Content s

5. ON-ChIP BUS ... 5-1
701 OO O PP PPPPPRTP 5-1
D 2. e 5-1

5.2.1. Overview of the AMBA specification.............ccccceeeeeeeeeenn. 5-1
5.2.2. Introducing the AMBA AHB ..o, 5-2
5.2.3. AMBA AHB signal liSt...........coovvmiiiiiiiiieiiieeeiie e 5-3
5.2.4. The ARM-based system OVErVIEW...........ccceeeerineninininnnnnns 5-6
7R 7RSO PP P PPPPRTP 5-8
D, 3. . e 5-11
PP PPPPPPPPPPPPP 5-17
78 7P PPPPPPPPPRRPP 5-17
D B, e 5-18

On-Chip Bus

5. On-chip Bus
5.1.

To introduce the interface design conceptually. Study the communication
between FPGA on logic module and ARM processor on core module. We will
introduce the ARM bus in detalil.

5.2.

5.2.1. Overview of the AMBA specification

The Advanced Microcontroller Bus Architecture (AMBA) specification defines
an on-chip communications standard for designing high-performance
embedded microcontrollers.

Three distinct buses are defined within the AMBA specification:
e The Advanced High-performance Bus (AHB)

e The Advanced System Bus (ASB)

e The Advanced Peripheral Bus (APB).

AMBA AHB implements the features required for high-performance, high clock
frequency systems including:

e burst transfers

split transactions

single-cycle bus master handover

single-clock edge operation

non-tristate implementation

wider data bus configurations (64/128 bits).

The APB is part of the AMBA hierarchy of buses and is optimized for minimal
power consumption and reduced interface complexity. The AMBA APB
appears as a local secondary bus that is encapsulated as a single AHB or
ASB slave device. APB provides a low-power extension to the system bus
which builds on AHB or ASB signals directly. We show the typical AMBA
system in Figure 1

SOC Lab Material 5-1

On-chip Bus

High-performance High-bandwidth
ARM processor on-chip RAM

B UART Timer
High-bandwidth AHB or ASB [APB I
External Memory D

Interface G I
E Keypad PIO
DMA bus
master AHB to APB Bridge
o

ASB io APB Bridge

Figure 1 A typical AMBA system

5.2.2. Introducing the AMBA AHB

A typical AMBA AHB system design contains the following components:

* AHB master

A bus master is able to initiate read and write operations by providing an
address and control information. Only one bus master is allowed to actively
use the bus at any one time.

* AHB slave

A bus slave responds to a read or write operation within a given address-
space range. The bus slave signals back to the active master the success,
failure or waiting of the data transfer.

* AHB arbiter

The bus arbiter ensures that only one bus master at a time is allowed to
initiate data transfers. Even though the arbitration protocol is fixed, any
arbitration algorithm, such as highest priority or fair access can be
implemented depending on the application requirements. An AHB would
include only one arbiter, although this would be trivial in single bus master
systems.

* AHB decoder

The AHB decoder is used to decode the address of each transfer and provide
a select signal for the slave that is involved in the transfer. A single centralized
decoder is required in all AHB implementations.

We only introduce AHB in detail here. If you have any interested in studying
ASB and APB, you can refer to ARM standard.

5-2 SOC Lab Material

5.2.3. AMBA AHB signal list

On-Chip Bus

This section contains an overview of the AMBA AHB signals (see Table 1). A
full description of each of the signals can be found in later sections of this
document. All signals are prefixed with the letter H, ensuring that the AHB
signals are differentiated from other similarly named signals in a system

