
Contents
9. ASIC Logic ... 9-1

9.1. 實驗目的 ...9-1
9.2. 實驗原理 ...9-1

9.2.1. Introduction...9-1
9.2.2. Basics and Work Flow for Prototyping with Logic Module 9-1
9.2.3. FPGA tools ...9-3
9.2.4. Basic Platforms: AHB and ASB..9-4
9.2.5. Logic Module Registers..9-6
9.2.6. Interrupt Controller ...9-7

9.3. 引導實驗 ...9-8
9.3.1. File Descriptions: Example 1 ..9-8
9.3.3. 實驗步驟 ...9-10

9.4. 實驗要求 ...9-15
9.5. 問題與討論 ..9-15
9.6. 參考文件及網頁...9-16

ASIC Logic

教育部 SoC 聯盟教材 9-1

9. ASIC Logic

9.1. 實驗目的

 了解如何運用 ARM Logic Module 及 ARM Integrator 驗證自己設計的
IP。

9.2. 實驗原理

9.2.1. Introduction

While designing an IP, it is important to make sure the design could work as
part of the system. The simplest and the most direct way is to port our design
to an FPGA and verify the results.
Note that prototyping using FPGA cannot be done before the designer starts
the HDL hardware design procedure, therefore the designer can only verify
the design after the design’s HDL coding has been completed. Yet using
virtual prototyping, the designer would have more design space to explore. It
allows the designer to know how their IP might work with the system, and
know their options and limitations more before detailed architectural design,
especially from the system’s point of view.
ARM Integrator’s Logic Module can work alone like most FPGA development
board provided by ALTERA or XILINX. Still it can also be attached to ARM
Integrator’s Application Platform and operates with Core Module together.
This configuration provides a complete system which represents as a basic
platform model in SOC design.

9.2.2. Basics and Work Flow for Prototyping with Logic
Module

ARM Logic Module (LM) provides a platform for developing Advanced
Microcontroller Bus Architecture (AMBA), Advanced High-performance Bus
(AHB) and Advanced Peripheral Bus (APB), and peripherals for the use with
ARM-based system.

The LM can be used as a standalone system like an FPGA test board, or
used with a Core Module (CM) and an Application Platform (AP). It can also
work as a CM with AP if a synthesized ARM core is programmed into the
FPGA. The last option is to stack several LMs together without an AP

ASIC Logic

 教育部SoC聯盟教材 9-2

motherboard if one of the LMs provides the system controller functions of a
motherboard.

The LM contains several components as shown in Figure 1. An LM has an
ALTERA or XILINX FPGA, our LM uses XILINX FPGA. It has a configuration
PLD and a flash memory for storing FPGA configurations. A 1MB ZBT
SSRAM is provided for local storage. There’s a prototyping grid where the
user can attach small circuits to LM. The system bus connector provides
connection to AP motherboard or to other modules. The LM also incorporates
with several peripherals such as LEDs, user-definable push button and
switches. The layout of the LM is illustrated in Figure 2. Please refer to
“Integrator/LM-XCV600E+ User Guide” for further architecture details.

Figure 1. The architecture of a Logic Module.

ASIC Logic

教育部 SoC 聯盟教材 9-3

Figure 2. Logic Module’s board layout.

The LM can be linked with JTAG, Trace, or logic analyzer connectors. There
is a configuration mode, which changes the JTAG signal routing and is used
to download new PLD or FPGA configurations.

9.2.3. FPGA tools

FPGA Compiler II (FCII) is a GUI synthesis tool for Xilinx FPGA. Figure 3
illustrates the general synthesis flow for using FCII. The HDL design is
imported into the GUI synthesis tool, and the synthesis tool generates the
EDIF netlist. Then Xilinx GUI tool will perform place and route to generate the
FPGA binary bit data the EDIF netlist as input. The FPGA binary bit data is
used to program the FPGA on the LM.

ASIC Logic

 教育部SoC聯盟教材 9-4

Xilinx GUI Synthesis ToolXilinx GUI Synthesis ToolXilinx GUI Synthesis Tool

Figure 3. Xilinx FPGA synthesis flow.

9.2.4. Basic Platforms: AHB and ASB

The example contains two versions of implementation which support the
following two configurations:

 AHB MB and AHB peripherals
 ASB MB and AHB peripherals

Figure 4 supports the first configuration, and Figure 5 supports the second
one.

Figure 4. Implementation the support AHB system.

ASIC Logic

教育部 SoC 聯盟教材 9-5

Figure 5. Implementation that supports ASB system.

