as the processor variant, select the debug
endian as start target endian, and ensure that the check box for
Floating Point Emulation is cleared, then click OK.

2.3 Choose OK in the configuration dialog.

2.4 Click Yes when asked to reload the last image

3. Select Processor Views = Low Level Symbols and locate Proc_6 in the
Low Level Symbols window.
3.1 Right-click on it and select Locate Disassembly.
3.2 Place a breakpoint on this line (Proc_6) in the Disassembly window.

4. Click on the Go button (or press F5) to begin execution, the program will
run to main.
4.1 Click on Go again, the program will run, when prompted, request at
least two runs through Dhrystone. The program will then run to the
breakpoint at Proc_6 and stop.

5. Select System Views = Debugger Internals and click on the Statistics
tab in the Debugger Internals window.
5.1 Right-click in the Statistics pane and select Add New Reference Point.
5.2 Enter a suitable name (e.g., Proc_6 cycle) when prompted and click
on OK.

6. Click on the Go button.

2-22 SOC



Il
1.

2.

Debugging and Evaluation

6.1 When the breakpoint at Proc_6 is reached again, the contents of the
reference point are updated to reflect the number of instructions and
cycles consumed for one iteration of the loop.

6.2 The result shown in Console window also reveals some information
about running the benchmark program

Estimate the execution time
Clear all breakpoints. (Alt+K = Delete All)

Select Options =*Configure Target...then click on the Configure button.

.In ARMulator Configuration window, mark the clock as Emulated and set

Speed as 10MHz

.Reload the executable image
. Click on the Go button.
.When prompted, request 30000 (don’t use 30,000) runs through Dhrystone.

.Check the result on Console window.

The information reveals the Microseconds for one run through
Dhrystone (the smaller the better) and Dhrystones per Second (the larger
the better). Record these values.

.Check internal variable $sys clock, which records the number of

centiseconds since the simulation started.

8.1 To display this value, select System Views =»Debugger
Internals =»Internal Variables)

8.2 You may change the format of $sys_clock to decimal. Record this
value, said sys_time.

.Alternatively, the execution time = Cycle count / Cycle Frequency. As we

set the bus frequency to 10MHz, we can calculate the total execution time =

(total cycle count/ (10x10°)) in second.

9.1 Record the total cycle count shown in the Statistics tab and calculate
its time, said cyc time, by above equation. Then (sys time/100)
should approximate to cyc_time.

10. Reload the executable image, repeat the steps 5~7 except that request

40000 runs through Dhrystone. The results shown on Console window
should be the same that in step 6.

11. Reload the executable image, repeat the steps 2~7 except that set the

Emulated Speed as 20MHz.
11.1 What message is shown on Console window?

12. Repeat the actions at step 11 except that request 60000 runs through

Dhrystone.
12.1 What is the difference between this result and the result at step 7?

SOC 2-23



Debugging and Evaluation

* If the system clock is set to Real-time, then $sys_clock will return actual
time using the host computer’s real-time clock rather than simulated
execution time. This will benchmark the performance of the host
computer!

* Note that entering a speed without specifying units assumes for example
50 assumes 50Hz rather than 50MHz. Speeds given in kHz and GHz are
also acceptable.

lll. Performance estimation using different Memory models

The default setting for the ARMulator is to model a system with 4GB of zero
wait state 32bit memory. However, real systems are unlikely to have such an
ideal memory system! Hence an alternative memory model called mapfile can
be used. The mapfile memory model reads a memory description file called a
map file which describes the type and speed of memory in a simulated system.

* ARMulator accepts a map file of any name. The file must have the
extension .map or .txt for the browse facility to recognize it; however, any
extension may be used if you are entering the path and filename explicitly
in the map file text entry field.

To calculate the number of wait states for each possible type of memory
access, the ARMulator uses the values supplied in the map file and the
clock frequency specified to the model.

For cached cores, the clock frequency specified is the core clock frequency.
The bus clock frequency is calculated by dividing the specified core clock
frequency by the ARMulator constant - MCCFG. The derived bus clock
frequency is used to calculate wait states in cached cores.

* ARMulator constant - MCCFG is specified in install_directory\Bin\*.ami.
Default.ami specifies the processor to use if no other processor is
specified. The default setting in default.ami is MCCFG=3. See ARM®
Developer Suite Debug Target Guide for more information.