design.
Table 1 AMBA AHB signals
Name Source Description
HCLK Clock source This clock times all bus transfers.
Bus clock All signal timings are related to the
rising edge of HCLK.
HRESETN Reset controller Reset controller The bus reset
Reset signal is active LOW and is used to
reset the system and the bus. This
is the only active LOW signal.
HADDR[31:0] Master The 32-bit system address bus.
Address bus
HTRANS1:0] Master Indicates the type of the current
Transfer type transfer, which can be
NONSEQUENTIAL, SEQUENTIAL,
IDLE or BUSY.
HWRITE Master When HIGH this signal indicates a
Transfer direction write transfer and when LOW a read
transfer.
HSIZE[2:0] Master Indicates the size of the transfer,
Transfer size which is typically byte (8-bit),
halfword (16-bit) or word (32-bit).
The protocol allows for larger
transfer sizes up to a maximum of
1024 bits.
HBURST[2:0] Master Indicates if the transfer forms part a
Burst type burst. Four, eight and sixteen beat
bursts are supported and the burst
may be either incrementing or
wrapping.
HPROTI[3:0] Master The protection control signals
Protection control provide additional information about
a bus access and are primarily
intended for use by any module that
wishes to implement some level of
protection. The signals indicate if the
transfer is an opcode fetch or data
access, as well as if the transfer is a
privleged mode access or user
mode access. For bus masters with
a memory management unit these
signals also indicate whether the
current access is cacheable or
bufferable.
HWDATA[31:0] Master The write data bus is used to

Write data bus

transfer data from the master to the
bus slaves during write operations.
A minimum data bus width of 32
bits

SOC Lab Material

5-3

On-chip Bus

is recommended. However, this
may easily be extended to allow for
higher bandwidth operation.

HSELX
Slave select

Decoder

Each AHB slave has its own slave
select signal and this signal indicates
that the current transfer is intended
for the selected slave. This signal is
simply a combinatorial decode of the
address bus.

HRDATA[31:0]
Read data bus

Slave

The read data bus is used to transfer

data from bus slaves to the bus

master during read operations. A
minimum data bus width of 32 bits
is recommended. However, this
may easily be extended to allow for
higher bandwidth operation.

HREADY
Transfer done

Slave

When HIGH the HREADY signal
indicates that a transfer has finished
on the bus. This signal may be
driven LOW to extend a transfer.
Note: Slaves on the bus require
HREADY as both an input and an
output signal.

HRESP[1:0]
Transfer response

Slave

The transfer response provides

additional information on the status of
a transfer. Four different responses
are provided, OKAY, ERROR,
RETRY and SPLIT.

5-4

SOC Lab Material

On-Chip Bus

AMBA AHB also has a number of signals required to support multiple bus
master operation (see Table 2). Many of these arbitration signals are
dedicated point to point links and in Table 2 the suffix x indicates the signal is
from module X. For example there will be a number of HBUSREQX signals in
a system, such as HBUSREQarm, HBUSREQdma and HBUSREQ!ic.

Table 2 Arbitration signals

Name

Source

Description

HBUSREQXx
Bus request

Master

A signal from bus master x to the
bus arbiter which indicates that the
bus master requires the bus. There
is an HBUSREQx signal for each bus
master in the system, up to a
maximum of 16 bus masters.

HLOCKX
Locked transfers

Master

When HIGH this signal indicates that
the master requires locked access to
the bus and no other master should
be granted the bus until this signal is
LOW.

HGRANTX
Bus grant

Arbiter

This signal indicates that bus master

x is currently the highest priority
master. Ownership of the
address/control signals changes at
the end of a transfer when HREADY
is HIGH, so a master gets access to
the bus when both HREADY and
HGRANTX are HIGH.

HMASTER][3:0]
Master number

Arbiter

These signals from the arbiter

indicate which bus master is
currently performing a transfer and is
used by the slaves which support
SPLIT transfers to determine which
master is attempting an access. The
timing of HMASTER is aligned with
the timing of the address and control
signals.

HMASTLOCK
Locked sequence

Arbiter

Indicates that the current master is
performing a locked sequence of

transfers. This signal has the same

timing as the HMASTER signal.

HSPLITX[15:0]

Split completion request

Slave(SPILIT capable)

This 16-bit split bus is used by a
slave to indicate to the arbiter which
bus masters should be allowed to re-
attempt a split transaction. Each bit
of this split bus corresponds to a
single bus master.

SOC Lab Material 5-5

On-chip Bus

5.2.4. The ARM-based system overview

5.2.4.1. AHB bus slave Interface

To see Figure 2, we can use section 5.2.3 AMBA AHB signal list to
understand the communication between AHB bus slave and other component
of the ARM system.

