Content s

9. JTAG and MUltI-ICE ..., 0-1
0.1 s 9-1
0.2, s 9-1

9.2.1. ADOUE AXD....iuiiiiricieeieeis s 9-1
9.2.2. MUMIFICE ..ot 9-3
0.3, e ————————————————————— s 9-5
9.3. 1. 9-5
0.4, 9-21
0 5. e ——————————————————— 9-21

JTAG and Multi-ICE

9. JTAG and Multil-CE

9.1.

In this Lab the debugger target is Multi-ICE unit and an ARM Integrator board.
You should have set up the hardware and the software of Multi-ICE unit and
target board. The debugging skills you learn is the same as Lab3 except you
do the debugging tasks with Multi-ICE. You will learn how to start-up the Multi-
ICE server and debug program.

9.2.

9.2.1. About AXD

Debugger introduction:

A debugger is software that enables you to make use of a debug agent in
order to examine and control the execution of software running on a debug
target. ARM support two methods to do this work. One is AXD, the ARM
eXtended Debugger. The other is armsd, the ARM Symbolic Debugger. They
have the same function to debug the selected target. But AXD with GUI
interface, is much easier to use it.

The debugger issues instructions that can:

Load software into memory on the target

Start and stop execution of that software

Display the contents of memory, registers, and variables

Enable you to change stored values.

SOC Lab Material 9-1

JTAG and Multi-ICE

ARM Debugger

AXD

RDI

Remote Debug Interface (RDI)

Target (software) | Target (hardware)
ARMulator : Multi-ICE Angel
RDI | RDI RDI
I Remote_A
Target I ARM ARM
simulated in | |development| |development
software | board board
|

Figure 1 Debugger-Target Interface

Debug target:

Debug target can be classified as software and hardware target. In software
simulation, the expected behavior of the product is simulated by software.
Even though you might run this software on the same computer as the
debugger, it is useful to think of the target as a separate piece of hardware.
They support ARMulator as the software simulation tool.

In hardware simulation, the interfaces can be classified as Multi-ICE and
Angel types. This means that debugger scope and control the hardware
device though Multi-ICE (ARM support) or Real-Monitor (Angel support)
interface, adding logic, and probe.

In our course, we suggest Multi-ICE as the basic interface connected between
hardware and host computer.

Remote debug interface:

The Remote Debug Interface (RDI) is an ARM standard procedural interface
between a debugger and the debug agent (see Figure 1-1 on page 1-6).
RDI gives the debugger a uniform way to communicate with:
e a debug agent running on the host (for example, ARMulator)
e a debug monitor running on ARM-based hardware accessed through a
communication link (for example, Angel)
e a debug agent controlling an ARM processor through hardware debug
support (for example, Multi-ICE).

9-2 SOC Lab Material

JTAG and Multi-ICE

o e e e

il
| | FPC-bmasd debuggoer

I Trmca L= A LE | bt
ETHRA AT P 1 b

ARk

| 1 i
I I s {31 T
Cry-chips Cin—chip - - Cormpesfsebs
[EETT]

e

Targnt aynizsm with ARM-bassd ASFC sl othar compomssnia

Figure 2 Debugging connection

9.2.2. Multi-ICE

What is Multi-ICE?

An interface unit that connects the parallel port of a workstation to the
JTAG interfaces of an ASIC that includes debug and EmbeddedICE capability

Function of Multi-ICE:

1. Debug extensions to the ARM core
2. The EmbeddedICE logic
3. The ICE extension unit

The debug extensions consist of a number of scan chains around the
processor core and some additional signals that are used to control the
behavior of the core for debug purposes:
e BREAKPT: enables external hardware to halt processor execution for
debug purposes. active high
e DBGRQ: is a level-sensitive input that causes the CPU to enter debug
state when the current instruction has completed.
e DBGACK: is an output from the CPU that goes high when the core is in
debug state.

The EmbeddedICE logic is the integrated onchip logic that provides JTAG
debug support for ARM core, which can be accessed through the TAP
controller on the ARM core using the JTAG interface.

SOC Lab Material 9-3

JTAG and Multi-ICE

The ICE Extension Unit(IEU) is a logic block that can be added to the
EmbeddedICE logic when a processor is fabricated.

