

Contents
9. JTAG and Multi-ICE ... 9-1

9.1. 實驗目的 ...9-1
9.2. 實驗原理 ...9-1

9.2.1. About AXD...9-1
9.2.2. Multi-ICE..9-3

9.3. 引導實驗 ...9-5
9.3.1. 實驗步驟 ..9-5

9.4. 實驗要求 ...9-21
9.5. 問題與討論 ..9-21
9.6. 參考文件及網頁...9-21

JTAG and Multi-ICE

SOC Lab Material 9-1

9. JTAG and MultiI-CE

9.1. 實驗目的

In this Lab the debugger target is Multi-ICE unit and an ARM Integrator board.
You should have set up the hardware and the software of Multi-ICE unit and
target board. The debugging skills you learn is the same as Lab3 except you
do the debugging tasks with Multi-ICE. You will learn how to start-up the Multi-
ICE server and debug program.

9.2. 實驗原理

9.2.1. About AXD

Debugger introduction:

A debugger is software that enables you to make use of a debug agent in
order to examine and control the execution of software running on a debug
target. ARM support two methods to do this work. One is AXD, the ARM
eXtended Debugger. The other is armsd, the ARM Symbolic Debugger. They
have the same function to debug the selected target. But AXD with GUI
interface, is much easier to use it.
The debugger issues instructions that can:

 Load software into memory on the target
 Start and stop execution of that software
 Display the contents of memory, registers, and variables
 Enable you to change stored values.

JTAG and Multi-ICE

SOC Lab Material 9-2

Figure 1 Debugger-Target Interface

Debug target:

Debug target can be classified as software and hardware target. In software
simulation, the expected behavior of the product is simulated by software.
Even though you might run this software on the same computer as the
debugger, it is useful to think of the target as a separate piece of hardware.
They support ARMulator as the software simulation tool.
In hardware simulation, the interfaces can be classified as Multi-ICE and
Angel types. This means that debugger scope and control the hardware
device though Multi-ICE (ARM support) or Real-Monitor (Angel support)
interface, adding logic, and probe.
In our course, we suggest Multi-ICE as the basic interface connected between
hardware and host computer.

Remote debug interface:

The Remote Debug Interface (RDI) is an ARM standard procedural interface
between a debugger and the debug agent (see Figure 1-1 on page 1-6).
RDI gives the debugger a uniform way to communicate with:

 a debug agent running on the host (for example, ARMulator)
 a debug monitor running on ARM-based hardware accessed through a

communication link (for example, Angel)
 a debug agent controlling an ARM processor through hardware debug

support (for example, Multi-ICE).

JTAG and Multi-ICE

SOC Lab Material 9-3

Figure 2 Debugging connection

9.2.2. Multi-ICE

What is Multi-ICE?

An interface unit that connects the parallel port of a workstation to the
JTAG interfaces of an ASIC that includes debug and EmbeddedICE capability

Function of Multi-ICE:

1. Debug extensions to the ARM core
2. The EmbeddedICE logic
3. The ICE extension unit

The debug extensions consist of a number of scan chains around the
processor core and some additional signals that are used to control the
behavior of the core for debug purposes:

 BREAKPT: enables external hardware to halt processor execution for
debug purposes. active high

 DBGRQ: is a level-sensitive input that causes the CPU to enter debug
state when the current instruction has completed.

 DBGACK: is an output from the CPU that goes high when the core is in
debug state.

The EmbeddedICE logic is the integrated onchip logic that provides JTAG
debug support for ARM core, which can be accessed through the TAP
controller on the ARM core using the JTAG interface.

JTAG and Multi-ICE

SOC Lab Material 9-4

The ICE Extension Unit(IEU) is a logic block that can be added to the
EmbeddedICE logic when a processor is fabricated.

Figure 3 Multi-ICE connection

Feature of Multi-ICE:

For the real time debug, a system may have many different devices
operating at the same time. If they all connect to just one host computer to
control and to trace these devices, it is impossible. So they separate this work
into many computer, and then use an application so called “port mapper” to
synchronize this signal though network connectivity.

