Contents

3. Core Peripherals.......ccccoooviiiiiiiii e, 3-1
T PP 3-1
32, ettt ————————— 3-1

3.2.1. About ARM Hardware Development Environment 3-1
3.2.2. SeMINOSHNG...cccieiiieiieiiiee e e e e e e eeeanes 3-4
3.2.3. TIMEr/INTEITUPL....ceeeeiiiiie e 3-6
0 3-10
3.3.1. Scrutiny of Source Code: Interrupt Mechnism................ 3-10
3.3.2. Scrutiny of Source Code: Timer/Interrupt Memory Map .3-11
3.3 3. 3-11
R 3-15
S . 3-15
S B, 3-15

Core Peripherals

3. Core Peripherals
3.1.

This Lab let us be familiar with the ARM Hardware Development Environment,
and try to understand the operation mechanism of semihosting and
Timer/Interrupt. You will learn:

ARM Hardware Development Environment

Timer/Interrupt

3.2.

3.2.1. About ARM Hardware Development Environment

About ARM ASIC Platform (AP) Resources

An ATX motherboard which can be used to support the development of
applications and hardware with ARM processor. A platform board provides the
AMBA backbone and system infrastructure required. Core Modules & Logic
Modules could be attached to ASIC Platform.
1. ARM Integrator/AP
It includes system controller FPGA, clock generator, PCI bus interface
supporting onboard expansion, External Bus Interface (EBI) supporting
external memory expansion, Boot ROM, 32MB flash memory and 256K
or 512K SSRAM
The system controller FPGA provides system bus to CMs and LMs,
system bus arbiter, interrupt controller, peripheral I/O controller, 3
counter/timers, reset controller and system status and control registers

2. ARM Integrator/AP Architecture

SoC 3-1

Core Peripherals

Paiphaial inpulou pus

A

Core modlide S Syedaim conleslis Extarnad bus

ool o o FPiGA inleraca
—
I =i
PCl host
Livichges
= SHAM
Logie mochils | e
cormacioes GPIC
Bz
e X
Sarcdam o ORI
P | —
o= i L —
PC1PC
hridga
Figure 1 ARM Integrator/AP Architecture

2.1 ARM Integrator/AP System Controller FPGA

2.1.1 System Bus Interface:
It supports transfers between system bus and the Advanced
Peripheral Bus (APB), transfers between system bus and the PCI
bus and transfers between system bus and the External Bus
Interface (EBI)

2.1.2 System Bus Arbiter.
Provides arbitration for a total of 6 bus masters. Up to 5 masters on
CMs or LMs and PCI bus bridge can be the bus masters.

2.1.3 Peripheral I/O Controller
It includes 2 ARM PrimeCell UARTs, ARM PrimeCell Keyboard &
Mouse Interface (KMI), ARM PrimeCell Real Time Clock (RTC), 3
16-bit counter/timers, GPIO controller and alphanumeric display,
LED control and switch reader.

2.1.4 Reset Controller
Initializes the Integrator/AP when the system is reset

3-2 SoC

Core Peripherals

2.1.5 System Status and Control Register
Configure registers for clock speeds, software reset and Flash
memory write protection)

2.1.6 Interrupt Controller FPGA

It handles IRQs and FIQs for up to 4 ARM processors. IRQs and
FIQs originate form the peripheral controllers, OCI bus, and other
devices on LMs. Assigns IRQs and FIQs from any sources to any of
the 4 ARM processors. Interrupts are masked enabled,
acknowledged, or cleared via registers in the interrupt controller.
Main sources of interrupts includes system controller's internal
peripherals, LM’s devices, PCI subsystem and software.

2.1.7 System Controller FPGA Block Diagram

Syste Ext e naL|SyStem tHcS| bl i PCl bfridge pPCl Ho s t
bus 2——>Syste‘ »ContrWIocaI«q——»

internface intengface bridge

i xternal FIl ash SSRAM
Arbit,—r-»Mem0<> bus 4——» and ROM
inte

| b US contfol
Peripheral blu

Yo v v LN 2

PS2 LED
Counft|l®ehal eybog . intefrrupt
timgrscl o GP')ZXUAR-Ikmousedls.plcontroller
inte swit

| S | S
R |

Figure 2 System Controller FPGA block diagram

ARM Integrator/Core Module (CM)

CM provides ARM core personality. CM could be used as a standalone
development system without AP. Or CM could be mounted onto AP as a
system core. CM could also be integrated into a 3rd-party development or
ASIC prototyping system.

