Content s

7. Standard /O ... 7-1
2% TR RRTTPTRRRI 7-1
1 e 7-1

7.21. ARMI/O ArchiteCtureoooeuiiieiiiiiee e, 7-1
7.2.2. SemMINOStING.....ccciiiiiicce e 7-2
278 T 7-3
/7% T TR 7-4
4 T 7-10
4785 TR 7-10

Standard 1/0

7. Standard I/O

7.1.

Interface is the basic data transfer method in a system. How to read/write data
from interface is very important. In this Lab we introduce students to control 10
and learn the principle of polling, interrupt, and semihosting through this Lab.

7.2.

7.2.1. ARM I/O Architecture

All interface are controlled as register based 10, and CPU can control them
just like memory control. Output operation is controlled by simple c/c++
function uHALr_WriteLED(..).
But input operation is ho w interface inform CPU with new data. The
details are described bellow.

[
| Serltoeme
waliilin

A

[I .

L iR BR & M| el Coie
eSS AFIAA i § S

& " nERC M

*. RC2FAOR Core
CHALE e A

sHilFy=am

& ’ nEAQ1
' iR SR g
ol s §

R R0 e
irobei sl |

N L 4 r

s conitoléd FPGSE

Figure 1 Structure of interrupt

SoC 7-1

Standard I/O

Interface is used to connect CPU and peripherals for specific data transfer.
Input components are classified as polling and interrupt.

Polling can be easily implemented by software generation. Polling for an 1/O
completion can waste a large number of CPU cycles if the processor iterates
a busy-waiting loop many times before the I/O completes. But if the I/O device
is ready for service, polling can be mush more efficient than is catching and
dispatching an interrupt. Describe a device service .For each of these three
strategies (pure polling ,pure interrupts ,hybrid) , describe a computing
environment in which that strategy is more efficient than is either of the others.

Interrupt is that CPU doesn’t check every peripheral in each cycle. Instead of
it, when new data enter peripheral, peripheral send a signal to inform CPU the
new data entered.

The interrupt installs the priority of peripheral, when interrupt occurs; CPU use
polling to determine which peripheral is interrupt. We always install the first 18
priorities as defaults setting, but it still offer user to install user-defined priority.

7.2.2. Semihosting

ADS prefer to use the higher level control instead of control the detail of 10, so
they want to do all the control from host PC. Therefore, they used keyboard
and terminal display in host PC as the 10O.

The principle of semihosting is that we can read/write all input/output register
by checking registers in ARM Integrator through Multi-ICE. Therefore, input
from keyboard in the host PC can write data as the input of ARM Integrator.
After output from ARM Integrator, all output change will be returned to host
PC and show in the terminal of AXD program.

Multi-ICE is following boundary scan standard to read/write the register of
desired device. For the reason that all I0s of SOC is register based, to
read/write the fitted 10 registers is the same with directly input/output the ARM
Integrator.

For the semihosting control, users must use this by defining SEMIHOST in
their own program. In the ARM design flow, they suppose some function to let
this define easier. With these function in uHAL (micro Hardware Abstraction
Layer), you can control it without complex settings.

7-2 SoC

Standard I/0

Muli-ICE
" Earver and
debiugger
i Farallgd porf
L-T=1 R} . L~ cable
-\.-\..-'
— |
e A JTAG tarpat
e I0C plug
e [
'_I AREM Pawbiae r ¢L|'hj
h e __.1 =i =|._I"IJ u]
— Bl mae —f [—
= [smee] —h
Multi=lGE-—__ . :
inbafsse url .-' T |
20-way o ;
Power supply JTAG cable
’ = - :IE: [
B 0
s -
||

Tanged -~
Board

Figure 2 Multi-ICE connector

7.3.

Semihosting

This program controls the Intergator board LED and print strings to the
host using uHal API. Please trace the linked code and observe how SWI is
used.

