

Contents
3. Core Peripherals .. 3-1

3.1. 實驗目的 ...3-1
3.2. 實驗原理 ...3-1

3.2.1. About ARM Hardware Development Environment3-1
3.2.2. Semihosting..3-4
3.2.3. Timer/Interrupt..3-6

3.3. 引導實驗 ...3-10
3.3.1. Scrutiny of Source Code: Interrupt Mechnism................3-10
3.3.2. Scrutiny of Source Code: Timer/Interrupt Memory Map .3-11
3.3.3. 實驗步驟 ...3-11

3.4. 實驗要求 ...3-15
3.5. 問題與討論 ..3-15
3.6. 參考文件及網頁...3-15

Core Peripherals

教育部 SoC 聯盟教材 3-1

3. Core Peripherals

3.1. 實驗目的

This Lab let us be familiar with the ARM Hardware Development Environment,
and try to understand the operation mechanism of semihosting and
Timer/Interrupt. You will learn:
ARM Hardware Development Environment
Timer/Interrupt

3.2. 實驗原理

3.2.1. About ARM Hardware Development Environment

About ARM ASIC Platform (AP) Resources
An ATX motherboard which can be used to support the development of
applications and hardware with ARM processor. A platform board provides the
AMBA backbone and system infrastructure required. Core Modules & Logic
Modules could be attached to ASIC Platform.
1. ARM Integrator/AP

It includes system controller FPGA, clock generator, PCI bus interface
supporting onboard expansion, External Bus Interface (EBI) supporting
external memory expansion, Boot ROM, 32MB flash memory and 256K
or 512K SSRAM。
The system controller FPGA provides system bus to CMs and LMs,
system bus arbiter, interrupt controller, peripheral I/O controller, 3
counter/timers, reset controller and system status and control registers

2. ARM Integrator/AP Architecture

Core Peripherals

教育部 SoC聯盟教材 3-2

Figure 1 ARM Integrator/AP Architecture

2.1 ARM Integrator/AP System Controller FPGA

2.1.1 System Bus Interface:
It supports transfers between system bus and the Advanced
Peripheral Bus (APB), transfers between system bus and the PCI
bus and transfers between system bus and the External Bus
Interface (EBI)

2.1.2 System Bus Arbiter.

Provides arbitration for a total of 6 bus masters. Up to 5 masters on
CMs or LMs and PCI bus bridge can be the bus masters.

2.1.3 Peripheral I/O Controller

It includes 2 ARM PrimeCell UARTs, ARM PrimeCell Keyboard &
Mouse Interface (KMI), ARM PrimeCell Real Time Clock (RTC), 3
16-bit counter/timers, GPIO controller and alphanumeric display,
LED control and switch reader.

2.1.4 Reset Controller

Initializes the Integrator/AP when the system is reset

Core Peripherals

教育部 SoC 聯盟教材 3-3

2.1.5 System Status and Control Register
Configure registers for clock speeds, software reset and Flash
memory write protection)

2.1.6 Interrupt Controller FPGA

It handles IRQs and FIQs for up to 4 ARM processors. IRQs and
FIQs originate form the peripheral controllers, OCI bus, and other
devices on LMs. Assigns IRQs and FIQs from any sources to any of
the 4 ARM processors. Interrupts are masked enabled,
acknowledged, or cleared via registers in the interrupt controller.
Main sources of interrupts includes system controller’s internal
peripherals, LM’s devices, PCI subsystem and software.

2.1.7 System Controller FPGA Block Diagram

External
System bus
interface

Arbiter

PCI bridge
Controller

Static
Memory
Controller

System
bus
bridge

External
bus
interface

Status and
control
register

PS2
keyboard/
mouse
interface

LED
display/
switch

interrupt
controller

Real time
clock

GPIO 2xUART
Counter/
timers

PCI bridge
local bus
interface

System
bus

System bus
PCI Host
bridge

Flash SSRAM
and ROM

Peripheral bus

Figure 2 System Controller FPGA block diagram

ARM Integrator/Core Module (CM)
CM provides ARM core personality. CM could be used as a standalone
development system without AP. Or CM could be mounted onto AP as a
system core. CM could also be integrated into a 3rd-party development or
ASIC prototyping system.