In the following steps, we will use armsd.map located at C:\Program
Files\ARM\ADSv1 2\Examples\dhry\ as the map file. This map file describes
a system

00000000 80000000 RAM 4 RW 135/85 135/85
* A section of memory starting at address 0x0

e 0x80000000 bytes in length
* labeled as RAM

2-24 SOC



Debugging and Evaluation

* a 32-bit (4-byte) bus

* read and write access

* read access times of 135ns nonsequential and 85ns sequential
* write access times of 135ns nonsequential and 85ns sequential

1. Clear all breakpoints

2. Select Options =2*Configure Target...then click on the Configure button.
2.1 Mark the clock as Emulated and set Speed as 10MHz
2.2 Specify the Map File through browsing to C:\Program
Files\ARM\ADSv1 2\Examples\dhry\armsd.map

4. Press OK'’s and then Reload the executable image.
5. Click on the Go button.
6. When prompted, request 30,000 runs through Dhrystone.

7.Check the result on Console window.
The information reveals the Microseconds for one run through
Dhrystone (the smaller the better) and Dhrystones per Second (the larger
the better). Record these values and compare with those values you
recorded at step 7 in Section Il. Estimate the execution time.

8. Check internal variable $sys_clock and compare with that you got at step 8
in Section Il. Estimate the execution time. Remember the data format
should be the same, i.e., decimal. The performance should be worse.

9. Read the memory statistics
9.1 Open Command Line Interface Window (ALT+L)
9.2 Enter command di (short form of dbginternal), and press any key (e.g.,
enter) until $memstates are displayed. In this case, only single
memory is used and therefore $memstates[0] is displayed.

IV. Benchmarking cached cores

1. Edit default.ami located at C:\Program Files\ARM\ADSv1 2\Bin\
1.1 If MCCFG#3, set MCCFG=3, quit AXD and launch it again.

2. Select Options =2*Configure Target...then click on the Configure button.
2.1 Select Processor variant as ARM940T
2.2 Mark the clock as Emulated and set Speed as 10MHz
2.3 Specify the memory file through browsing to C:\Program
FilesS\ARM\ADSv1 2\Examples\dhry\armsd.map

3. After the step 2, check the message shown in ARMulator startup banner:

System Output Monitor - RDI Log. An example result is displayed in
Figure 25.

SOC 2-25



Debugging and Evaluation

Chbwxi al

e
RO Lag fowbngLag
Log i

ek ubaio 1.7 B e FDE

Fis syt seeare conl s fubiad weeRar pam

Sofbamn neshad by AAU Lid

SRR B |-cyobes VR C-pagies 10 0RIH FOLE | o s FLEL

Lk e, Seimbuiritng. [ ebosgy Cormind Chireal. 1 HE. 9GH, Muplla. Tive

Fooblar, Tube blme=e [ 1133 53 cpday_sar_ralesconel, Fageishies | il

Tomea PO Cocdslaopsans)

SR RO 18 2 AEYMT ROA Pubdel Dorveidied A0 +1 .2 B il rsded BOE]. Copeghd 2] 4R W Ui 2007
H rEsp rag

[EEEENEN FFEF, 00w, el e FF=l] ' =D P Sall W=l B =0 W5

| 2

Figure 25. ARMulator startup Message.

4. Load or reload
C:\ARMSoC\Lab_02\dhryansi_Data\DebugRel\dhryansi.axf.

5. Click on the Go button.
6. When prompted, request 40000 runs through Dhrystone.

7. When the program is terminated, open Command Line Interface Window
and enter print $statistics. An example result is displayed in Figure 25.

Crimmaid Lis Inbsrfass il
= | Low lodnrias
Delig *pElsT 18rarianies =]
Fatakirtica FErusturs
~ImstrucTionm LIFaE 2 s (i BRI OO O EC I T
LOoEe_Cyokes e L e ARG ) DO BLTHIR0 S
= 1 Cycler madgrm il e [ falnde] kil Cm 2
- B Coclmr anrigred o S TN D08 B0RT 01 BT
A_Cyales whsigTe s o B O DN T 1B
-C_Cprlex mrigrmE D 00 O] [ 5063 60 ] £
Hair_draces [TE= M T | OB ] a0 £k ol [
«Tanal i L d Do B3 (1 D B3 THETCET
~Trua_T&ls Cyclma urmzgaedd D NE O ETTLLE

T"_IFJh'Jn:I . _.J_-I

Figure 26. Brief statistics.