1. ARM Integrator/CM Features (CM7TDMI) ARM7TDMI microprocessor
core.
It includes core module controller FPGA that performs the SDRAM
controller, System bus bridge, Reset controller and Interrupt controller. It
also supports 16MB~256MB pc66/pcl100 168pin SDRAM , 256/512 KB
SSRAM and Multi-ICE, logic analyzer, and optional trace connectors

2. ARM Integrator/CM Architecture

SoC 3-3

Core Peripherals

Status/
SSRAM Cloc ke cont ol Resel
generfjato . contrjolfl er
regi siter
A Memory buys
> SDRAM H
l ‘ contr|olf Ilspra
SSRAM System bus
contrjol | ARM Cbrie bridge

' System bus

System bus|] connectos

Figure 3 ARM Integrator/CM Architecture

3. Core Module FPGA

It performs SDRAM controller: Supports for DIMMs from 16MB to 256MB.
And it performs Reset controller: Initializes the core. Process resets from
different sources. It has status and configuration space: Provides
processor information. CM oscillator setup. Interrupt control for the
processor debug communications channel. It also perform system bus
bridge: Provides Interface between the memory bus on the CM and the
system bus on the AP.

3.2.2. Semihosting

A mechanism whereby the target communicates 1/O requests made in the
application code to the host system, rather than attempting to support the
I/O itself.

When the developer attempt to show something through System 1/O, the
developer could let the application connected to a PC as a host with the
debugger running. The debugger running on the host will handle the
communications with the target application hardware, such as the ARM
Integrator for example. The /O request from the target application
hardware will be handled and display by the host’'s debugger. This is
called Semihosting.

Semihosting enables the developers to perform the system 1/O through
the host’'s debugger. The time and efforts for the developer to support
system 1/O request by writing hardware drivers is not required. This let
the developer concentrate on the application development.

3-4 SoC

Core Peripherals

orintf{"hello'n=]: -J:'-F'F'"'H'-":"- o

Targeat
g ¥
| Library Code
[
SWi handied by
debug agent
sk Comrmunciation with
; debugger running
computer an hast
Host *

ello Taxt displayad
on host scraan

Figure 6. Semihosting overview.

1. How Semihosting Work?
The application invokes the semihosting SWIi(Software Interrupt). The
debug agent then handles the SWI exception. The debug agent provides
the necessary communication to the host system. Semihosting operations
are requested using a semihosted SWI numbers:
*0x123456 in ARM state.
*0OxXAB in Thumb state.

2. Software Interrupt (SWI) Interface
A Software Interrupt (SWI) is requested with an SWI number
(Semihosting SWI numbers: 0x123456(ARM), OXAB(Thumb)). Different
operations in the SWI are identified using value of r0. Other parameters
are passed in a block that is pointed by r1. The result is returned in rO. It
could be an immediate value or a pointer.

3. Semihosting SWIs
Semihosting operations used by C library functions such as printf(),
scanf() uses semihosting SWIs. No need to implement semihosting
operations for default standard 1/0 functions manually.

SoC 3-5

Core Peripherals

sWwi Description

S¥S_OPEN (M) on page 5-12 (pen a file on the host

S¥S_CLOSE (T2) om page 3-14 Close a file on the host

E¥S_WRITEC (0x)3 | on nage 5-14 Wriie a characier 1o the console

VS _WRITED {0) on page 5-14 Write a null-erminated siring o the console
S¥S_WRITE ((id3) on page 5-15 Write to a file on the hosi

S¥E_READ (0ot} on page 5-16 Read the contents of a file inio a buffer
S¥E_READC (07) on page 3-17 Read a byie from the console
S¥E_ISERROR (i3} on page 5-17 Dhetermine if & return code % an ermor

Figure 4 Semihosting overview.
3.2.3. Timer/Interrupt

This example installs a timer interrupt to update a variable. A loop in main()
contains the code that reads the variable and outputs its value to the standard
output port.

Observation key points are checking the Timer/Interrupt related registers
values to see how they change, and observing how interrupt is handled.

The example must be run on the integrator to work. Using Armulator will not
be able to show the correct results.

1. About Counter/Timers
There are 3 counter/timers on an ARM Integrator AP. Each counter/timer
generates an IRQ when it reaches 0. Each counter/timer has a 16-bit down
counter with selectable prescale, a load register and a control register.

Read/ Write Read/ Write
TI MERXx _CTRL TI MERX _LOAD
Divis’or Mo de
Cl oc k Prescgl er Down- counft er
—- | —_ | — I nterrupt

TI MERX _VALUE

v

Read

Figure 5 Timer/interrupt

3-6 SoC

2. Counter/Timer Registers

These registers control the 3 counter/timers on the Integrator AP board.
Each timer has the following registers.
« TIMERX LOAD: a 16-bit R/W register which is the initial value in free
running mode, or reloads each time the counter value reaches 0 in periodic

mode.