Salect HSELx .
Address {1

HADDR{31:0]
HWRITE
and - HREADY

. =
convol | LTNAMSHELe e [uEESPILG) | Transter
HSLFE[2:0
L 5|E'I.I'E- FEEFJUI"IS-E

. HEURSTIZ:0] .

Data HRDATA[31:0] > Data

Resat HRESETn "

Clock HCLK a

) Split-capable ;
HMASTLOCK slave e

e

Figure 2 AHB bus slave interface

5.2.4.2. AHB bus master Interface

| HBUSREQ =
HLOCK Arhiter

Y

Arbiter HGRANTX

t
gran HTRANS[1:0] _

- ; HREADY e 1II
ransier -
3 HADDR[31:0]
response HRESF[1:0
P aHE

Transfer type

masier |HWRITE
Reset HRESETn A”S‘EEE
T — HSIZE[2:0] Ir" ek
Clock HCLK control
- HBUH5T|2:I:I] .

HERQTLA ., J

Data |HHDAI‘AE3'I:II! b HWDATA[31:0] » Data

5-6 SOC Lab Material

On-Chip Bus

Figure 3 AHB bus master interface

5.2.4.3. The AHB Arbiter Interface

HBUSREGQx1

HLDCSHx] -

Arbiter HBUSREQx2

requests 4 HLOCH:2
and Kcks - '
HBEUSREQx3 -

L HLOCTHE3 Lo HGRANT= }

HGRANTxZ
HADDR[31:0] HGRANT=3
—_— AHB xlfiical 2

Aroiter
LIEPLITAS0] LUMASTERIZO0L,
HTRANS{1:0] HMASTLOCK |

HEURST[2:0]
LBESR[L0]

L _HREADY ;

Ty

furbiber
grants

SAddreas {
and conirocl

Hasa HREESETi
Chock HCL K

Figure 4 AHB arbiter interface diagram

5.2.4.4. The AHB Decoder Interface

HSELx1 .

Address HADDR[31:0] et HSELx2 Select
% HSELx3

Figure 5 AHB decoder interface diagram

SOC Lab Material 5-7

On-chip Bus

Slave
#1
Mz E:IIE.'T
HADDR M1[31:0]
\‘ HADDR 1o all slaves
HADDR_M2[31:0]) Sl
#2
Master Address and .
i 2 control mus
HSEL_S1 o
HSEL_S52 lave
Decoder Hselss o #3

Figure 6 A typical address decoding system and the slave select signals

If we want to add our design, we can download our HDL code into the FPGA.
We can think that it is a ARM bus slave in the Arm-based system. In our
experiment, we will explain how to add our design in detail.

5.3.

This program does the following tasks:

1.

Noakwn

Determines DRAM size on the core module and sets up the system
controller.

Checks that the logic module is present in the AP expansion position.
Reports module information.

Sets the logic module clock frequencies.

Tests SSRAM for word, halfword, and byte accesses.

Flashe the LEDs.

Remains in a loop that displays the switch values on the LEDs.

We can divide our program into two parts: software and hardware

1.

Software:

There are four source files in software:

(1) logic.c: The main C code, Do above description.

(2) logic.h: Defines, Structures, Routines used & defined in the logic
demo program.

(3) platform.h: Integrator address map.

(4) rw_support.s: Assembler functions for SSRAM testing.

Hardware:

5-8

SOC Lab Material

On-Chip Bus

Table 3 is the Hardware description

Table 3 Hardware description

File Description
ASBAHBTOop These files are the top-level HDL that instantiate all of the
AHBAHBTOp high-speed peripherals , decoder , and all necessary
support and glue logic to make a working system . The
files are named so that , for example , ASBAHBTop.v
is the top level for AHB peripherals connected to an ASB
system bus
ASB2AHB This is the bridge required to connect AHB peripherals to
an ASB integrator system
AHBDecoder The decoder block provides the high-speed peripherals
with select lines. These are generated from the address
lines and the module 1D (position in stack) signals from the
motherboard. The decoder blocks also contain the default
slave peripheral to simplify the example structure. The
integrator family of boards uses a distributed address
decoding system
AHBMuxS2M This is the AHB multiplexor that connects the read data
buses from all of the slaves to the AHB masters(s)
AHBZBTRAM High-speed peripherals require that SSRAM controller
block supports Word, halfword, and byte operations to the
SSRAM on the logic module