The alphanumerical LED display on the Integrator AP motherboard can show
whether it is AHB or ASB. The letter shown corresponds to either of the two
systems, which will be shown below:

 H: AHB
 S: ASB

In this course, our configuration is illustrated in Figure 6. The blocks inside
the dashed bounding box represent the architecture to be programmed into
the LM’s FPGA.

Figure 6. The AHB platform and its block diagram used in this course.

ASIC Logic

 教育部SoC聯盟教材 9-6

9.2.5. Logic Module Registers

The memory space within a LM and its relation with Integrator’s system
memory space is illustrated in Figure 7. The custom IP design should use the
address space from 0xC2100000 to 0xCFFFFFFF. The description of each
LM registers is described in Table 1. The offset address represents the
register’s offset from the base address.

Core Module /
 Motherboard

 memory
and peripherals

PCI

Core module
alias memory

Logic module 0

Logic module 1

Logic module 2

Logic module 3

LM registers

Interrupt

SSRAM

Bus Error response

test_register

0xC0000000

0xD0000000

0xE0000000

0xF0000000

0xC0000000

0xC1000000

0xC2000000

0xC2100000
0xC2100004

0xCFFFFFFF

Figure 7. Relations between LM’s memory space and the Integrator

system’s memory space

Offset Address Name Type Size Function
0x0000000 LM_OSC1 R/W 19 Oscillator divisor register 1
0x0000004 LM_OSC2 R/W 19 Oscillator divisor register 2
0x0000008 LM_LOCK R/W 17 Oscillator lock register
0x000000C LM_LEDS R/W 9 User LEDs control register
0x0000010 LM_INT R/W 1 Push button interrupt reg.
0x0000014 LM_SW R 8 Switches register

Table 1. Register map of an LM.

ASIC Logic

教育部 SoC 聯盟教材 9-7

Table 2. Push button interrupt register.

9.2.6. Interrupt Controller

The interrupt controller in LM manages the IRQs from the user’s design and
the peripheral devices on LM. The Integrator system treats the LM as a single
slave device, therefore there’s only one IRQ signal connected from LM to the
motherboard.
Figure 8 shows the basic bit-slice structure of the interrupt controller. The Set-
Clear register and the “AND” gate can perform interrupt enable masking, so
that only the enabled interrupt requests are allowed. The corresponding
control registers for interrupt controller are listed in Table 3.

Figure 8. Bit-slice of LM’s interrupt controller’s structure.

Offset Address Name Type Size Function
0x10000000 LM_ISTAT R 8 Interrupt status register
0x10000004 LM_IRSTAT R 8 Interrupt raw status reg.
0x10000008 LM_IENSET R/W 8 Interrupt enable set
0x1000000C LM_IENCLR R 8 Interrupt enable clear
0x10000010 LM_SOFTINT R 4 Software interrupt register

Table 3. Interrupt controller’s registers.

Bits Name Name Function
Read This bit when SET is a latched indication that the

push button has been pressed.
0 LM_INT

Write Write 0 to this register to CLEAR the latched
indication.
Writing 1 to this register has same effect as
pressing the puchs button

ASIC Logic

 教育部SoC聯盟教材 9-8

9.3. 引導實驗

This lab has two examples. The first example demonstrates how to program
the Logic Module by programming into the FPGA or into the flash. The second
example demonstrates the basics to implement a design prototype by writing
the FPGA into the flash on the Logic Module.

The features of each example are shown below:
 Example 1:

 Flashes the LEDs on the Logic Module from left to right.
 The speed of flashing the LEDs from left to right can be set

by changing the configuration of the 8-way switch.
 FPGA version: programs the FPGA by writing the bitstream

image into the FPGA directly. The image will start running
right after programming into the FPGA.

 Flash version: programs the FPGA by writing the bitstream
image into the flash. The image will start after next power
up of the development system.

9.3.1. File Descriptions: Example 1

There’s only one Verilog HDL file for this example, namely, example1.v. The
rest are used for bitstream generation and downloading.

File Description
exampl1.v Verilog HDL for example1.
pc_par.bat The batch script for running Xilinx FPGA PnR utilities

Example1.ucf This is the constraint file defining the pin I/Os.
Example1.ncf This gives the timing constraints.

map.ncd This provides general mapping directives.
Example1.ncd This is the file with specific mapping directives.

bit_gen.ut Bitstream generation utility
enter A simple file with a single enter

Table 4. Files for example1.

9.3.2. File Descriptions: Example 2

HDL Files Descriptions
Each block in the LM is described with an HDL design file. The description of
each HDL files is provided in Table 5.

File Description
ASBAHBTop These files are the top-level HDL that instantiate all of the high-speed

ASIC Logic

教育部 SoC 聯盟教材 9-9

AHBAHBTop peripherals, decoder, and all necessary support and glue logic to make a
working system. The files are named so that, for example, ASBAHBTop.vhd
is the top level for AHB peripherals connected to an ASB system bus.