Core Peripherals

* TIMERX_VALUE: a 16-bit R register which contains the current value of the

timer.

e TIMERX_CTRL: an 8-bit R/W register that controls the associated
counter/timer operations.
* TIMERX_CLR: a write only location which clears the timer’s interrupt.

Address Name Type Size Function
0x13000000 TIMERO_LOAD R/W 16 TimterO load register
0x13000004 TIMERO_VALUE R 16 Timer0 current value
register
0x13000008 TIMERO_CTRL R/W 8 Timer0 control register
0x1300000C TIMERO CLR W 1 TimerO clear register
Table 1 Timer registers description.

SoC

3-7

Core Peripherals

3. Timer Control Register

Bits Name Function

7 ENABLE TimterO load register

6 MODE Timer0 current value register

5:4 Unused Timer0 control register

3:2 PRESCALE Prescale divisor: 00=none; 01=div by 16;
10=div by 256; 11=undefined

1:0 Unused Unused, always 0

Table 2 Bits description of timer control register

4. About Interrupt Controller
Implemented in the system controller FPGA.Provides interrupt service
routine dispatch for up to 4 processors(CMs).There’s a 22-bit IRQ and
FIQ controller for each processor. Each bit resembles an interrupt source.

5. IRQ Registers

Enable efet

Enabl.e_c.lcqaerar
I nt errup—«—s—e—a—r—eeT—

1

Figure 6

slices

A bit slice of the interrupt control.

The registers control each processor’s interrupt handler on the Integrator
AP board.
Each IRQ has following registers:

* IRQX_STATUS: a 22-bit R register representing the current masked

IRQ status.

* IRQX_RAWSTAT: a 22-bit R register representing the raw IRQ status.
* IRQX_ENABLESET: a 22-bit location used to set bits in the enable

Enabl e
Status
Raw status

j)o— nl RQ

From other
bit

register.
* IRQX_ENABLECLR: a 22-bit location used to clear bits in the enable
register.
Address Name Type Size Function
0x14000000 IRQO_STATUS R 22 IRQO status
0x14000004 IRQ_RAWSTAT R 22 IRQO raw status
0x14000008 IRQO_ENABLESET R/IW 22 IRQO enable set
0x1400000C IRQO_ENABLECLR W 22 IRQO enable clear

Table 3

IRQ registers description.

6. IRQ Register bit assignments

3-8

SoC

Core Peripherals

Bits Name Function
7 TIMERINT2 Counter/Timer2 interrupt
6 TIMERINT1 Counter/Timerl interrupt
5 TIMERINTO Counter/Timer0 interrupt
4:1 Unused Unused, always 0
0 SOFTINT Software interrupt
Table 4 Bits description of IRQ register.

7. How Interrupt Works:

! \gp\ Memary
Device B Interrupt 4 \ector

— 1 = 2
- — = Contreller Branch
Table
IRCHOx18)
2
. User Code | LS
Interrupt_Service_Routine: - - Branch to carrespanding |-
. ISR tasks IEI-eirupl Einﬂu_ﬁeulia |
- Clear IRQ
Figure 7 Interrupt processing flow

SoC 3-9

Core Peripherals

3.3.

After going through this leading experiment, you will understand the main
mechanism of Timer/Interrupt operations.

There are two methods to perform the Timer/Interrupt operations: pure
software or hardware method. .The software method can perform the
operations purely on your desktop with the help of ARMulator and uHAL.
You don’t have to port your codes onto the Integrator/AP but with the
costs of some performance loss and functionality limit. The second
method, hardware method, allows you to perform operations, including
Timer/Interrupt, appropriately through semihosting and the aid of Multi-
ICE. Either way is applicable. You may refer to the Labs for detailed
information for software or hardware methods.

3.3.1. Scrutiny of Source Code: Interrupt Mechnism

In this lab, you have to figure out the operating principle and mechanism
of Timer/Interrupt performed in the C program “irg.c.”

Important Functions:

 Install_Handler: This function installs the IRQ handler at the branch
vector table at Ox18.

* mylRQHandler: This is the user’s IRQ handler. It performs the timer
ISR in this example.

* IRQ Mask Enable: Set the IRQO_ENA register to enable timer0
interrupt mask. So the IRQ could be accepted and handled.

» enablelRQ: The IRQ enable bit in the CPSR is set to enable IRQ.