8. Edit default.ami
8.1 For ADS 1.2, set Counters=True after the line setting MCCFG=3;
for ADS 1.1, add Counters=True after the line setting MCCFG.

Choose 8.2a or 8.2b step:

8.2a Select Options=»Configure Target...then click on the Configure
button. Select OK

8.2b Quit AXD and then restart it.

9.0pen Command Line Interface Window and enter print $statistics.
Additional statistics for cached core is displayed, as one example displayed
in Figure 27. Because we do not start the execution of the program, all
values are zero.

2-26 SOC



10.

11.

12.

13.

14.

Debugging and Evaluation

Command Lae Iuipfss =l
Comzmard L lrrius
Belug =princ i FesTi Fcice
L5 L LAE LN ] SLEIFDase
. Inrtrucitiena =naigrad 3 n E06] [0 BOF3 D] D03 [E]
+Cars_Cyclse i grad T il EH0) [} B D D3 el
Instr Caoke Bits s 1ol A0 B o e 0 (e )
«Ins%c Cache Bisses uwmrimed D2 ) O] [0 ) A3 6 [
Inazr Cachs Fills mried Dre<: O CH AR ] o T
Jaca Cachs_Resd Hite unaLmed oy EiCed) ) Eh 3] E i
Jala Cachs Pead B1S5e5 im=lghed [P [T L) DA L] [ E LK [
<Tmis Cachs Weitw Hits =ripnad ic-; 090 ) o050 O] [0 2 1 D
Dara Cachs _Weice _Risssp & 3 e (] [ e CaH R T
Jara Cache_Fills il 1gned L L L L] () [N
.8 Stslls =ri pned <t D03 060 DN B 0] (] E] O
JBmbise ef Cars Clecks el gred ie=r D) ) D2 Te] R ETRI L
o #_Cyoles e red 0 0o (0 B ) B
« B Cycles Lzl gaad et D400 01 D) [ 0 0
« & Cyclea =i el i< D400 0 DR800 [ BRI O
o C_Tpalep LA L el e [0 o) ) ) T 1
IS FNEELES a1 1 etd L PR L) DR LR L3 L
~Takml =t e D-: [0S ] [ 5060 [ BRI
o Tree_Tdie Cpcles SRR ] 0] ) e ) E D
[FERdig 2 |
<] =

Figure 27. Cached core additional statistics.

Click on the Go button.
10.1 Set a breakpoint on the line 158 of the source file, the Proc_5().
10.2 Select System Views =*Debugger Internals 2»Statisticss.

Click on the Go button.

11.1When prompted, check the values at Statistics tab.

11.2Right Click on Statistics tab and select Add New Reference Point.
Enter iter_1 in the pop-up window. The new reference point will
appear with zero values.

11.2 Request 40000 runs through Dhrystone in the Console Window.

When the debugger halts at the breakpoint, check the values of iter 1
and record Total cycle count.

12.1 Add another new reference point, named as iter 2.

12.2 Resume the program.

When the debugger halts at the breakpoint, check the values of iter_2
and record Total cycle count.

12.1 Add another new reference point, named as iter_3.

13.2 Resume the program.

When the debugger halts at the breakpoint, check the values of iter 3

and record Total cycle count.

14.1Clear or disable the breakpoint on the line 158 and resume the
program.

The change of the total cycle of iter_1, iter_2 and iter_3 could be 10281 =
849 = 317. For the first iteration of the loop, the loop instructions and data
would not be held in the cache memory, hence there are many cache misses
and the total cycle is large. After several iterations, the Dhrystone loop will be
held in cache memory and therefore the total cycle for each iteration is
reduced.

SOC 2-27



Debugging and Evaluation

Efficient C programming

1. Edit

a copy of loop.c shown in Figure 28. Build it by using ARM

Executable Image Project template and then record its memory
requirement.