JTAG and Multi-ICE

SOC Lab Material 9-5

Figure 4 Debug and Timing synchronization from network connection

9.3. 引導實驗

9.3.1. 實驗步驟

The following instructions are based on the demonstration program that runs
the Dhrystone test software. For details of the Dhrystone test program, please
refer to the readme.txt file and the various source files in its subdirectory. (e.g.,
C:\Program Files\ARM\ ADSv1_1\Examples\dhryansi\)

Starting the Multi-ICE server

To start the Multi-ICE server

1. Ensure that:

 The Multi-ICE interface unit is plugged into the workstation
 The Multi-ICE interface unit is plugged into the target JTAG connector
 The target is powered up
 The green power light on the interface unit is glowing brightly

2. Select Start -> Program -> ARM Multi-ICE v2.2 -> Multi-ICE Server.
The software displays the Multi-ICE server window, shown in Figure 1. The
portmap application might also be started and minimized, depending on
the host computer configuration.

JTAG and Multi-ICE

SOC Lab Material 9-6

Figure 5Unconfigured Multi-ICE server window

3. If a dialog box appears informing you that the Multi-ICE hardware cannot
be found, click on OK and recheck the items listed in step 1.

4. Configure the server. This can usually be done using the Autoconfiguration
command. Select File -> Auto-configure and wait until the server has
examined the target. If the configuration works, the screen looks similar to
Figure 2.

5. Set AXD Configure Target. Open AXD, and select Options->Configure
Target, and to choose Multi-ICE as target. If Multi-ICE is not listed in the
Target Environment, we must add it the Target Environment.

6.

JTAG and Multi-ICE

SOC Lab Material 9-7

Figure 6 Multi-ICE server window configured for an ARM920T

----------Note----------
You can select Settings -> Start-up Options and click Auto-Configure in
the Start-up Configuration box. This option automatically creates a
configuration files naming all devices found as described in Automatic device
configuration when you start Multi-ICE server next time.

Perform a variety of debugging tasks
1. Start CodeWarrior IDE.
2. Select File > New to create a new project.

(1) Select ARM Executable Image under the Project stationary.
(2) Click the Set… button next to the Location field.
(3) Navigate to the directory where you want to save the project and enter

a project name, for example My_Project. This lab uses this directory
C:\My Documents\ARMLAB\<your id no.>\My_Project

JTAG and Multi-ICE

SOC Lab Material 9-8

Figure 7 New dialog

3. Adding source files to the project.
(1) Copy files dhry.h, dhry_1.c, and dhry_2.c to your My_Project directory.
(2) Select Project > Add Files…
(3) Navigate to your My_Project directory and Shift-click on dhry_1.c and

dhry_2.c.
(4) Click Open. Then Add all files to targets.

Figure 8 Add files to target dialog box

4. Configuring the project build targets
(1) Click the DebugRel Settings button. A DebugRel Settings window

appears.

JTAG and Multi-ICE

SOC Lab Material 9-9

Figure 9 DebugRel Settings

(2) Click the ARM C Compiler entry in the Target Settings Panels.
(3) Click Preprocessor tab. Type MSC_CLOCK into the text field

beneath the List of #DEFINEs and click Add to define the
MSC_CLOCK. The Equivalent Command Line text box displays the
result.

(4) Click Apply to apply your changes.

Figure 10 MSC_CLOCK setting

(5) Click on the Debug/Opt. Select the For time. Click Apply to apply
your settings.

JTAG and Multi-ICE

SOC Lab Material 9-10

Figure 11 ARM C Compiler Panel

(6) Click the Current Target drop-down list and select Release and
debug form.

(7) Apply the steps you followed above to define MSC_CLOCK the
Release and debug form build target.

5. Building the project

(1) Hit the Make button to compile and link the project.
(2) A compiling and linking status windows would appear to indicate

making progress
(3) After finishing compiling and linking, a result message windows would

appear. Check for errors and warnings

Figure 12 Make the Project

JTAG and Multi-ICE

SOC Lab Material 9-11

6. Debugging the project
(1) Hit the Debug button to call the AXD debugger to debug and run

images built from the CodeWarrior IDE. A blue arrow indicates the
current execution point.

Figure 13 Debug the Project

(2) Select Execute > Go. Execution stops at the beginning of the function
main(), where a breakpoint is set by default.