’E' . Multi-ICE
0 sErer and
‘ E v e
L]
[Inr]
) | Paralal por

~"cabla

] E JTAG Eargped
e D€ plug

.-_.-. . I-::a _-I_
(== LEE? e
.J;::—__ |;| HH:E |:| | 9.- I]|:

Multi-ICE—__ - as |
intertace unit — 7 F |
Sl-wmary o
Power supply JTAG cable .nu B |
. "u i 0 1
]
Target ~
Board

Figure 3 Multi-ICE connection

Feature of Multi-ICE:

For the real time debug, a system may have many different devices
operating at the same time. If they all connect to just one host computer to
control and to trace these devices, it is impossible. So they separate this work
into many computer, and then use an application so called “port mapper” to
synchronize this signal though network connectivity.

9-4 SOC Lab Material

JTAG and Multi-ICE

Oebuggar Debugger Debugger

connecied o conneciod bo connaciad bo
Drvwica 1 Dy 2 Digrvicea n
P hphanrk
al
Aulti-ICE
SR
MAulti-ICE

intariase unit

Figure 4 Debug and Timing synchronization from network connection

9.3.

9.3.1.

The following instructions are based on the demonstration program that runs
the Dhrystone test software. For details of the Dhrystone test program, please
refer to the readme.txt file and the various source files in its subdirectory. (e.g.,
C:\Program Files\ARM\ ADSv1_1\Examples\dhryansi\)

Starting the Multi-ICE server

To start the Multi-ICE server

1. Ensure that:
e The Multi-ICE interface unit is plugged into the workstation
e The Multi-ICE interface unit is plugged into the target JTAG connector
e The target is powered up
e The green power light on the interface unit is glowing brightly
2. Select Start -> Program -> ARM Multi-ICE v2.2 -> Multi-ICE Server.
The software displays the Multi-ICE server window, shown in Figure 1. The
portmap application might also be started and minimized, depending on
the host computer configuration.

SOC Lab Material 9-5

JTAG and Multi-ICE

Bl Yisw

B Caatind Gatiags

v= e 7

Haly

Flonze loed m cocfguraton S or wm Ausc-Configem

Resetuing Multi-ICE bardware

lupet kit | 1

Figure 5Unconfigured Multi-ICE server window

If a dialog box appears informing you that the Multi-ICE hardware cannot

be found, click on OK and recheck the items listed in step 1.

Configure the server. This can usually be done using the Autoconfiguration

command. Select File -> Auto-configure and wait until the server has
examined the target. If the configuration works, the screen looks similar to

Figure 2.

Set AXD Configure Target. Open AXD, and select Options->Configure

Target, and to choose Multi-ICE as target. If Multi-ICE is not listed in the
Target Environment, we must add it the Target Environment.

e
-
gl ’ =p

i

i MHCE =1 @ i [=
TF] Desktep =l 5
ail frlp Compear
= 3t Flopoe 14 EE |
e |
] Pragiam Fiez TS |
Bl e |
=1 Femovable Dik D) =
: ; ues |
File pame: MutiCE di Open I £ I
Fin_s-.-:lr_@.ui: 1Dz [=l Lance|
6. e | Cavicel |
9-6 SOC Lab Material

JTAG and Multi-ICE

R M EESm [
Bl Muw S Ceabiol Grmign Belp
vz o 1)
Hukio ~Setected TAP Configershon
[Te7 0
-—p- L
Fr— ing Hulti-I10E herdware
Fepmtting Hulti-ICE herdmame
lepest bits .

Figure 6 Multi-ICE server window configured for an ARM920T

You can select Settings -> Start-up Options and click Auto-Configure in
the Start-up Configuration box. This option automatically creates a
configuration files naming all devices found as described in Aut omati ¢ devi

c onf i gvhengou stawt Multi-ICE server next time.