1. ARM Integrator/CM Features (CM7TDMI) ARM7TDMI microprocessor
core.

It includes core module controller FPGA that performs the SDRAM
controller, System bus bridge, Reset controller and Interrupt controller. It
also supports 16MB~256MB pc66/pc100 168pin SDRAM , 256/512 KB
SSRAM and Multi-ICE, logic analyzer, and optional trace connectors

2. ARM Integrator/CM Architecture

Core Peripherals

教育部 SoC聯盟教材 3-4

SSRAM

SSRAM
controller

Clock
generator

Status/
control
registers

Reset
controller

SDRAM
controller

System bus
bridge

SDRAM

Multi-ICE

System bus connectos
HDRA/HDRB

ARM Core

Memory bus

System bus

Figure 3 ARM Integrator/CM Architecture

3. Core Module FPGA

It performs SDRAM controller: Supports for DIMMs from 16MB to 256MB.
And it performs Reset controller: Initializes the core. Process resets from
different sources. It has status and configuration space: Provides
processor information. CM oscillator setup. Interrupt control for the
processor debug communications channel. It also perform system bus
bridge: Provides Interface between the memory bus on the CM and the
system bus on the AP.

3.2.2. Semihosting

A mechanism whereby the target communicates I/O requests made in the
application code to the host system, rather than attempting to support the
I/O itself.

When the developer attempt to show something through System I/O, the
developer could let the application connected to a PC as a host with the
debugger running. The debugger running on the host will handle the
communications with the target application hardware, such as the ARM
Integrator for example. The I/O request from the target application
hardware will be handled and display by the host’s debugger. This is
called Semihosting.

Semihosting enables the developers to perform the system I/O through
the host’s debugger. The time and efforts for the developer to support
system I/O request by writing hardware drivers is not required. This let
the developer concentrate on the application development.

Core Peripherals

教育部 SoC 聯盟教材 3-5

Figure 6. Semihosting overview.

1. How Semihosting Work?

The application invokes the semihosting SWI(Software Interrupt). The
debug agent then handles the SWI exception. The debug agent provides
the necessary communication to the host system. Semihosting operations
are requested using a semihosted SWI numbers:

 •0x123456 in ARM state.
 •0xAB in Thumb state.

2. Software Interrupt (SWI) Interface

A Software Interrupt (SWI) is requested with an SWI number
(Semihosting SWI numbers: 0x123456(ARM), 0xAB(Thumb)). Different
operations in the SWI are identified using value of r0. Other parameters
are passed in a block that is pointed by r1. The result is returned in r0. It
could be an immediate value or a pointer.

3. Semihosting SWIs

Semihosting operations used by C library functions such as printf(),
scanf() uses semihosting SWIs. No need to implement semihosting
operations for default standard I/O functions manually.

Core Peripherals

教育部 SoC聯盟教材 3-6

Figure 4 Semihosting overview.

3.2.3. Timer/Interrupt

This example installs a timer interrupt to update a variable. A loop in main()
contains the code that reads the variable and outputs its value to the standard
output port.
Observation key points are checking the Timer/Interrupt related registers
values to see how they change, and observing how interrupt is handled.
The example must be run on the integrator to work. Using Armulator will not
be able to show the correct results.

1. About Counter/Timers

There are 3 counter/timers on an ARM Integrator AP. Each counter/timer
generates an IRQ when it reaches 0. Each counter/timer has a 16-bit down
counter with selectable prescale, a load register and a control register.

TIMERx_CTRL TIMERx_LOAD

Prescaler Down-counter

TIMERx_VALUE

Read/WriteRead/Write

Clock

Divisor
Mode

Interrupt

Read
Figure 5 Timer/interrupt

Core Peripherals

教育部 SoC 聯盟教材 3-7

2. Counter/Timer Registers
These registers control the 3 counter/timers on the Integrator AP board.

Each timer has the following registers.
• TIMERX_LOAD: a 16-bit R/W register which is the initial value in free
running mode, or reloads each time the counter value reaches 0 in periodic
mode.
• TIMERX_VALUE: a 16-bit R register which contains the current value of the
timer.
• TIMERX_CTRL: an 8-bit R/W register that controls the associated
counter/timer operations.
• TIMERX_CLR: a write only location which clears the timer’s interrupt.

Address Name Type Size Function
0x13000000 TIMER0_LOAD R/W 16 Timter0 load register
0x13000004 TIMER0_VALUE R 16 Timer0 current value

register
0x13000008 TIMER0_CTRL R/W 8 Timer0 control register
0x1300000C TIMER0_CLR W 1 Timer0 clear register

Table 1 Timer registers description.