Figure 14 Breakpoint set inside loop

JTAG and Multi-ICE

SOC Lab Material 9-12

(3) Select Execute > Go. You are prompted, in the Console processor
view, form the number of runs through the benchmark that you want
performed. Enter 8000.

Figure 15 Input benchmark

(4) Select File > Reload Current Image to repeat the execution of the
program.

7. Setting a breakpoint

(1) Select File > Reload current Image.
(2) Select Execute > Go to reach the first breakpoint, set by default at

the beginning of the function main().
(3) Right-click on line 150 to position the cursor there and display the

pop-up menu and select Toggle Breakpoint. You have set a second
breakpoint.

Figure 16 Set Breakpoint

(4) Select System Views > Breakpoints. The breakpoint pane is
displayed.

JTAG and Multi-ICE

SOC Lab Material 9-13

Figure 17 Breakpoints pane

(5) Right-click on the second breakpoint and select Properties. Enter 750
in the out of…field in the Condition group.

(6) Click OK.

Figure 18 Setting breakpoint details

(7) Press F5 to resume execution, and enter the smaller number of 5000
this time for the number of runs required. Execution stops the 750th
time your new breakpoint is reached.

(8) Select Processor Views > Variables. Click the Local tab and look for
the Run_Index variable. Right-click on the variable and select Format
> Decimal and the value is now displayed as 750 (decimal).

JTAG and Multi-ICE

SOC Lab Material 9-14

Figure 19 Examining the contents of variable

(9) Press F5 to resume execution, and the value of the Run_Index local
variable changes to 1500.

(10) Close down the Breakpoints system view.

Figure 20 Examining the contents of variable

8. Setting a watchpoint
(1) Select File > Reload current Image.
(2) Select Execute > Go to reach the first breakpoint, set by default at

the beginning of the function main().
(3) Select Execute > Go to continue execution.
(4) Enter 770 when you are prompted for the number of runs to execute.

Execution continues until it reached the breakpoint at line 150 for
750th time. This is the breakpoint you defined in Setting a breakpoint
in step 7.

(5) Select System Views > Watchpoints, right-click in the Watchpoints
system view, and select Add to display the Watchpoint Properties

JTAG and Multi-ICE

SOC Lab Material 9-15

dialog.
(6) Set Run_Index in the Watch group and set the out of…field in the

Condition group to value of 6.

Figure 21 Setting a watchpoint

(7) Select Processor Views > Variables. Click the Local tab and look for
the Run_Index variable.

(8) Press F5 to resume execution. Soon the value of the Run_Index local
variable changes to 756.

Figure 22 Examining the contents of variable

(9) Delete the Watchpoint and breakpoint you set up for this example, by

JTAG and Multi-ICE

SOC Lab Material 9-16

right-clicking on its line in the Watchpoints and breakpoints window
and select Delete from the pop-up menu, then close down them.

9. Examining the contents of variables

Two methods of examining the contents of variables are described:
(1) Contents of variables (variable processor view):

This method is simpler and shows the contents of the specified
variables.

(2) Addresses and contents of variables (watch processor view):
This method shows the addresses of the variables as well as their

contents.

10. Contents of variables

(1) Select File > Reload current Image.
(2) Select Execute > Go to reach the first breakpoint, set by default at

the beginning of the function main().
(3) Select Execute > Go to continue execution.
(4) Select Processor Views > Variables
(5) Select Properties > Dec and click OK. The display is now similar to

that shown below.

Figure 23 Examining the contents of variable

11. Addresses and contents of variables
(1) Select File > Reload current Image.
(2) Select Execute > Go to reach the first breakpoint, set by default at

the beginning of the function main().
(3) Select Execute > Go to continue execution.
(4) Enter 760 when you are prompted for the number of runs to execute.

Execution continues until it reached the breakpoint at line 150 for
750th time. This is the breakpoint you defined in Setting a breakpoint.