Perform a variety of debugging tasks

1. Start CodeWarrior IDE.
2. Select File > New to create a new project.
(1) Select ARM Executable Image under the Project stationary.
(2) Click the Set... button next to the Location field.
(3) Navigate to the directory where you want to save the project and enter
a project name, for example My_Project. This lab uses this directory
C:\My Documents\ARMLAB\<your id no.>\My_Project

SOC Lab Material 9-7

JTAG and Multi-ICE

[4 bt b daam o AR Doy B e E
Bl Lit Yew ZJmnk Foml [eing Mdew iy

L B LR S

. i
B and O Film - Tribll

[T Frugeri e

' EEFaed

il In -

I b AR T L e

T!_ -|:|::-. s b ARSI s T e
F

L i) Frapy

Pap S

[-

Figure 7 New dialog

3. Adding source files to the project.
(1) Copy files dhry.h, dhry_1.c, and dhry_2.c to your My_Project directory.
(2) Select Project > Add Files...
(3) Navigate to your My_Project directory and Shift-click on dhry_1.c and
dhry_2.c.
(4) Click Open. Then Add all files to targets.

X
444 files to targets:
Targets
v DiebugRel -
[¥ Releas T
¥ Debug
|
0K | Comal |

Figure 8 Add files to target dialog box

4. Configuring the project build targets
(1) Click the DebugRel Settings button. A DebugRel Settings window
appears.

9-8 SOC Lab Material

JTAG and Multi-ICE

Fou b By | | Lt Pl | g T ||

L J

Figure 9 DebugRel Settings

(2) Click the ARM C Compiler entry in the Target Settings Panels.

(3) Click Preprocessor tab. Type MSC CLOCK into the text field
beneath the List of #DEFINEs and click Add to define the
MSC_CLOCK. The Equivalent Command Line text box displays the
result.

(4) Click Apply to apply your changes.

CENEETTEN———— 00 b iET|

T ek Senna [ATFCS | Wasnings | Runss | Dobug'Oi. Frap—
Lossi o FDEFHE

e 1, THRE L g
AECET feh - T

T ' S

184 Fasast =L Mt LERC AR
Al || == —>
e

Figure 10 MSC_CLOCK setting

(5) Click on the Debug/Opt. Select the For time. Click Apply to apply
your settings.

SOC Lab Material 9-9

JTAG and Multi-ICE

{ @ DebugRel ¢ 2| x|
B Tarzet Bettings Panels R AR € Compilex
= Target “ i
. Target Settings =l I Warnings I Errors Debugf Opt | Praprocessor | Code Gen | E 4 | —
- heces: Pathe —
. Build Extraz :
. Bntime Settings 2 gemeration
- File Mappings wor symbols
- Bouree Trees : ;
. ARM Tarset iline functions
= Language Settings
. ARM fssembler Crptimization Criterion
N AR C Compiler bug view) " For space
o ARM C++ Compiler : ;
v Thumb C Compiler — view, good code) & For time «———
Thurmb C++ Compi... ievr, best code)
= Linker
. ARM Linker e
“ ARM fromELF TEAACOAT TAST T o =il | 2
= Editor - | »
Factory Settings Fevert Import Panel... | Export Panel. .. |
ok | Caa | zpy |

Figure 11 ARM C Compiler Panel

(6) Click the Current Target drop-down list and select Release and
debug form.

(7) Apply the steps you followed above to define MSC_CLOCK the
Release and debug form build target.

5. Building the project
(1) Hit the Make button to compile and link the project.
(2) A compiling and linking status windows would appear to indicate
making progress
(3) Atter finishing compiling and linking, a result message windows would
appear. Check for errors and warnings

ﬂ £] | S ——] T | H_lil

| & Cubagd = &

P | pamh Dol | e ||

LLLN

FlF

(i

N

i
HEES 58 6 665 8

Figure 12 Make the Project

9-10 SOC Lab Material

JTAG and Multi-ICE

6. Debugging the project
(1) Hit the Debug button to call the AXD debugger to debug and run
images built from the CodeWarrior IDE. A blue arrow indicates the
current execution point.

Tems e b
LTIy ——

P14 Wi o A7 =17 B i mreshes B e ey - ST d MR 3 - rremes e rhee -
PP Fvainrai e (R |- e piy = T e T —— e W i —"r (——"
gk P LS ALH 213] sy o' Sk § i 75

.uiliu.lru TS i BEF§ g < Ll 9998 (O

a |

1 M. e 19 Lot B b bl R s

Figure 13 Debug the Project

(2) Select Execute > Go. Execution stops at the beginning of the function
main(), where a breakpoint is set by default.