OCoO~NOOUTAWNER

13
14
15
16
17
18
19
20
21
22

#include <stdio.h>

int acc(int n) {
int i; //loop index
int sum=0;

for (i=1; i<=n ;i++)

sum+=i;
return sum;

int main(void) {
int acc val;

acc_val=acc(10);
printf("'%d\n",acc_val);

return O;

Figure 28. loop.c

2. Load the executable image of loop.c into AXD.

2.1
2.2

2.3
2.4
2.5

Open Processor Register View and extend the Current Register.
Select Options =*Configure Target...then click on the Configure
button.

Select Processor variant as ARM7TDMI

Mark the Clock as Real-time

Specify the Memory Map File as No Map File

3. Stepping Mode in Strong Source

3.1

3.2
3.3

3.4
3.5

Right click on Disassembly window and set Stepping Mode in
Strong Source.

Set the format of rO as Decimal.

Step in through the program, check how the argument is passed to
acc(). (r0 is changed to 10)

During the execution of acc(), which registers are used?

Check which register is used to pass result back to main(). (sum is
passed through r0)

4. Click Go button to finish the rest of the program.

5 Reload the image.

2-28

SOC



Debugging and Evaluation

5.1 Set two breakpoints, one on for (i=0; i<=n ;i++) and the other on

return sum;

5.2 Click Go button. When the program halt at breakpoint on for (i=0;

i<=n ;i++), add a new reference point, named as loop time.

5.3 Click Go button again. When the program halt at breakpoint on return

sum, record the Total cycle count of loop_time.

5.4 Click Go button to finish the rest of the program. Record the Total

cycle count of &statistics.

6. Copy loop.c to a new file named as loop_opt.c
6.1 Change the statement for (i=1; i<=n ;i++) to for (i=n; i'=0 ;i--)
6.2 Build it and compare its memory requirement with loop.c

7. Load the executable image of loop opt.c into AXD.
7.1 Repeat step 3 and 4. Compare the results with those of loop.c.
7.2 Repeat step 5. Compare the result with that of loop.c.

2.4.

Optimize 8x8 inverse discrete cosine transform (IDCT) [1] according to ARM’s
architecture. Your deliverable has to include:

1.

Report that describes your idea, result, and improvement. You also need
to explain and analysis the superiority of the optimized design over the
workable one. Summarize your improvement of the memory requirement,
profiling, and statistics in table format.

Compare the result with the method of fixed point and floating point.

State your approaches, key ideas and results clearly and formally, and
avoid redundant description. Your report can be written in Chinese or
English. However, make sure your report is readable. A manual report
won't degrade your score, unless it is scrabbled. Remember to attach
your reference.

Source code of your design and all setting and information required for
regenerating the result shown in your report

2.5.

1.

2.

Explain the approaches you apply to minimize the code size and enhance
the performance of the lotto program according to ARM'’s architecture.
Select or modify the algorithms of the code segments used in your
program to fit to ARM's architecture. By taking constraints of the ARM core
hardware resources into consideration, some algorithms may be more

SOC 2-29



Debugging and Evaluation

suitable for ARM core than others. An example of such consideration can
be found in [2].

3. Create SIMD operations. Though current ARM architecture has no specific
instructions to support single-instruction, multiple-data (SIMD) operation,
certain SIMD operations can be synthesized using a sequence of normal
ARM instructions [2].

4. Use ARM/Thumb mode for different code segments.

5. Compare the advantage and drawback with floating point and fixed point in
embedded system or computing recourse limited system

2.6.

 Debugging skills: ADS Debugger Guide, “ADS Compiler, Linker, and
Utilities Guide”.

*  Profiling: “Application Note 93: Benchmarking with ARMulator”

* Efficient C programming: “Application Note 34: Writing Efficient C for
ARM”

e http://twins.ee.nctu.edu.tw/courses/ip_core_02/index.html

e  http://twins.ee.nctu.edu.tw/courses/ip_core_01/index.html

[1] IEEE standard specifications for the implementations of 8x8 inverse
discrete cosine transform, IEEE Std 1180-1990, March 1991

[2] Tadashi Sakamoto and Tomohiro Hase, “Software JPEG for a 32-bit
MCU with dual issue,” IEEE Transactions on Consumer Electronics, Vol.
44 Issue: 4, Nov. 1998, pp. 1334 -1341.

[3] Alan Lewis and Paul Carpenter, “Optimizing digital video codecs in ARM
cores,” EE Times, Sep. 20, 2001.

[4] http://www.nondot.org/sabre/graphpro/line3.htmli#What

2-30 SOC