AHB2APB This is the bridge blocks required to connect APB
peripherals the high-speed AMBA AHB bus. They produce
the peripheral select signals for each of the APB
peripherals.
AHBAPBSYys The components required for an APB system are
instantiated in this block. These include the bridge and the
APB peripherals. This file also multiplexes the APB
peripheral read buses and concatenates the interrupt
sources to feed into the interrupt controller peripheral
APBRegs The AOB register peripheral provides memory mapped
registers that you can use to :

Configure the two clock generators

Write to the user LEDs

Read the user switch inputs.
It also latches the pressing of the push button to generate
an expansion interrupt
APBIntcon The APB interrupt controller contains all of the standard
interrupt controller registers and has an input port for four
APB interrupts. Four software interrupts are implemented

This program only tells us a concept how to use the ARM processor on CM to
communicate with the FPGA on LM. And if we want to add our implementation,
you can refer to Figure 7.

SOC Lab Material 5-9

On-chip Bus

SDRAM Other eece
Modules

Core

AHBAHBTOp

AHBDecoder

AHBZBTRAM

* MYIP .

1 ZBTSRAM

AHBMuxS2M

AHB2APB
AHBAPBSYys j— APBIntcon
APBRegs APB

Figure 7 The file structure

Logic module

Memory map

) = —— O FFFFFFF
O F OO LR T s =

Lioagic imcsdlile 2

2on E D00 :
Crs DEOODINER Lo el 1 Bilis ol

RGOS
Logic moduls O

L MO

e UxCX0FFFEF
A0 rrcciule iz il (R e SRR RN

AllAS TTETHOy

"!!':".!E";.'I.""'..'"'.".'.'" ! |oxc 1onmann

LI regisiars

(AT TN T TN

Crope fmodilis
TTEH M=
STy
and periprsimls

5-10 SOC Lab Material

On-Chip Bus

The following table shows the mapping of the logic module registers.

Table &2 Logic module regisiers

Offsst pddrags Hama Type Sire Function

2 LM _osiCi Hes dburine 1 st |lator divisor reglater |
Aaiiaia LM_C¥S02 Readurils 19 s |lairr v i pegisder 2
[PTR s L] LM _1LEH K b e] LR FTRTR A S
[t LML Readdarite if Ulser LEDSs control megisier
EITS SRR LM _INT Wi uiide | Prisds Bsting inlg gl gepiste
Ani0 Bl 1€ LM_SW e H Sorlinhaes e gisne

Reference: DUI146B_LM600_UG.pdf

5.3.1.

1. Create new project for Xilinx demo board:

(@) Device Family: VirtexE

(b) Device: xcv2000e
(c) Package: fg680

(d) Speed Grade: -6
(e) Design Flow: XST Verilog

v Bt x|

Project Hame: Project Location:

|1ab5 |D:"SOC".]ﬂhS".]ﬂh5 |

Froject Device Ciptions:

Froperty Hame Value

Device Farmly VirtexE

Device e

Seed Giade +

Design Flav KT Verleg ~]
0K Cancel | Help |

2. Add verilog file to this project. And check no errors or warnings were

occurred.

SOC Lab Material

5-11

On-chip Bus

'&bjmia&:i}r@;mjbﬁ:: I

B bodule Yiew | (O Stapshet View | IL) Library View

E lsh5
=€ xev2000s-62680 - X5T Verilog.