Tl-*-_'lll 1 ‘:.-.. || [FT [-.' i

1
i
T ant EEblm Cesldl
T4 JEEmma
T
e AT mEln progréam, coiterpoads Lo precediirss e L
7 i+ muln arel prec_{I L che ada serslan &
ﬁ TH '

T e _Fifoy Ime_L L=z
BE IEG e _Faifey Int 2 L=zt
&} one_Fifiy Iok_A_Leoi
E2 EEG chat Ch_TAdwEs
B3 BT TEELan Eros_Eoo;
Ld acr_1d gtr_ L Laoi
4] Gtrc_J0 L o]
BB IEG imt Run_Indax
1] A Livt T T R
1]
(5] % Inicializations =F
Fi
Fl Waxt_Peo_Glob = jRec Foirtss) mallsc [mizeod [Aec Typ-l-lll -
- [T e ™ P - N 3 i el e,

il -l 2

by 2

AR BT bAadibs Senss AT o1 2 |Vialid imimmbees B Amaching o .-.nwzm ﬂmt B v lngrawm mll'.lllud-dm
APt R backale Saraer ALDS 1.2 [Beiid rmmber #E] CF 15, \CHMMBE -5 Cenmric!, ‘THEMEE -5 Flmps', CHEMEE -5 infsmrupt Cominadl
AR RDH 151 = ASYRG FDI Pramosl Cerss o &S w1 2 [Peiild e S0 Copyrighl (2) ARG Uasived 2180

.-.Tuum-:-F'..-:-.iqP..m1m:5| Crupyringet =) AFS | -nm?-mp =]
* ¥
Pz Hal, s B e 70, 0 [B, WRMRZOT_B Ml Traimctand

Figure 14 Breakpoint set inside loop

SOC Lab Material 9-11

JTAG and Multi-ICE

(3) Select Execute > Go. You are prompted, in the Console processor
view, form the number of runs through the benchmark that you want
performed. Enter 8000.

AFRMINT 0 - Conanle

it

Dhryesting # Tssrk, Verslom 2,1 [Lamgusg .,J

Progras comptled wathouk "registar® stbcibuks

|:|h”l glve tiw mumbes of fuas thesugh the bBancEsackc BODD €— _Ij
i '

Figure 15 Input benchmark

(4) Select File > Reload Current Image to repeat the execution of the
program.

7. Setting a breakpoint
(1) Select File > Reload current Image.
(2) Select Execute > Go to reach the first breakpoint, set by default at
the beginning of the function main().
(3) Right-click on line 150 to position the cursor there and display the
pop-up menu and select Toggle Breakpoint. You have set a second

breakpoint.
CraENLAEGS] HAL -h_:-ul-:l_J:__I i _||:|| :l
140 Bagin Time = Lima { |Lang =1 03
141 Fandlir
L4 #a1fdaf HEC CLOCK
143 Begin Tims = =lack()
I144 Fendlf
143
Las Eotf (Buh Ihdax = 1) Buh Ihdex €= Mumbst OF Fuhsg *+EUl_IndsH)
147 i
L48 —]
L4 Peoe_ 5414
— W 15D B peec sl

141 * ch_1_Glok == Fx h_f Globh == mool_gloh == Erm
152 Ent 1 Les = 2
153 Int_2_Laa = 33
15§ whropy [BEr_2_lo=, “CHETETONE PROGEAM; 2'HO STRIRGT] ;
155 Enis Loz = Tdent 2§
156 Bool _@lob = | Bunc_Z {#Fte_1_Laoa, #te_Z_Loahl
3T /" Hoel Eiok == ")
158 whila (LRE_1 Lo ThE_2 Le2) M Loop bady axecidled chee *
LES -
& _—

4| L1

Figure 16 Set Breakpoint

(4) Select System Views > Breakpoints. The breakpoint pane is

displayed.
Bk
e Preopssy Posion Cownt Cresfition Size | Ausien
L] ARMEANT 0 My FProjeoiasf - diey_1.0: 78 [[OD0AEA] G Fafin Break
L] AEWECIT 0 My Projpciass @ diey 1o 150 [000684ER] 0750 fuiin Break

9-12 SOC Lab Material

JTAG and Multi-ICE

Figure 17 Breakpoints pane

(5) Right-click on the second breakpoint and select Properties. Enter 750
in the out of...field in the Condition group.
(6) Click OK.