* LoadTimer, WriteTimerCtrl, ReadTimer, ClearTimer: Timer related
functions

To fully understand the hardware operations of ARM timers and their
corresponding Interrupt operations, please be sure to (at least) survey the
document DUI_0098B_AP_UG.pdf [1] of Section 3.5, 3.6 and 3.7.1. To be
familiar with the software programming of Timer/Interrupt, please read
Section 4.6 and 4.8 in the document.

At the beginning for the overview of “irq.c”, refer to the C code in circle 1. It
sets the timer down-counting from 64 and triggers the timer to start down-
counting. After a while, it down-counts to zero and triggers the interrupt
signal IRQ to the Interrupt Controller in the AP (Circle 1 in Figure 7). IRQ
corresponds to a branch vector of 0x18 and it branches the ARM processor
to execute the Interrupt Handler (Circle 2 in Figure 7). But before execute

3-10 SoC

Core Peripherals

the Interrupt Handler, the programs has to install the handler as shown in
circle 2 in the source code. You may refer to ADS_DeveloperGuide.pdf of
Section 5.3 for more information. The Interrupt Handler of this program is
the function __irg void mylRQHandler in circle 3 of the source code. It
performs the Interrupt Service Routine (ISR) for the interrupt as shown in
circle 3 of Figure 7. According to the source code (Circle 3), it just prints
“HIHI" and clear the timer's IRQ. For more information, refer to
ADS_DeveloperGuide.pdf of Section 5.5.

3.3.2. Scrutiny of Source Code: Timer/Interrupt Memory Map

To employ the timer and interrupt mechanism of the AP, your have to
map the variables in the source code to specific memory addresses.
Circle 4 in the source code installs the memory addresses of IRQ.
Circle 5 enables the IRQs of Timer0 and SWI (0x21). The functions,
LoadTimer, WriteTimerCtrl, ReadTimer, and ClearTimer install the
memory addresses of corresponding registers and print out execution
messages. Detailed information can be obtained in Section 4.6 and 4.8
in [1].

Note that if you implement this by the software method, you have to
modify the mapped addresses according the specification in uHAL and
generate you own make files. The procedure for the implement is
shown in the OS Lab (Lab 4).

3.3.3.

Create a new ARM Executable Image project, add irq.c to the project,
make the project, and run the project finally.

SoC 3-11

Core Peripherals

#include <stdio.h>

unsigned Install_Handler(unsigned routine, unsigned *vector)
{
unsigned vec, oldvec;
vec = ((routine - (unsigned)vector - 0x8) >> 2);
/*->routine is the pointer point to the IRQ handler. */
/*->shift right 2 is for address word aligned. */
/*->subtract 8 is due to the pipeline */
/*since PC will be fetching the 2nd instruction */
/* after the instruction currently being executed. */
vec = 0xea000000 | vec;
/* to implement the instruction B <address> */
/* Oxea is the Branch operation */
oldvec = *vector;
/* the IRQ address or FIQ address */
*vector = vec;
/* the contents of IRQ address is now the branch instruction */
return (oldvec);

3

MQHandler (void)

{
<::: printf(C’"\nFrom IRQ Handler>>HIHI!I\n");

\\\5___2133:11Tfr(); /* Clear the timer’s IRQ */£
}

// this function is used to set the 1 bit in CPSR
__inline void enable_IRQ(void)

1.
int tmp;
__asm

MRS tmp, CPSR
BIC tmp, tmp, #0x80
MSR CPSR_c, tmp
by
by

3-12 SoC

Core Peripherals

void d2b(int d_number, int array_len, int *b_number) {
int len; /*array index*/ /* This function transform data
into binary digits */

int temp=1;

for (len=0;len<array_len;len++) {
if (temp&d _number) b_number[len]=1;
else b_number[len]=0;
d_number=d_number>>1;

void printB(int d_number, int array len, int*b_number){
int i; /* This function prints the binary digits */
for(i=(array_len-1);i>=0;i--){
printf("'%d" ,b_number[i]);
if (1%8==0 && 11=0)
printf('_");

}
printf('\n"");
}

void LoadTimer(int loadvalue){
int TIMERO_LOAD_ADDR = 0x13000000;
int *TIMERO_LOAD;

TIMERO_LOAD = (int *)TIMERO_LOAD_ADDR;

*TIMERO_LOAD = loadvalue;
printf(""Timer Message>>> TimerO loaded!!\n");

}

int ReadTimer(void){
int TIMERO_VALUE_ADDR = 0x13000004;
int *TIMERO_VALUE;
TIMERO_VALUE = (int *)TIMERO_VALUE_ADDR;
printf(""'Timer Message>>> TimerO value aquired!!\n");
return *TIMERO_VALUE;

