

Contents
7. Standard I/O... 7-1

7.1. 實驗目的 ...7-1
7.2. 實驗原理 ...7-1

7.2.1. ARM I/O Architecture ...7-1
7.2.2. Semihosting..7-2

7.3. 引導實驗 ...7-3
7.3.1. 實驗步驟 ...7-4

7.4. 實驗要求 ...7-10
7.5. 問題與討論 ..7-10
7.6. 參考文件及網頁...7-10

Standard I/O

教育部 SoC聯盟教材 7-1

7. Standard I/O

7.1. 實驗目的

Interface is the basic data transfer method in a system. How to read/write data
from interface is very important. In this Lab we introduce students to control IO
and learn the principle of polling, interrupt, and semihosting through this Lab.

7.2. 實驗原理

7.2.1. ARM I/O Architecture

All interface are controlled as register based IO, and CPU can control them
just like memory control. Output operation is controlled by simple c/c++
function uHALr_WriteLED(..).
But input operation is ho 支援 w interface inform CPU with new data. The
details are described bellow.

Figure 1 Structure of interrupt

Standard I/O

 教育部SoC聯盟教材 7-2

Interface is used to connect CPU and peripherals for specific data transfer.
Input components are classified as polling and interrupt.

Polling can be easily implemented by software generation. Polling for an I/O
completion can waste a large number of CPU cycles if the processor iterates
a busy-waiting loop many times before the I/O completes. But if the I/O device
is ready for service, polling can be mush more efficient than is catching and
dispatching an interrupt. Describe a device service .For each of these three
strategies (pure polling ,pure interrupts ,hybrid) , describe a computing
environment in which that strategy is more efficient than is either of the others.

Interrupt is that CPU doesn’t check every peripheral in each cycle. Instead of
it, when new data enter peripheral, peripheral send a signal to inform CPU the
new data entered.

The interrupt installs the priority of peripheral, when interrupt occurs; CPU use
polling to determine which peripheral is interrupt. We always install the first 18
priorities as defaults setting, but it still offer user to install user-defined priority.

7.2.2. Semihosting

ADS prefer to use the higher level control instead of control the detail of IO, so
they want to do all the control from host PC. Therefore, they used keyboard
and terminal display in host PC as the IO.
The principle of semihosting is that we can read/write all input/output register
by checking registers in ARM Integrator through Multi-ICE. Therefore, input
from keyboard in the host PC can write data as the input of ARM Integrator.
After output from ARM Integrator, all output change will be returned to host
PC and show in the terminal of AXD program.
Multi-ICE is following boundary scan standard to read/write the register of
desired device. For the reason that all IOs of SOC is register based, to
read/write the fitted IO registers is the same with directly input/output the ARM
Integrator.
For the semihosting control, users must use this by defining SEMIHOST in
their own program. In the ARM design flow, they suppose some function to let
this define easier. With these function in uHAL (micro Hardware Abstraction
Layer), you can control it without complex settings.

Standard I/O

教育部 SoC聯盟教材 7-3

Figure 2 Multi-ICE connector

7.3. 引導實驗

Semihosting
This program controls the Intergator board LED and print strings to the

host using uHal API. Please trace the linked code and observe how SWI is
used.

#include "uhal.h"

#ifdef SEMIHOSTED
extern void print_header(void);
extern void print_end(void);
#endif

char *test_name = "LED Flash Tests\n";
char *test_ver = "Program Version 1.1\n";

int main(int argc, int *argv[])
{
 unsigned int count, max, on;
 unsigned int wait, i, j;
 unsigned int ncount;

 count = uHALr_InitLEDs();
 max = (1 << count);

#ifdef SEMIHOSTED
 // init the library
 uHALr_LibraryInit();

Standard I/O

 教育部SoC聯盟教材 7-4

 print_header();
 uHALr_printf("\nCheck target for %d flashing LEDs\n", count);
#endif

 while (1)
 {
 // Repeat several times to allow user to move their head
 for (ncount = 0; ncount < 64; ncount++)
 {
 // Do a binary count on the LEDs
 for (i = 0; i < max; i++)
 {
 // which LEDs are on?
 on = (max - 1) & i;

 for (j = 0; j < count; j++)
 uHALr_WriteLED(j + 1, (on & (1 << j) ? 1 : 0));

 // wait a while
 for (wait = 0; wait < 1000000; wait++)
 ;
 }
 }
#ifdef SEMIHOSTED
 // All done, give semihosted a chance to break in..
 uHALr_printf("Press a key to repeat the test.\n");
 uHALr_getchar();
#endif

 }
 return (OK);
}

// End of file - led.c

7.3.1. 實驗步驟

1. Start CodeWarrior IDE.
2. Select File → New to create a new project (Figure 3).

(1) Select ARM Executable Image under the Project tab.
(2) Type the project name, Semihosting for example.
(3) Specify the project path. You can see the result in Figure 3.