Eooaipamt Froperties 2 x|
Brwak At
Procemer [ARMO20T [=] |II
r 5:1:':. .i:\-Mﬂ.rH ":H.BCEI.
Inaee [e =l D NO4ES ; Halp |
e [=
L |
Coadinoa
Ceinl [l:l ot af |'-'53' :l G —
whisn |
S S
¥ Baaklsd r a5y
= | r Thumb
HAE 1o [D I T Autegate
Action
= Reeak
MLog Ten |

Figure 18 Setting breakpoint details

(7) Press F5 to resume execution, and enter the smaller number of 5000
this time for the number of runs required. Execution stops the 750"
time your new breakpoint is reached.

(8) Select Processor Views > Variables. Click the Local tab and look for
the Run_Index variable. Right-click on the variable and select Format
> Decimal and the value is now displayed as 750 (decimal).

SOC Lab Material 9-13

JTAG and Multi-ICE

ARMOZOT 0 - Variables
Local |Global | s |

Variable Walus

Ch_Index Variable not uzed yet [(optimizatiosn)
HEnum_ Loc 0=01

Int_1 Loc 0x00000005

Int_Z2 Lo Variable not currently u=sed (optimizatien]

Int_3 Loc Ox00000007

Number OF HEB

RFun_Index 750
m (I "DRRYSTONE PEOGEAM, 1°5T STRINGT
E'EL:_E_LL'-L' [31] "DHRYSTOWE FPROGRAM, 2°'HD ETRING™

Figure 19 Examining the contents of variable

(9) Press F5 to resume execution, and the value of the Run_Index local

variable changes to 1500.

(10) Close down the Breakpoints system view.

ARMUO20T 0 - Variables
Local |Global | Qs |

Variable Walus I
Ch_Index Variable not used yet (optimirzation)
EHEnum_ Loc 0x01
Int_1 Lec 0x00000005
Int 2 Loc Variable not currently used [optimization]
Int_3 Loo Ox00000007
Hum e EH
Eun_Index 1500
mﬁ: [3L "DHRYSTONE PROGRAM, 1'S8T STRINGT
EEL:_E_LL'--: [31] "DHRYSTOWE FROGRAM, Z2°"ND ETRING™

Figure 20 Examining the contents of variable

8. Setting a watchpoint
(1) Select File > Reload current Image.
(2) Select Execute > Go to reach the first breakpoint, set by default at

the beginning of the function main().

(3) Select Execute > Go to continue execution.
(4) Enter 770 when you are prompted for the number of runs to execute.

Execution continues until it reached the breakpoint at line 150 for
750" time. This is the breakpoint you defined in Setting a breakpoint
in step 7.

(5) Select System Views > Watchpoints, right-click in the Watchpoints

system view, and select Add to display the Watchpoint Properties

9-14

SOC Lab Material

JTAG and Multi-ICE

dialog.

(6) Set Run_Index in the Watch group and set the out of...field in the
Condition group to value of 6.

(oETEE——— 2=
el
| o
e s]
ben: [_Tadea | — 4IH |
¥
Wk |

~ A S
F Easklad I Potea Sisa r
g 1 =l
HW e I | &3
e
& Fiesk
rleg Tantr |

Figure 21 Setting a watchpoint

(7) Select Processor Views > Variables. Click the Local tab and look for
the Run_Index variable.

(8) Press F5 to resume execution. Soon the value of the Run_Index local
variable changes to 756.

ARMS20T 0 - Variables
Local |Global | Class |

Variable Value

Ch_Index variable not currently used (eptimization)
{H-Enum_Laoc OJx01

Int_l Loc 000000005

Int_2_ Loc Jx0000000D

Int_3_Loc 0x00000007

E-gtr 1 3L HEYSTONE PROGRAM, 1'ST BTRING"
E-gtr 2 Loc [21] "DHREYSTOME PROGRAM, Z"HD BTRIMG"
ul | *

Figure 22 Examining the contents of variable

(9) Delete the Watchpoint and breakpoint you set up for this example, by

SOC Lab Material 9-15

JTAG and Multi-ICE

right-clicking on its line in the Watchpoints and breakpoints window
and select Delete from the pop-up menu, then close down them.