SoC 3-13

Core Peripherals

void WriteTimerCtri(int writevalue){
int TIMERO_CTRL_ADDR = 0x13000008;
int *TIMERO_CTRL;

TIMERO_CTRL = (int *)TIMERO_CTRL_ADDR;
*TIMERO_CTRL = writevalue;

printf("'Timer Message>>> TimerO control register
changed!\n'");
}

void ClearTimer(void){
int TIMERO_CLEAR_ADDR = 0x1300000C;
int *TIMERO_CLEAR;
TIMERO_CLEAR = (int *)TIMERO_CLEAR_ADDR;

*TIMERO_CLEAR = 1;
printf(""Timer Message>>> TimerO cleared!!\n');

4

int main(void) {

i Q0_STATUS_ADDR = 0x14000000;
int IRQO_RAWSTAT_ADDR = 0x14000004;
int IRQO_ENABLESET_ADDR 0x14000008;
i 1RQO_ENABLECLR_ADDR 0x1400000C;

int *IRQO_STATUS, *IRQO_RAWSTAT, *IRQO_ENABLESET,
*IRQO_ENABLECLR;

int b_num[22];
int 1;
2 unsigned *irqgvec = (unsigned *)0x18;

Install_Handler((unsigned)mylRQHandler, irqgqvec);
* _Install user’s IRQ Handler */

4 enable_IRQQ; /* DR added - ENABLE IRQs */

“STATUS = (
IRQ0_RAWSTAT =
IRQO_ENABLESET
RQO_ENABLECLR

nt *) IRQO_STATUS_ADDR;
int *) IRQO_RAWSTAT ADDR;
(int *) IRQO_ENABLESET_ADDR;
(C

i
(
= (int *) IRQO_ENABLECLR_ADDR;

5
FIRQO_ENABLESET = 0x0021; >

3-14 SoC

Core Peripherals

d2b(*IRQO_STATUS,22,b_num);
printf('IRQ0_STATUS: ™);
printB(*IRQ0_STATUS,22,b_num):

d2b(*IRQO_RAWSTAT,22,b_num);
printf(""IRQO_RAWSTAT: '™);
printB(*1RQ0O_RAWSTAT,22,b_num);

d2b(*1RQ0_ENABLESET,22,b_num);
printf("'IRQO_ENABLESET: ™);
printB(*IRQ0_ENABLESET,22,b_num);

d2b(*1RQO_ENABLECLR,22,b_num);
printf(""1RQO_ENABLECLR: ');
1 printB(*IRQO_ENABLECLR,22,b_num);

oadTimer(64);
WriteTimerCtri(0xC4);

imerO reload value to 64 */
Enable the timer */

// wa ile
for(i=0; 1<1000000000; i++)
{
}
printf(""\nEND\n"") ;
return O;
}
Figure 8 Source code of the lab.
3.4.

(1) Understand the mechanism of timer/interrupt. Use the timer/interrupt
to evaluate the performance of other applications.

(2) Modified the C program. Try to use Real-Time Clock instead of Timer
to show our IRQO values.

3.5.

How do you use multi-timer/interrupt?

3.6.

. Integrator ASIC Platform [DUI_0098B_AP_UG]

. System Memory Map [DUI_0098B_AP_UG 4.1]

. Counter/Timer [DUI_0098B_AP_UG 3.7, 4.6]

. Interrupt [DUI_0098B_AP_UG 3.6, 4.8]

. LEDs [DUI_0098B_AP_UG 4.5]

. Core Module [DUI_0126B_CM7TDMI]

. Core Module Registers[DUI_0126B_CM7TDMI 4.2]

~NOoO o~ WNPE

SoC 3-15

Core Peripherals

8. Core Module Memory Organization [DUI_0126B_CM7TDMI 4.1]

9. SSRAM [DUI_0126B_CM7TDMI 3.2]

10. SDRAM [DUI_0126B_CM7TDMI 3.4]

11. SWI Interface [ADS_DebugTargetGuide 5.1.1]

12. SWI Handling [ADS_DeveloperGuide 5.4]

13. Semihosting [ADS_DebugTargetGuide 5]

14. Building Semihosted application [ADS_CompilerLinkerUtil 4.2]

15. Semihosting directly dependent functions [ADS_CompilerLinkerUtil
Table4-1]

16. Semihosting indirectly dependent functions [ADS_CompilerLinkerUtil
Table4-2]

17. I/0 supported functions using semihosting SWi
[ADS_CompilerLinkerUtil Table4-13]

18. uHAL API [AFS_Reference_Guide.pdf] [AFS_User_Guide.pdf]

3-16 SoC