(5) Select Processor Views > Watch.
(6) Right-click in the window, and select Add Watch from the pop-up

menu.
(7) Enter the first expression in the expression by typing &Enum_Loc.
(8) Press the Return key or clock on the Evaluate button.
(9) Enter, in the similar way:

JTAG and Multi-ICE

SOC Lab Material 9-17

&Int_1_Loc
&Int_3_Loc
Run_Index

(10) Ensure that Proc and Tab1 are selected, then Click the Add to View
button and the Close button

Figure 24 Specifying variable to watch

(11) The variables you have specified are now displayed in the Watch
processor view, and if you expand the lines you can see both the
addresses and the contents of the variables.

Figure 25Examining contents of registers

JTAG and Multi-ICE

SOC Lab Material 9-18

(12) Press F10. The program executes a single instruction and stops.
(13) Press F10 a few more times. As you execute the program, one

instruction at a time, you can see the values of several of the registers
change.

(14) Press F5 to allow the program to complete its execution, the close
down the registers processor view.

12. Examining the contents of registers

(1) Select File > Reload current Image.
(2) Select Execute > Go to reach the first breakpoint, set by default at

the beginning of the function main().
(3) Select Processor > Registers.

Figure 26 Examining contents of registers

(4) Press F10. The program executes a single instruction and stops.
(5) Press F10 a few more times. As you execute the program, one

instruction at a time, you can see the values of several of the registers
change.

(6) Press F5 to allow the program to complete its execution, the close
down the registers processor view.

13. Examining the contents of memory

(1) Select File > Reload current Image.
(2) Select Execute > Go to reach the first breakpoint, set by default at

the beginning of the function main().
(3) Select Execute > Go to continue execution.
(4) Enter 760 when you are prompted for the number of runs to execute.

JTAG and Multi-ICE

SOC Lab Material 9-19

Execution continues until it reached the breakpoint at line 150 for
750th time. This is the breakpoint you defined in Setting a breakpoint.

(5) Select Processor Views > Memory.
(6) Set the Start address value to 0x07FFFF00.

Figure 27 Examining contents of memory

(7) Press F10. The program executes a single instruction and stops.
(8) Press F10 a few more times. As you execute the program, one

instruction at a time, you can see the values of several of the memory
addresses change.

(9) Press F5 to allow the program to complete its execution, the close
down the Memory processor view.

14. Locating and changing values and verifying changes

(1) Select File > Reload current Image.
(2) Select Execute > Go to reach the first breakpoint, set by default at

the beginning of the function main().
(3) Select Search > Memory.
(4) Enter 2’ND in the Search for field, set the In range and to addresses

0x0 and 0xFFFF, and select ASCII for Search string type.

Figure 28 Searching for a string in memory

(5) Click the Cancel button to close the Search Memory dialog.
(6) The four hexadecimal values highlighted are 32 27 4E 44.

JTAG and Multi-ICE

SOC Lab Material 9-20

Figure 29 String in memory

(7) Double-click on the value 32 and type 0x4E and press Return
(8) Double-click on the value 27 and type “o and press Return
(9) Double-click on the value 4E and type 46 and press Return
(10) Double-click on the value 44 and type o62 and press Return

Figure 30 Changing contents of memory

(11) Press F5 to continue execution, and enter a value of 100 when you
are prompted in the Console processor view for the number of runs to
perform.

JTAG and Multi-ICE

SOC Lab Material 9-21

Figure 31 Contents display in the console

----------Note----------
In this example, the change you made was not permanent, because you did
not alter the source code or the executable image stored in a disk file. You
altered only the temporary copy of the image in the target memory.

9.4. 實驗要求

Write a lotto program that generates N sets of number. The user can specify:
1. Number of the set: N.
2. The numbers must be included in these N sets of number
3. The numbers must not be included in these N sets of number

Note: Numbers cannot be duplicated within the same set of number. In
addition, output numbers within the same set in ascending order.

This exercise lets you familiar with the debugging skills and ARM CodeWarrior
Editor when you try to build the program correct.

9.5. 問題與討論

What’s different between ARMulator and MultiICE that we do the debugging
task.

9.6. 參考文件及網頁

 Multi-ICE [DUI_0048F_MICE2_2_UG]
 AXD and armsd Debuggers Guide [DUI_0066D_AXDDG_2_UG]
 Getting Started Guide [DUI_0064D_GSG_UG]