9. Examining the contents of variables
Two methods of examining the contents of variables are described:
(1) Contents of variables (variable processor view):
This method is simpler and shows the contents of the specified
variables.
(2) Addresses and contents of variables (watch processor view):
This method shows the addresses of the variables as well as their
contents.

10. Contents of variables

(1) Select File > Reload current Image.

(2) Select Execute > Go to reach the first breakpoint, set by default at
the beginning of the function main().

(3) Select Execute > Go to continue execution.

(4) Select Processor Views > Variables

(5) Select Properties > Dec and click OK. The display is now similar to
that shown below.

ol L
AREEET N - Ve bles
Local [eatabal | Clum

Yariabls Wml ivs

oh Inad=x Variabls pot ussd yet (optimication)
EEnum Lo 1

Imt 1 Lo

_' variabls ot currenbl) dmsd lcpbtimlizIsaticm)

Imt 3 Loc T

Mumbar OF Runs 7640

Rum_Indaes 750
H-Rtr_1_Loc [31] "DHEYHATONE EROGRAM; L1°BT STRING™
Hoer 2 L [31] "DHRYAOTOHE PROGAAM, 2'ND STRING"

Figure 23 Examining the contents of variable

11.Addresses and contents of variables

(1) Select File > Reload current Image.

(2) Select Execute > Go to reach the first breakpoint, set by default at
the beginning of the function main().

(3) Select Execute > Go to continue execution.

(4) Enter 760 when you are prompted for the number of runs to execute.
Execution continues until it reached the breakpoint at line 150 for
750th time. This is the breakpoint you defined in Setting a breakpoint.

(5) Select Processor Views > Watch.

(6) Right-click in the window, and select Add Watch from the pop-up
menu.

(7) Enter the first expression in the expression by typing &Enum_Loc.

(8) Press the Return key or clock on the Evaluate button.

(9) Enter, in the similar way:

9-16 SOC Lab Material

JTAG and Multi-ICE

&int_1 Loc
&Int_3 Loc
Run_Index
(10) Ensure that Proc and Tab1l are selected, then Click the Add to View

button and the Close button

o 2]
Expression: [F.'r:u_L:.dex Add Ta vm:ﬂ__

Processor: |ARMSEOT O =] Evaluiie

| Evlue |
Expresicn | Valag | Clese I
o p I

BARMSZT O ..}

=Yg
" Proc < ——
I Sysiem

~Tab .
v Tah | G—
|~ Tab 2
|~ Tab 3
|7 Talb o

Figure 24 Specifying variable to watch

(11) The variables you have specified are now displayed in the Watch
processor view, and if you expand the lines you can see both the
addresses and the contents of the variables.

Gk]
ARMENT 0 - Wakch
Tl |rkd |Tek3 | Takd |
Batah Valua
BcEnus_ Lo OxO007FEDO
- [IFH !
Ecret 1 L 00007 FGe
s Ix00O00005
E-§Iok S Loc Ix0007FFOd
i Ox0DO0DDDT
Run_Index UxOUUUIZEE

Figure 25Examining contents of registers

SOC Lab Material 9-17

JTAG and Multi-ICE

(12) Press F10. The program executes a single instruction and stops.

(13) Press F10 a few more times. As you execute the program, one
instruction at a time, you can see the values of several of the registers
change.

(14) Press F5 to allow the program to complete its execution, the close
down the registers processor view.

12. Examining the contents of registers
(1) Select File > Reload current Image.
(2) Select Execute > Go to reach the first breakpoint, set by default at
the beginning of the function main().
(3) Select Processor > Registers.