#include "uhal.h"

#ifdef SEMIHOSTED
extern void print_header(void);
extern void print_end(void);

#endif
char *test name = "LED Flash Tests\n'';
char *test_ver = "Program Version 1.1\n";

int main(int argc, int *argv[])

{
unsigned int count, max, on;
unsigned int wait, i, j;
unsigned int ncount;

count = uHALr_InitLEDsQ);
max = (1 << count);

#ifdef SEMIHOSTED
// init the library
uHALr_Librarylnit();

SoC 7-3

Standard I/O

print_header();
uHALr_printf("\nCheck target for %d flashing LEDs\n", count);
#endif

while (1)
{

// Repeat several times to allow user to move their head
for (ncount = 0; ncount < 64; ncount++)

// Do a binary count on the LEDs
for (i = 0; i < max; i++)

// which LEDs are on?
on = (max - 1) & 1i;

for (J = 0; jJ < count; j++)
UHALr WriteLED(G + 1, (on & (1 << j) ? 1 : 0));

// wait a while
for (wait = 0; wait < 1000000; wait++)

}
}
#ifdef SEMIHOSTED
// All done, give semihosted a chance to break in..
UHALr_printf("'Press a key to repeat the test.\n");

UHALr_getchar();
#endif

return (0K);
}

// End of file - led.c

7.3.1.

1. Start CodeWarrior IDE.
2. Select File — New to create a new project (Figure 3).
(1) Select ARM Executable Image under the Project tab.
(2) Type the project name, Semihosting for example.
(3) Specify the project path. You can see the result in Figure 3.

7-4 SoC

Standard I/0

. Oubi
= x| Bicd uad O Pl iy

Freoi (Re |Gl |

Fom
[T

Lewrmm

5 ol TS e — = I

=
[

' 7| 4 et

Faps Sl .
e Fimomey, r
[ax |_®a | -

Figure 3 New dialog box

3. Building under CodeWarrior IDE.
(1) A Project Management Window appears. Click on the Targets tab.
(2) Select Project — Create Target (Figure 4).
(3) A New Target window appears.
(a) Type Semihosted in Name for new target tab.
(b) Click Clone existing target in the New target contains. We show
this in Figure 4.
(4) Click OK.

s Tergss

e -
Froject Debug Window Help e

A i i
s ‘) s
spate ey ughel I

Figure 4 Add New Target to the files

4. Target Semihosted Settings.
(1) Click the build target drop-down list to select the Semihosted target
(Figure 5).

SoC 7-5

Standard I/O

—|o] =
(| ® Cebogrel " Bw @5 -R
— X
| Y -
E CEEEST— o)
=" 5 T-EJ < |I Gemiborcind _-lﬂ W L !
I
bughal "
mv' —
i v
Figure 5 Semihosted Target
(2) Hit the Build Target Setting button.

(3) A Semihosted Settings windows appears (Figure 6). Click Target
Settings in the Target. Make sure Linker is ARM Linker.

. |- L1
|!.. S ' ER T
R | Lk s T |

L

il gl -

ol Brin =
Doy

o el

tmpe

EEETTEE——— 0 |
| LT
o e—

T— o

::’rq__ |.-|-Fl||.-.- _-|

F'-a' H - -

e Mo

P Fadticadai ¥ rI

AT Tacgt gy lrwrs

i ' |
AR b Faer -

) | | i

e

oo [iy | o g e g iy e

T £ v g
s

AR Lsde

ARH il F

Ldars -

o | o cesd | |

table generation

Figure 6 DebugRel Settings

Click ARM C compiler in the Language Settings (Figure 7).
Make sure Enable debug

and Include

preprocessor symbols in Debug Control are chosen. Click Most
(good debug view, good code).

Click Apply.

SoC

Standard I/0

mientoned Setiags 21 x|
ltnfmmm | [EEHC Compies
- gt = .
Targed Setbings =1 Target and Source | ATPCS | ‘Warzangs | Erors Debug! Op |:F'rl;|:-.'—
Aives Pale —
E:Hﬂll:uu Dabug Contral
Rousires Salbnge Ezabla dotug table peneratical
;J":""'_ITP“'F ¥ I[aclode praprocesser symbals
:IFI'-'I Tupst ™ Ewable debug of inkine fanciions
1 h‘whw . - . - . -
ARM Asemibler Crplimazaticn Lavel Crplinrization ©
ARM C Compasr Wdini ¢ T
ARM C+ Coomgiler Mintomm (et debug viesr) E:rn.]m:
Thoumh C Compiker — = bost (goded debug swew, pood code) ™ Far lims
e ™ All époor debug view, best cods)
ARM Laker Equivalent Command Ling
ARM fnwELF A . v|
= Edied - lll III ¥
ok | cwat | |

Figure 7 ARM C Compiler Panel

(7) Click Preprocessor tab in the ARM C Compiler (Figure 8). Type
SEMIHOSTED = 1 into the text field beneath the List of #DEFINEs
and click Add to define the SEMIHOSTED. Figure 8 is showed the
result. The Equivalent Command Line text box displays the result.

(8) Click Apply to apply your changes.