E-[v] AHBAHBTop (AMHBAHETopY)

= [v] AHBAPBRw: { WMHBAPESw:)

: o [¥] AHEZAPE (MAHEZAPE v)
- [¥] APBIntcon . \PBIntcony)
B APBRez: (MPBRegzw)
. v] A&HEDecoder { WM HEDecoder v
. v AHBRMmE2I (OLHBM 2k «)
V] AHBZETRALM (\LHEZETRLM v)

3. Add example2.ucf file to this project, and associate example2.ucf with
he AHBAHBTop module that it affects.

AHBAPBSw=
AHBDecod er
AHBMuxian
AHEFRTEAM

+

4. Select Top module, and Double click Generate Programming File,
your will generate top.bit file. Rename top.bit to example2.bit.

B Bl Few Pyt e

(R0 R AR 2 T S R R |

albi

P Plaskew iy

sla
oo j
[F1L]
= [s FEie-424800 - T Waailig
-] MHEWFETep (WHBAHB g v
AN eeapled ot

= 5 AHBATIZ, | AHDEFEs)
N ARDcder ¢ WERTcadar]
AHEH w I | WS HBH eI v
=] AHEZETRM « WHEEE TR M x|

2 s i | [B P | Eun-r'l-|

=

Muiiii iy s
BRC detrcfrd B rrrers aml B warnings .
Ereabing hit map.,,

Sawing bR shress in “aboasnbep.ele”,
Hitstress geimrrallin §5 comlete.

Enmpleted procevy “lrmerads Frogrameieg F10e".

1—-_:.':—.-.:--1-&

Entcali I

5-12

SOC Lab Material

On-Chip Bus

5. Copy example2.bit file to progcrd.exe directory from your project
folder.

Download flow
1. Connect ARM MultICE onto LM. (Be SURE to power down
first!! ...$$)

2. Set the LM in Config Mode by shorting the CFGLNK jumper on the LM
board. The CFGLED on the LM is lit as an indication for configure
mode. LM’'s FPGA can only be detected by MultiiCE Server in
configure mode. Yet CM cannot be found by MultiiCE Server while
LM is in configure mode.

CEGLNK(J11)
Mt CE -

MLIt-1CE unit m *]

b : =
8 an
o

- i
Figure 2-3 Connecting Multi-ICE

3. Auto-config again in the MultiiCE Server program. Remember to auto-
configure again each time the MultilCE link is modified.

4. Execute progcards.exe to download the bitstream to the FPGA. This
download program only searches for the .brd files in the same
directory. If only one .brd file exists, the downloading would
start directly without any prompt.

5. Download the hardware binary code on FPGA. The hardware binary
code (*.bit) can synthesize by EDA tools like Altera or Xilinx.

6. Execute the progcrd.exe, it will open a window like Figure 8. Choice 6

SOC Lab Material 5-13

On-chip Bus

Mys lopmant Card Logic Pra
Fxinn 2 .8H

Attempting to conne: to Multi~ICE serpuver
Hulti—-ICE weports Z AP contraller

anuzral possible hoawds detected a
.] It » 1 .

L O 5 e 1515 1]
~ Akl
« Bx@s

Calldr HxMi
Caddr Hxi)

Figure 8 A window that execute progcrd.exe

7. Then it will process three steps. When the process is finished, it
means that the ARM-bus interface has download to FPGA. See
Figure 9.

Stepl: download Imxcv600e_72c xcv2000e_via_reva buildO.bit to
FPGA.

Step2: download Imxcv600e_72c_xcv2000e_example2_ahb.bit to
flash memory.

Step3: verifying the hardware in flash memory, checking the hardware
is our download code.

R ENG

ir 8

Cadde Px<?ABAAA

MHHECHiH »
AAAECF ake »

step 12 FPGA down load ofF IlmcvbEEe Q20 wowdBdde vila rewa bl Lo . bat
FPirogiraas: 1A B, Throughpats 4 _A3ks%, Franm: (12

el Flazh downlesaid of . .sexanplesshidsahbs lascebh e T
: 1ML, Threoughpat:s S 6HkAa
Fij agailnat . . wedampledbidsahbs