Standard I/O

教育部 SoC聯盟教材 7-5

Figure 3 New dialog box

3. Building under CodeWarrior IDE.
(1) A Project Management Window appears. Click on the Targets tab.
(2) Select Project → Create Target (Figure 4).
(3) A New Target window appears.

(a) Type Semihosted in Name for new target tab.
(b) Click Clone existing target in the New target contains. We show

this in Figure 4.
(4) Click OK.

Figure 4 Add New Target to the files

4. Target Semihosted Settings.
(1) Click the build target drop-down list to select the Semihosted target

(Figure 5).

Standard I/O

 教育部SoC聯盟教材 7-6

Figure 5 Semihosted Target

(2) Hit the Build Target Setting button.
(3) A Semihosted Settings windows appears (Figure 6). Click Target

Settings in the Target. Make sure Linker is ARM Linker.

Figure 6 DebugRel Settings

(4) Click ARM C compiler in the Language Settings (Figure 7).
(5) Make sure Enable debug table generation and Include

preprocessor symbols in Debug Control are chosen. Click Most
(good debug view, good code).

(6) Click Apply.

Standard I/O

教育部 SoC聯盟教材 7-7

Figure 7 ARM C Compiler Panel

(7) Click Preprocessor tab in the ARM C Compiler (Figure 8). Type
SEMIHOSTED = 1 into the text field beneath the List of #DEFINEs
and click Add to define the SEMIHOSTED. Figure 8 is showed the
result. The Equivalent Command Line text box displays the result.

(8) Click Apply to apply your changes.

Figure 8 Semihosting defined

5. Adding source files to the project.
(1) Copy file led.c, pr_header.c, and uHAL_u_.a to your semihosting

directory.
(2) Select Project → Add Files. Add Files dialog is shown in Figure 9.
(3) Navigate to the semihosting directory and choose above three files.
(4) Click Open. Then Add all files to targets.

Standard I/O

 教育部SoC聯盟教材 7-8

Figure 9 Add Files

6. Set Access Path.
(1) Double click Semihosting on the targets and Semihosted Settings

appears (Figure 10).
(2) Click Access Paths in the Target. Hit Add button to add following

path:
(a) C:\AFSv1_4\Include.
(b) C:\AFSv1_4\Lib\Integrator.

Figure 10 Access Path configuration

7. Delete Debug, DegRel and Release targets.
(1) Click Target tab in Project Managing Window.
(2) Click on targets you want to delete.
(3) Press Del key on the keyboard.
(4) Leave only target Semishoted not delete.

Standard I/O

教育部 SoC聯盟教材 7-9

8. Hit the Make button to compile and link the project.

(1) A compiling and linking status windows would appear to indicate
making progress.

(2) After finishing compiling and linking, a result message windows would
appear (Figure 11). Check for errors and warnings.

Figure 11 Make the project from the Project Window

9. Hit the Run button to run the program (Figure 12).
(1) The CodeWarrior IDE calls AXD debugger to load and execute the

image.

Figure 12 Debug the project from the project window

(2) If using Multi-ICE with Integrator, you’ll see LEDs on the integrator
flashing.

(3) The COM port of the Integrator is reserved when using with Multi-ICE.
Hence data is transmitted through Multi-ICE.

Standard I/O

 教育部SoC聯盟教材 7-10

Figure 13 Message on the CodeWarrior

7.4. 實驗要求

Modify the LED example. When it counts, we press any key to stop
counting and then press any key to continue counting numbers.

7.5. 問題與討論

1. Explain the advantage and disadvantage of polling & interrupt.
2. A system can be divided into hardware, software, and firmware. Which

one contains µHAL.

7.6. 參考文件及網頁

 SWI Interface [ADS_DebugTargetGuide 5.1.1]
 SWI Handling [ADS_DeveloperGuide 5.4]
 Semihosting [ADS_DebugTargetGuide 5]
 Building Semihosted application [ADS_CompilerLinkerUtil 4.2]
 Semihosting directly dependent functions [ADS_CompilerLinkerUtil

Table4-1]
 Semihosting indirectly dependent functions [ADS_ComplierLInerUtil

Table4-2]
 I/O supported functions using semihosting SWI [ADS_CompilerLInkerUtil

Table4-13]
 uHAL API [DUI_0102D_AFS_REF 2] [DUI_0136_AFS_USER 2]