FETETEE—— 2l
F | CLCpeT

Tacgm ik Somm | ATHT | Wamnge | Brme [DsbayiOpt =

Lavi of #DEFEr il

I TARGET FLL TR TOLILE
TARGET-FEATURE HALFRH

B e RS
Sqrim et il Lin

&] s “-DSERIIERE o [°
B g | | =) | .

= L I o

Figure 8 Semihosting defined

5. Adding source files to the project.
(1) Copy file led.c, pr_header.c, and uHAL_u_.a to your semihosting
directory.
(2) Select Project — Add Files. Add Files dialog is shown in Figure 9.
(3) Navigate to the semihosting directory and choose above three files.
(4) Click Open. Then Add all files to targets.

SoC 7-7

Standard I/O

Add fikes o gt

D brez el %
¥ Bl i
¥ Dabeg

[Beshocied

Figure 9 Add Files

6. Set Access Path.
(1) Double click Semihosting on the targets and Semihosted Settings
appears (Figure 10).
(2) Click Access Paths in the Target. Hit Add button to add following
path:
(a) C:\AFSv1_4\Include.
(b) C:\AFSv1_4\Lib\Integrator.

EEEEETTEE—— 2| x|

T~ Abweys Search Daer Paite

T B

Bull Esdras
Fonrre Settmy
Fiie Happingz <
Zoums Trees
LRM Target

= Langmage Sedmgs
ARM Aszsmbier
LR T Covvigriin
ARM C48 Campalar
Themh C Compilsr =
Thureh C4+ Coonpi

= Limkeq
AEM Linkes
ARM TosELF

= Eddes .-]

[BT }
& AR FRe)_iachds
12 C A PE]_ PN e gar

| o

:Hn-u!hm“.::l Adi | gy | Frveve |

Puncrdetings | Feoe | begortPael . | EvpoctPassl . |

ok | Cams | mpgly |

Figure 10 Access Path configuration

7. Delete Debug, DegRel and Release targets.
(1) Click Target tab in Project Managing Window.
(2) Click on targets you want to delete.
(3) Press Del key on the keyboard.
(4) Leave only target Semishoted not delete.

7-8 SoC

Standard 1/0

8. Hit the Make button to compile and link the project.

(1) A compiling and linking status windows would appear to indicate
making progress.
(2) After finishing compiling and linking, a result message windows would
appear (Figure 11). Check for errors and warnings.

Figure 11 Make the project from the Project Window

9. Hit the Run button to run the program (Figure 12).

(1)

(2)

The CodeWarrior IDE calls AXD debugger to load and execute the
image.

| @ Semihes ting, mep s ;IQI il
| ® Semihosted :l By & i
Fils | Link Onfer Tarzets |
Targets x|
8, Semihosted A
I target :s

Figure 12 Debug the project from the project window

If using Multi-ICE with Integrator, you'll see LEDs on the integrator
flashing.

The COM port of the Integrator is reserved when using with Multi-ICE.
Hence data is transmitted through Multi-ICE.

SoC 7-9

Standard I/O

AFRETT 0 Comeide
AFM Firmivmos Dulias -
rozprright (=) AFR Led 1¥¥2 40l RiE wights cersrwrsd.

LED Flamh Terts
Program Verwsen 1. L
uHAL wi.d

Oatad Wod 11 LD

Pheas Lartm may run for many saonnin witkout slleowmtosy ang
|uofraars debing manitar ts rem, The Jink wich the host
lssbl time out LT haarthest (e anahled

‘heok target Por 4 Tlashing labs -]

i

Figure 13 Message on the CodeWarrior

7.4.

Modify the LED example. When it counts, we press any key to stop

counting and then press any key to continue counting numbers.

7.5.

1. Explain the advantage and disadvantage of polling & interrupt.

2. A system can be divided into hardware, software, and firmware. Which

one contains yHAL.

7.6.

® SWI Interface [ADS_DebugTargetGuide 5.1.1]

® SWI Handling [ADS_DeveloperGuide 5.4]

® Semihosting [ADS_DebugTargetGuide 5]

® Building Semihosted application [ADS_CompilerLinkerUtil 4.2]

® Semihosting directly dependent functions [ADS_CompilerLinkerUtil
Table4-1]

® Semihosting indirectly dependent functions [ADS_ComplierLInerUtil
Table4-2]

® |/O supported functions using semihosting SWI [ADS_CompilerLInkerUtil
Table4-13]

® uHAL API [DUI_0102D_AFS_REF 2] [DUI_0136_AFS_USER 2]

7-10 SoC