ETTT— 5
ARLSEAT_0 - Repaiam
Reglater Walus k-
BCurrent i g p
B-llzerf Bystan . |
—el Ixr0DOCEAC
rl Ix00DTEEED
"] N=00000z00
3 aldelififafaluh]
ES I=id011cis
5 O=0000AERD
L: nlodudififadalidigi]
-7 Nx=00000m00
Dzoopoooon
Y jxd AGZE 455
10 I=p00047TdE 53
rll OxDOooomon
el i3 0 OG G0
—El3 O=Z04DZALD
rl% =09 50004/
e Nx=000023E4
= nZCwgLEL _BWC
Erzg i
B-Im0 -
B-5vC
Ll ERCES
B-Undat vl
B-CiRls e =|

Figure 26 Examining contents of registers

(4) Press F10. The program executes a single instruction and stops.

(5) Press F10 a few more times. As you execute the program, one
instruction at a time, you can see the values of several of the registers
change.

(6) Press F5 to allow the program to complete its execution, the close
down the registers processor view.

13.Examining the contents of memory
(1) Select File > Reload current Image.
(2) Select Execute > Go to reach the first breakpoint, set by default at
the beginning of the function main().
(3) Select Execute > Go to continue execution.
(4) Enter 760 when you are prompted for the number of runs to execute.

9-18 SOC Lab Material

JTAG and Multi-ICE

Execution continues until it reached the breakpoint at line 150 for
750th time. This is the breakpoint you defined in Setting a breakpoint.
(5) Select Processor Views > Memory.
(6) Setthe Start address value to 0x07FFFFOO0.

s — L |
T eiar
Talil - Mem - N pmdia || ok - oo - 3 ThE - Hem - M poin |
ELE i] 1] | = 3 L] L -} 1 L]] - k = 4 & I ABTLT ﬂ
=ITFIFFE .] [E 2 T Lk | EF L | 3 A A Fi Iy o
w17TFIFF1 d0 1 i Fi I F 2 EA FI
=ITFINTR ' = 12 T = L 11 E il E i 11
=1 TFITIIO 4 E3 ol FE OiF EE 1] L] i oid T 1 LE [
I=ITFIFF A0 B4 L] i i [J I EE = ‘ 4] e r B, e F L
=ETFIFFI0 1 11 Or T Lt E L L] LE I m I I
lTFTEIE 10 Tl L n E 1A L] D&,] Al T -
I=I7FEErY I 11 I A I 1 ET (&]
1=ITFIFFE i =] Fd i Tl B BE
=1TERIEF? i B2 FE] FI T EI
=1TETEEA . 1 ER ¢] [L] i L FI i
=1TFIErS Fr Er F 1 e Er F F.
TPEEC or r T ¥ FA ¥ r w

Figure 27 Examining contents of memory

(7) Press F10. The program executes a single instruction and stops.

(8) Press F10 a few more times. As you execute the program, one
instruction at a time, you can see the values of several of the memory
addresses change.

(9) Press F5 to allow the program to complete its execution, the close
down the Memory processor view.

14.Locating and changing values and verifying changes
(1) Select File > Reload current Image.
(2) Select Execute > Go to reach the first breakpoint, set by default at
the beginning of the function main().
(3) Select Search > Memory.
(4) Enter 2’ND in the Search for field, set the In range and to addresses
0x0 and OxFFFF, and select ASCII for Search string type.

Zearch Memory _?J .ii

Brocesser: | ARMO20T 0

S
Search for: |2'ND ll
In range iU:-:U— to W
Zearch string type

& ASCII " Hewadecimal Help

Find Mext

Cancal

4d.

Figure 28 Searching for a string in memory

(5) Click the Cancel button to close the Search Memory dialog.
(6) The four hexadecimal values highlighted are 32 27 4E 44.

SOC Lab Material 9-19

JTAG and Multi-ICE

? =
APHET S Lhewa Sty [o200 o | |

Tkl - et W profi | T - Hom - s oo | Tl - Ehe - B rofioe| Tt - Ham - i o |

| T s I [et o e L T = . T [TR L R e TloE [AL W A MACI =N

faopgopean 9= ga o so 2z o 4r a4t o2 41 oqan == 20 - ¢ o |
3 i

x |

g:\ll.-:l]!lﬂ-'\-'? 1 = LT L] 4l a7 m oo 1] 1] L]