) T s B

5-14 SOC Lab Material

On-Chip Bus

Figure 9 ARM bus interface download to FPGA

8. Start CodeWarrior IDE. Open the sw.mcp. The project include the
software code that describing before. See Figure 10.

{98 Metrowerks Code Warror for ARM Develaper Suite vl .2

File Edit Wiew Search FProject Debugz Window Help

Ao Ha < haAAANEE2N 5% HEB

| % DetugRel S v B '&@

Fils | Link Order | Targsts |

| File | Code | Date [Wh/aE |-
B platformh 0 0
B logich 0 0
B logic.c 2020 0
B rw_support.s a4]

Figure 10 Software code contained in SW.map

9. Hit run (Figure 10, the bottom with red circle), then it will start the
AXD debugger (Figure 11).

SOC Lab Material 5-15

On-chip Bus

BMMMMITHMGNMW

e & 0| | =almaEEl | ZE elEEE
Topt |l |Fle | Che | -
=4 ARNA D ARLE
1 I"I'I Ltiktaktntdntactatdntabtatbtntantaktntdntactntintdntactatdintantatd]
] * Cogyelght ARN Limiesd L1909, ALl fighes cesepved.
! I I NI I IR RN E N E NI E R R E NI E NI ESEES RN ENEESENO RN EOEED
' l""l'!"'l"'?l"'l 1 kaplabkdabdnlapdabdatanlobipbdpnlaplinbinbinlablabdnlanlaid)
5 1
[T gid:s logic.c,w L.2 1999710/22 13 58: 54 aweleh Exp &
T *
! tdetaetattatintakctatintattatintantaetatdntattattntantactntintaetatti
b
- 1
1 Jimelade <Erdin. ke
12 Five: Dade "lagio.E™
13 Jirc lade “platforn.h”
14
15 int medn{vodd)
| Bl
17 ink 1,7, SwitckYelusz;
13 ST darl=0;
13
i il Frrr panl meER Somtoollex =veS
1 ; Al T DT PRI .
ARMI D - Comale
fiteed Z5CHE

5 15 procea=siz 0 2n & stack of L
B pregsnt Ozl
Syacem comtkallez IR=OwalDlizel
Coxe Hodule Ibeedl 0011

Figure 11 AXD debugger

You can find it will do some testing for AMBA interface by using software:
testing SDRAM size.

check that LMO is present.

turn off all LEDS.

print out some system information.

set up LM clock frequencies.

flash the LEDs, then Mirror the switches to the LEDs.

oukrwhNpE

At finally, you can try to adjust the switch, and see the change between
LEDs.
Hint DUI146B_LM600_UG.pdf(Chapter 6)

5-16 SOC Lab Material

On-Chip Bus
5.4.
To trace the hardware code and software code, indicate that software

how to communicate with hardware using the AMBA interface.
Note

Clock control assignment

1. Before writing to the oscillator registers, you must unlock them by writing
the value OxOO0O0AO5F to the LM_LOCK register. After writing the oscillator
register, relock them by writing any value other than 0xO000AO5F to the
LM_LOCK register.

(V[8:0] +8)
(R[6:0]+2)-S

> frequence = 48Mhz

where

Table 3-3 Clock control signal assignment
Signals Control parameter Label
CTRLCLKx[18:16] Output divider S[2:0]
CTRLCLKx[15:9] Reference divider R[6:0]
CTRLCLEKx[S:0] VOO divider WV[8:0]

lTale J-4 Values for output divider S

= S 2:0]
] LLRD
4 il
5 1180
fi 111
7 L]
H i
) (BN
(L] LI
5.5.

1. If we want to design an accumulator (1, 2, 3...), how could you do to
implement it using the scratch code?

2. If we want to design a hardware using FPGA, how could you do to add
your code to the scratch code and debugger it?

SOC Lab Material 5-17

On-chip Bus

3. To study the AMBA bus standard, try to design a simple AMBA interface.

5.6.

® AMBA AHB standard 2.0.

® INTERGRATOR/LM-XCV600E+INTERGRATOR/LM-EP20K600E+ USER
GUIDE.

® INTERGRATOR/AP USER GUIDE

® INTERGRATOR/CM9xOT INTERGRATOR/CM7xOT USER GUIDE

5-18 SOC Lab Material