ASB2AHB This is the bridge required to connect AHB peripherals to an ASB Integrator
system.

AHBDecoder

The decoder block provides the high-speed peripherals with select lines.
These are generated from the address lines and the module ID (position in
stack) signals from the motherboard. The decoder blocks also contain the
default slave peripheral to simplify the example structure. The Integrator
family of boards uses a distributed address decoding system

AHBMuxS2M This is the AHB multiplexor that connects the read data buses from all of the
slaves to the AHB master(s).

AHBZBTRAM High-speed peripherals require that SSRAM controller block supports word,
halfword, and byte operations to the SSRAM on the logic module.

MYIP A simple IP template with only one single register wrapped with simple AHB
slave interface. This file is modified from AHBZBTRAM.

AHB2APB
This is the bridge blocks required to connect APB peripherals the the high-
speed AMBA AHB bus. They produce the peripheral select signals for each
of the APB peripherals.

AHBAPBSys

The components required for an APB system are instantiated in this block.
These include the bridge and the APB peripherals. This file also multiplexes
the APB peripheral read buses and concatenates the interrupt sources to
feed into the interrupt controller peripheral.

APBRegs

The AOB register peripheral provides memory mapped registers that you
can use to:

Configure the two clock generators
Write to the user LEDs
Read the user switch inputs.

It also latches the pressing of the push button to generate an expansion
interrupt.

APBIntcon
The APB interrupt controller contains all of the standard interrupt controller
registers and has an input port for four APB interrupts. Four software
interrupts are implemented.

Table 5. The description of each HDL file.

Software File Descriptions
There are four software files in this example. The description of each software
file is provided in Table 6.

File Description

Logic.c

These files are the top-level HDL that instantiate all of the high-speed
peripherals, decoder, and all necessary support and glue logic to make a
working system. The files are named so that, for example, ASBAHBTop.vhd
is the top level for AHB peripherals connected to an ASB system bus.

Logic.h This is the bridge required to connect AHB peripherals to an ASB Integrator
system.

Platform.h

The decoder block provides the high-speed peripherals with select lines.
These are generated from the address lines and the module ID (position in
stack) signals from the motherboard. The decoder blocks also contain the
default slave peripheral to simplify the example structure. The Integrator
family of boards uses a distributed address decoding system

Rw_support.s This is the AHB multiplexor that connects the read data buses from all of the
slaves to the AHB master(s).

Table 6. The description for each software file.

ASIC Logic

 教育部SoC聯盟教材 9-10

Bitstream Geratation File Desicriptions
These files are required to generate the bitstream to be downloaded into Logic
Module’s flash.

File Description
pc_par.bat The batch script for running Xilinx FPGA PnR utilities

example2.ucf This is the constraint file defining the pin I/Os.
example2.ncf This gives the timing constraints.

map.ncd This provides general mapping directives.
example2.ncd This is the file with specific mapping directives.

bit_gen.ut Bitstream generation utility
enter A simple file with a single enter

Table 7. The description for each files needed to generate the bitstream

9.3.3. 實驗步驟

Example1:

Steps for Synthesis with Xilinx ISE 5.1: Example1

0. Extract example1.zip to %xilinx%\virtexe\data\

1. Start Xilinx ISE 5.1 from the start menu.

Figure 9. Starting Xilinx FPGA CompilerII’s from the Start-Up menu.

2. Create a New Project

– Input the project name (assume: example1)
– Assign the project location (assume: LAB09)
– Enter the project target device options:

(a) Device Family: VirtexE
(b) Device: xcv2000e
(c) Package: fg680

ASIC Logic

教育部 SoC 聯盟教材 9-11

(d) Speed Grade: -6
(e) Design Flow: XST Verilog

Figure 10. Getting Started window in Project Manager.

3. Project→add source File(s)(..\LAB\example1\Verilog\example1.v)

– Project Manager will analyze the added source file for syntax check.

Figure 11. Add Source File(s) to the Project.

4. Add example2.ucf file to this project

5. Generate the Binary Bitstreams

– Select Top module,
– Double click the Generate Programming File

ASIC Logic

 教育部SoC聯盟教材 9-12

Figure 12. Generate Bitstreams.

Downloading the Binary Bitstreams
1. Open the download setting files .\Lab9\Codes\HW\example1\

example1_to_flash.brd and example1_to_fpga.brd. These two files are
shown in Figure 13 and Figure 14.