[
aDIOBEAD 28 s] 1] L] m oo =4 | & ELC: oE an LR i 2 BD EZ

ad0IOBEED &8 1] L] L or a1 L] ED L] OE L] [& 24 0] BD [L e N R

aO0I0BECD 0% m AL Il o 4] L] Kl L] 1] L1 [=] T e (¢) [1] 5 = bl ey
s'::l“':lﬂ!ﬂ'.l:l = 2] L] 15 ol an B KX B 112 an = a4 m -2 El Biisse oo cally
N DI0BEED FI m rr L] 11] in] Kl c 1h r [=] an an L] [L] S ddra g paeyy s

xIDI0BEFD &8 k| 0 s L | FE r | 4] 1.1 oE A [=) gl ra T [1] 40 bdpn s R
-rf.lll\.".l!ﬂ!l'“.":l a1 L] L]) ol an i E= iL nE =1i] N LB e on A4 ANy =g pi B 2y

A00IOETID 42 19 AD @3 0f G0 M EL AF P FF B 80 18 DD B Ch.icciaess
20 1 o i3 1 i
20030 ETID A2 B £ m

00N ENn ae L | i 14

Figure 29 String in memory

(7) Double-click on the value 32 and type Ox4E and press Return
(8) Double-click on the value 27 and type “o and press Return
(9) Double-click on the value 4E and type 46 and press Return
(10) Double-click on the value 44 and type 062 and press Return

AERTAT O L Sl plidam *
Fabl - Hhr - B prntin | Tk - 2o - W i | Tk - B Bl ol | T~ s - Mo e |
| [TT T R WA S Y 0 T T T 1 O

W DI0E20n &2 0 in0 =2 ir L =2 1 1] IC
mOansEen 53 54 AR 1 BE 1T m o] | an a0
mOOEELh 8l an 0 {1 | Lk an L] £l an 10

i'llll'll.ll'".ll! Ak nn o 4] L] 11 L] 4] UL a0

| SULE DT T 20 a0 Kl oy 10 Ri) Kl L) 10

Esopioképh §F 00 %o E5 01 00 M gl &8 a0

_'l--l'll.ll'u:-'m' Fi FF TF EX e Hi T} Eil iz ¥
ANDI0ESFD &4 an in Es Ak FE L1 ER 1] a0
mOI0R70E &1 171] L] El o1 an] ik al aa
afi CIOE7L0 &1 L All Kl 1] 1] &4 il A iR

OEOITER 01 an 1] El Ok an] L& dm 10
OEIGETIN &2 FE H (] 1] aly w {] ae &0
alA0e74l OF an L1 E 1] 1 an Bh 4] L &

1

Figure 30 Changing contents of memory

(11) Press F5 to continue execution, and enter a value of 100 when you
are prompted in the Console processor view for the number of runs to
perform.

AR T U - Covmele |
Int_1_ Loc: 5
ahould b= 5
nt_d_Lec: 13
ahizunld bt 13
T
7
1

nt_J_Lmecr
aheield et

Enum_Locs
should b= 1

Btr 1 Loo: DERTETONE FROZRAM, 1rdT BETRING

mhould be=s DERYETONE FROGE ITQTRING
Atr 2 Lo ODHNYSTONE ERO & RINE
ahould b1 DERTETICOHE FROGRAM, =MT FTRING

aroaeconds Tor ooe run through Dheystons: 25100.0
Phry 5= por B di 10,5

9-20 SOC Lab Material

JTAG and Multi-ICE

Figure 31 Contents display in the console

In this example, the change you made was not permanent, because you did
not alter the source code or the executable image stored in a disk file. You
altered only the temporary copy of the image in the target memory.

9.4.

Write a lotto program that generates N sets of number. The user can specify:
1. Number of the set: N.

2. The numbers must be included in these N sets of number

3. The numbers must not be included in these N sets of number

Note: Numbers cannot be duplicated within the same set of number. In
addition, output numbers within the same set in ascending order.

This exercise lets you familiar with the debugging skills and ARM CodeWarrior
Editor when you try to build the program correct.

9.5.

What's different between ARMulator and MultilCE that we do the debugging
task.

9.6.

® Multi-ICE [DUI_0048F MICE2_ 2 UG]
® AXD and armsd Debuggers Guide [DUI_0066D_AXDDG 2 UG
® Getting Started Guide [DUI_0064D_GSG_UG]

SOC Lab Material 9-21