Core Peripherals

教育部 SoC聯盟教材 3-8

3. Timer Control Register
Bits Name Function
7 ENABLE Timter0 load register
6 MODE Timer0 current value register
5:4 Unused Timer0 control register
3:2 PRESCALE Prescale divisor: 00=none; 01=div by 16;

 10=div by 256; 11=undefined
1:0 Unused Unused, always 0

Table 2 Bits description of timer control register

4. About Interrupt Controller

Implemented in the system controller FPGA.Provides interrupt service
routine dispatch for up to 4 processors(CMs).There’s a 22-bit IRQ and
FIQ controller for each processor. Each bit resembles an interrupt source.

Set

Clear

Enable

Status

Raw status

nIRQ

From other
bit slices

Enable et

Enable clear

Interrupt source

Figure 6 A bit slice of the interrupt control.

5. IRQ Registers

The registers control each processor’s interrupt handler on the Integrator
AP board.
Each IRQ has following registers:

• IRQX_STATUS: a 22-bit R register representing the current masked
IRQ status.
• IRQX_RAWSTAT: a 22-bit R register representing the raw IRQ status.
• IRQX_ENABLESET: a 22-bit location used to set bits in the enable
register.
• IRQX_ENABLECLR: a 22-bit location used to clear bits in the enable
register.

Address Name Type Size Function
0x14000000 IRQ0_STATUS R 22 IRQ0 status
0x14000004 IRQ_RAWSTAT R 22 IRQ0 raw status
0x14000008 IRQ0_ENABLESET R/W 22 IRQ0 enable set
0x1400000C IRQ0_ENABLECLR W 22 IRQ0 enable clear

Table 3 IRQ registers description.

6. IRQ Register bit assignments

Core Peripherals

教育部 SoC 聯盟教材 3-9

Bits Name Function
7 TIMERINT2 Counter/Timer2 interrupt
6 TIMERINT1 Counter/Timer1 interrupt
5 TIMERINT0 Counter/Timer0 interrupt
4:1 Unused Unused, always 0
0 SOFTINT Software interrupt

Table 4 Bits description of IRQ register.

7. How Interrupt Works:

Figure 7 Interrupt processing flow

1

3

2

3

Core Peripherals

教育部 SoC聯盟教材 3-10

3.3. 引導實驗

After going through this leading experiment, you will understand the main
mechanism of Timer/Interrupt operations.

There are two methods to perform the Timer/Interrupt operations: pure
software or hardware method. .The software method can perform the
operations purely on your desktop with the help of ARMulator and uHAL.
You don’t have to port your codes onto the Integrator/AP but with the
costs of some performance loss and functionality limit. The second
method, hardware method, allows you to perform operations, including
Timer/Interrupt, appropriately through semihosting and the aid of Multi-
ICE. Either way is applicable. You may refer to the Labs for detailed
information for software or hardware methods.

3.3.1. Scrutiny of Source Code: Interrupt Mechnism

In this lab, you have to figure out the operating principle and mechanism
of Timer/Interrupt performed in the C program “irq.c.”

Important Functions:

• Install_Handler: This function installs the IRQ handler at the branch
vector table at 0x18.
• myIRQHandler: This is the user’s IRQ handler. It performs the timer
ISR in this example.
• IRQ Mask Enable: Set the IRQ0_ENA register to enable timer0
interrupt mask. So the IRQ could be accepted and handled.
• enableIRQ: The IRQ enable bit in the CPSR is set to enable IRQ.
• LoadTimer, WriteTimerCtrl, ReadTimer, ClearTimer: Timer related
functions

To fully understand the hardware operations of ARM timers and their
corresponding Interrupt operations, please be sure to (at least) survey the
document DUI_0098B_AP_UG.pdf [1] of Section 3.5, 3.6 and 3.7.1. To be
familiar with the software programming of Timer/Interrupt, please read
Section 4.6 and 4.8 in the document.

At the beginning for the overview of “irq.c”, refer to the C code in circle 1. It
sets the timer down-counting from 64 and triggers the timer to start down-
counting. After a while, it down-counts to zero and triggers the interrupt
signal IRQ to the Interrupt Controller in the AP (Circle 1 in Figure 7). IRQ
corresponds to a branch vector of 0x18 and it branches the ARM processor
to execute the Interrupt Handler (Circle 2 in Figure 7). But before execute

Core Peripherals

教育部 SoC 聯盟教材 3-11

the Interrupt Handler, the programs has to install the handler as shown in
circle 2 in the source code. You may refer to ADS_DeveloperGuide.pdf of
Section 5.3 for more information. The Interrupt Handler of this program is
the function __irq void myIRQHandler in circle 3 of the source code. It
performs the Interrupt Service Routine (ISR) for the interrupt as shown in
circle 3 of Figure 7. According to the source code (Circle 3), it just prints
“HIHI!” and clear the timer’s IRQ. For more information, refer to
ADS_DeveloperGuide.pdf of Section 5.5.