Figure 13. Example1_to_fpga.brd

[General]
Name = example1 XCV2000E -> fpga
Priority = 1

[ScanChain]
TAPs = 2
TAP0 = XCV2000E
TAP1 = XC9572XL

[Program]
SequenceLength = 1
Step1Method = Virtex
Step1TAP = 0
Step1File = example1.bit

ASIC Logic

教育部 SoC 聯盟教材 9-13

Figure 14. Example1_to_flash0.brd

 Modify the content of example1_to_fpga.brd and example1_to_
flash.brd as shown in Figure 13 and Figure 14.
Remove Step2Address = 200000 or Step3Address = 200000 if possible.
(#Address 0x200000 saves the test image of LM, avoid modifying image 1 at
0x200000)

2. Connect ARM MultiICE onto LM. (Be SURE to power down first!! …$$)

3. Set the LM in Config Mode by shorting the CFGLNK jumper on the LM

board. The CFGLED on the LM is lit as an indication for configure mode.
LM’s FPGA can only be detected by MultiICE Server in configure mode.
Yet CM cannot be found by MultiICE Server while LM is in configure
mode.

4. Auto-config again in the MultiICE Server program. Remember to auto-

configure again each time the MultiICE link is modified.

5. Execute progcards.exe to download the bitstream to the FPGA. This

download program only searches for the .brd files in the same directory. If
only one .brd file exists, the downloading would start directly without
any prompt.

Running the Downloaded Bitstream from FPGA
1. Execute progcards.exe and select example1 XCV2000E->fpga.

2. This will take about 1 minute. It will automatically start running the

[General]
Name = example1 XCV2000E -> flash (addr 0x0)
Priority = 1

[ScanChain]
TAPs = 2
TAP0 = XCV2000E
TAP1 = XC9572XL

[Program]
SequenceLength = 3
Step1Method = Virtex
Step1TAP = 0
Step1File =
lmxcv600e_72c_xcv2000e_via_reva_build0.bit
Step2Method = IntelFlash
Step2TAP = 0
Step2File = example1.bit
Step3Method = IntelFlashVerify
Step3TAP = 0

ASIC Logic

 教育部SoC聯盟教材 9-14

programmed bitstream right after it finishes downloading into the FPGA.

Running the Downloaded Bitstream from Flash(0x00)
1. Execute progcards.exe and select example1 XCV2000E->flash(addr

0x00).

2. This will take about 3 minutes. Remove the CONFIG link after

downloading.

3. Power down the LM.

4. Select the flash image to be executed. Which flash image to be executed

is selected by the position of the 4-way switch S1 on the LM. It is only
active in power-up blink. Consult Table 8 and change the position of S1
while in stand-by mode. The circled positions are better than the crossed
ones because of being independent of CFGSEL[1:0].

Table 8. The relation between the 4-way switch positions and the

selected flash image.

5. Power the LM up again and observe the LM. You will see the LEDs on

the LM flashing from left to right. The combination of the switch S1 can
changed the flashing frequency.

A Timing Information Example
Figure 15 shows the distribution of each stage during the FPGA working flow.
The proportion of total execution time of each stage is also shown in this
figure. As can be seen, place-and-route using the batch scripts occupies 50%
of the total execution time. Therefore we strongly suggest users to perform
place-and-route on a faster PC, since it’s the most time-consuming work.

ASIC Logic

教育部 SoC 聯盟教材 9-15

Figure 15. The execution time distribution of each stage in the FPGA

working flow.

9.4. 實驗要求

Design an RGB-to-YUV converting hardware module that converts R, G, B
values into Y, U, V values:
1. Implement the converter with pure software; you’ll need to write the test

program.
2. Implement the converter into hardware and program it into the FPGA on

the LM, evaluate the improvement compared to pure software
implementation.

 Hint: you may modify AHBAHBTop.v, AHBDecoder.v, AHBMuxS2M.v,
and AHBZBTram.v in example 2.

Figure 16. RGB to YUV transfer function.

9.5. 問題與討論

1. In example1, explain the differences between the flash version and the
FPGA one.

2. In example1, explain how to move data from DRAM to registers in MYIP
and how program access these registers.

ASIC Logic

 教育部SoC聯盟教材 9-16

3. In example2, draw the interconnect

9.6. 參考文件及網頁

 http://twins.ee.nctu.edu.tw/courses/ip_core_02/index.html
 http://twins.ee.nctu.edu.tw/courses/ip_core_01/index.html
 http://www.arm.com/
 Integrator ASIC Platform [DUI_0098B_AP_UG]
 System Memory Map [DUI_0098B_AP_UG 4.1]
 Counter/Timer [DUI_0098B_AP_UG 3.7, 4.6]
 Interrupt [DUI_0098B_AP_UG 3.6, 4.8]