3.3.2. Scrutiny of Source Code: Timer/Interrupt Memory Map

To employ the timer and interrupt mechanism of the AP, your have to
map the variables in the source code to specific memory addresses.
Circle 4 in the source code installs the memory addresses of IRQ.
Circle 5 enables the IRQs of Timer0 and SWI (0x21). The functions,
LoadTimer, WriteTimerCtrl, ReadTimer, and ClearTimer install the
memory addresses of corresponding registers and print out execution
messages. Detailed information can be obtained in Section 4.6 and 4.8
in [1].

Note that if you implement this by the software method, you have to
modify the mapped addresses according the specification in uHAL and
generate you own make files. The procedure for the implement is
shown in the OS Lab (Lab 4).

3.3.3. 實驗步驟

Create a new ARM Executable Image project, add irq.c to the project,
make the project, and run the project finally.

Core Peripherals

教育部 SoC聯盟教材 3-12

#include <stdio.h>

unsigned Install_Handler(unsigned routine, unsigned *vector)
{
 unsigned vec, oldvec;
 vec = ((routine - (unsigned)vector - 0x8) >> 2);
 /*->routine is the pointer point to the IRQ handler. */
 /*->shift right 2 is for address word aligned. */
 /*->subtract 8 is due to the pipeline */
 /*since PC will be fetching the 2nd instruction */
 /* after the instruction currently being executed. */
 vec = 0xea000000 | vec;
 /* to implement the instruction B <address> */
 /* 0xea is the Branch operation */
 oldvec = *vector;
 /* the IRQ address or FIQ address */
 *vector = vec;
/* the contents of IRQ address is now the branch instruction */
 return (oldvec);
}

__irq void myIRQHandler (void)
{
 printf("\nFrom IRQ Handler>>HIHI!!\n");
 ClearTimer(); /* Clear the timer’s IRQ */
}

// this function is used to set the I bit in CPSR
__inline void enable_IRQ(void)
{
 int tmp;
 __asm
 {
 MRS tmp, CPSR
 BIC tmp, tmp, #0x80
 MSR CPSR_c, tmp
 }
}

3

Core Peripherals

教育部 SoC 聯盟教材 3-13

void d2b(int d_number, int array_len, int *b_number) {
 int len; /*array index*/ /* This function transform data
into binary digits */
 int temp=1;

 for (len=0;len<array_len;len++) {
 if (temp&d_number) b_number[len]=1;
 else b_number[len]=0;
 d_number=d_number>>1;
 }
}

void printB(int d_number, int array_len, int*b_number){
 int i; /* This function prints the binary digits */
 for(i=(array_len-1);i>=0;i--){
 printf("%d",b_number[i]);
 if (i%8==0 && i!=0)
 printf("_");
 }
 printf("\n");
}

void LoadTimer(int loadvalue){
 int TIMER0_LOAD_ADDR = 0x13000000;
 int *TIMER0_LOAD;

 TIMER0_LOAD = (int *)TIMER0_LOAD_ADDR;

 *TIMER0_LOAD = loadvalue;
 printf("Timer Message>>> Timer0 loaded!!\n");
}

int ReadTimer(void){
 int TIMER0_VALUE_ADDR = 0x13000004;
 int *TIMER0_VALUE;
 TIMER0_VALUE = (int *)TIMER0_VALUE_ADDR;
 printf("Timer Message>>> Timer0 value aquired!!\n");
 return *TIMER0_VALUE;
}

Core Peripherals

教育部 SoC聯盟教材 3-14

void WriteTimerCtrl(int writevalue){
 int TIMER0_CTRL_ADDR = 0x13000008;
 int *TIMER0_CTRL;

 TIMER0_CTRL = (int *)TIMER0_CTRL_ADDR;

 *TIMER0_CTRL = writevalue;
 printf("Timer Message>>> Timer0 control register
changed!!\n");
}

void ClearTimer(void){
 int TIMER0_CLEAR_ADDR = 0x1300000C;
 int *TIMER0_CLEAR;

 TIMER0_CLEAR = (int *)TIMER0_CLEAR_ADDR;

 *TIMER0_CLEAR = 1;
 printf("Timer Message>>> Timer0 cleared!!\n");
}

int main(void) {
 int IRQ0_STATUS_ADDR = 0x14000000;
 int IRQ0_RAWSTAT_ADDR = 0x14000004;
 int IRQ0_ENABLESET_ADDR = 0x14000008;
 int IRQ0_ENABLECLR_ADDR = 0x1400000C;

 int *IRQ0_STATUS, *IRQ0_RAWSTAT, *IRQ0_ENABLESET,
*IRQ0_ENABLECLR;

 int b_num[22];
 int i;
 unsigned *irqvec = (unsigned *)0x18;

 Install_Handler((unsigned)myIRQHandler, irqvec);
 /* Install user’s IRQ Handler */

 enable_IRQ(); /* DR added - ENABLE IRQs */

 IRQ0_STATUS = (int *) IRQ0_STATUS_ADDR;
 IRQ0_RAWSTAT = (int *) IRQ0_RAWSTAT_ADDR;
 IRQ0_ENABLESET = (int *) IRQ0_ENABLESET_ADDR;
 IRQ0_ENABLECLR = (int *) IRQ0_ENABLECLR_ADDR;

 *IRQ0_ENABLESET = 0x0021;

2

4

4

5

Core Peripherals

教育部 SoC 聯盟教材 3-15

Figure 8 Source code of the lab.

3.4. 實驗要求

(1) Understand the mechanism of timer/interrupt. Use the timer/interrupt
to evaluate the performance of other applications.

(2) Modified the C program. Try to use Real-Time Clock instead of Timer
to show our IRQ0 values.

3.5. 問題與討論

How do you use multi-timer/interrupt?

3.6. 參考文件及網頁

1. Integrator ASIC Platform [DUI_0098B_AP_UG]
2. System Memory Map [DUI_0098B_AP_UG 4.1]
3. Counter/Timer [DUI_0098B_AP_UG 3.7, 4.6]
4. Interrupt [DUI_0098B_AP_UG 3.6, 4.8]
5. LEDs [DUI_0098B_AP_UG 4.5]
6. Core Module [DUI_0126B_CM7TDMI]
7. Core Module Registers[DUI_0126B_CM7TDMI 4.2]

 d2b(*IRQ0_STATUS,22,b_num);
 printf("IRQ0_STATUS: ");
 printB(*IRQ0_STATUS,22,b_num);

 d2b(*IRQ0_RAWSTAT,22,b_num);
 printf("IRQ0_RAWSTAT: ");
 printB(*IRQ0_RAWSTAT,22,b_num);

 d2b(*IRQ0_ENABLESET,22,b_num);
 printf("IRQ0_ENABLESET: ");
 printB(*IRQ0_ENABLESET,22,b_num);

 d2b(*IRQ0_ENABLECLR,22,b_num);
 printf("IRQ0_ENABLECLR: ");
 printB(*IRQ0_ENABLECLR,22,b_num);

LoadTimer(64); /* set Timer0 reload value to 64 */
 WriteTimerCtrl(0xC4); /* Enable the timer */
 // wait for a while
 for(i=0;i<1000000000;i++)
 {
 ;
 }
 printf("\nEND\n");
 return 0;
}

1

Core Peripherals

教育部 SoC聯盟教材 3-16

8. Core Module Memory Organization [DUI_0126B_CM7TDMI 4.1]
9. SSRAM [DUI_0126B_CM7TDMI 3.2]
10. SDRAM [DUI_0126B_CM7TDMI 3.4]
11. SWI Interface [ADS_DebugTargetGuide 5.1.1]
12. SWI Handling [ADS_DeveloperGuide 5.4]
13. Semihosting [ADS_DebugTargetGuide 5]
14. Building Semihosted application [ADS_CompilerLinkerUtil 4.2]
15. Semihosting directly dependent functions [ADS_CompilerLinkerUtil
Table4-1]
16. Semihosting indirectly dependent functions [ADS_CompilerLinkerUtil
Table4-2]
17. I/O supported functions using semihosting SWI
[ADS_CompilerLinkerUtil Table4-13]
18. uHAL API [AFS_Reference_Guide.pdf] [AFS_User_Guide.pdf]

