
SOC Consortium Course Material

Debugging and Evaluation

Speaker: Juin-Nan Liu

Adopted from National Chiao-Tung University
SOC Course Material

1
SOC Consortium Course Material

Code D
evelopm

ent

Goal of This Lab
Debug skills to be used to debug both software of processor and
memory-mapped hardware design running at the target platform
Software cost estimation
– The cost of a program includes Read Only (RO) data, Read Write (RW) data

and Zero-Initialized (ZI) data

Profiling utility
– Can be used to estimate percentage time of each function in an application

Memory configuration
– For performance/cost trade-off
– E.g., an embedded system might use fast, 32-bit RAM for performance-

critical code, such as interrupt handlers and the stack, slower 16-bit RAM for
application RW data, and ROM for normal application code

2
SOC Consortium Course Material

Code D
evelopm

ent

Outline

Debugging skills
Software Quality Measurement

3
SOC Consortium Course Material

Code D
evelopm

ent

AXD Desktop

4
SOC Consortium Course Material

Code D
evelopm

ent

Basic Debug Requirements
Control of program execution
– set watchpoints on interesting data accesses
– set breakpoints on interesting instructions
– single step through code

Examine and change processor state
– read and write register values

Examine and change system state
– access to system memory

• download initial code

5
SOC Consortium Course Material

Code D
evelopm

ent

Outline

Debugging skills
Software Quality Measurement

6
SOC Consortium Course Material

Code D
evelopm

ent

Software Quality Measurement (1/2)

Memory requirement of the program
– Data type: Volatile (RAM), non-volatile (ROM)
– Memory performance: access speed, data width, size and range

Profiling: build up a picture of the percentage of time
spent in each procedure.
Evaluate software performance prior to implement on
hardware
Writing efficient C for ARM cores
– ARM/Thumb interworking
– Coding styles

7
SOC Consortium Course Material

Code D
evelopm

ent

Software Quality Measurement (2/2)

Performance Benchmarking
– Harvard Core

• D-cycles, ID-cycles, I-cycles

– von Newman Cores
• N-cycles, S-cycles, I-Cycles, C-Cycles

– Clock rate
• Processor, external bus

– Cache efficiency
• Average memory access time = hit time +Miss rate x Miss Penalty
• Cache Efficiency = Core-Cycles / Total Bus Cycles

8
SOC Consortium Course Material

Code D
evelopm

ent

Application Code and Data Size
armlink offers two options to provide the relevant information:
– -info sizes (sizes of all objects)
– -info totals (summary only)

==
Image component sizes

Code RO Data RW Data ZI Data Debug
25840 3444 0 0 104344 Object Totals
22680 762 0 300 9104 Library Totals

===
Code RO Data RW Data ZI Data Debug

48520 4206 0 300 113448 Grand Totals
===

Total RO Size(Code + RO Data) 52726 (51.49kB)
Total RW Size(RW Data + ZI Data) 300 (0.29kB)
Total ROM Size(Code + RO Data + RW Data) 52726 (51.49kB)

===

• The size of code/data in
– an ELF image can be viewed using fromelf –z
– a library can be viewed using armar –sizes

9
SOC Consortium Course Material

Code D
evelopm

ent

ARM and Thumb Code Size

Simple C routine
if (x>=0)

return x;
else

return -x;

The equivalent ARM assembly
Iabs CMP r0,#0 ;Compare r0 to zero

RSBLT r0,r0,#0 ;If r0<0 (less than=LT) then do r0= 0-r0
MOV pc,lr ;Move Link Register to PC (Return)

The equivalent Thumb assembly
CODE16 ;Directive specifying 16-bit (Thumb) instructions

labs CMP r0,#0 ;Compare r0 to zero
BGE return ;Jump to Return if greater or

;equal to zero
NEG r0,r0 ;If not, negate r0

return MOV pc,lr ;Move Link register to PC (Return)

10
SOC Consortium Course Material

Code D
evelopm

ent

Memory Map and Size Considerations
The linker calculates the ROM
and RAM requirements for code
and data as follows:
– ROM: Code size + RO data + RW

data
– RAM: RW Data + ZI data.

You may wish to copy code from
ROM into faster RAM, which
will also increase the RAM
requirements
Placing the stacks in zero-wait
state, 32-bit memory on-chip will
significantly improve over -8 or
16- bit off-chip memory

Default memory map

ROM

RAM

11
SOC Consortium Course Material

Code D
evelopm

ent

ARM Profiler
About Profiling:
– Profiler samples the program counter and computes the

percentage time of each function spent.
– Flat Profiling:

• If only pc-sampling info. is present. It can only display the time
percentage spent in each function excluding the time in its children.

• Flat profiling accumulates limited information without altering the image
– Call graph Profiling:

• If function call count info. is present. It can show the approximations of
the time spent in each function including the time in its children.

• Extra code is added to the image

Limitations:
– Profiling is NOT available for code in ROM, or for scatter

loaded images.
– No data is gathered for programs that are too small.

12
SOC Consortium Course Material

Code D
evelopm

ent

Profiler Command-line Options

The command syntax is as follows:
armprof [-parent|-noparent] [-child|-nochild] [-sort options] prf_file

Sample Output
Name cum% self% desc% calls

main 17.69% 60.06% 1

insert_sort77.76% 17.69% 60.06% 1

strcmp 60.06% 0.00% 243432

qs_string_compare 3.21% 0.00% 13021

shell_sort 3.46% 0.00% 14059

insert_sort 60.06% 0.00% 243432

strcmp66.75% 66.75% 0.00% 270512

cumulative
self
descendants
calls

13
SOC Consortium Course Material

Code D
evelopm

ent

In ARM Macrocell

AMBA
Interface

Inst. & data cache

MMU

ARM Core

CP15EmbeddedICE & JTAG

JTAG and non-AMBA signals

Write
Buffer

AMBA
Address

AMBA
Data

Virtual
Address

Physical
Address

Inst. & data

14
SOC Consortium Course Material

Code D
evelopm

ent

Cycle Types, Von Neuman Cores

N-cycles Non-sequential cycle. The ARM core requests a transfer to
or from an address which is unrelated to the address used in
the preceding cycle.
Sequential cycle. The ARM core requests a transfer to or
from an address which is either the same, or one word or
one-half-word greater than the preceding address.

S-cycles

Internal cycle. The ARM core does not require a transfer, as
it is performing an internal function, and no useful
prefetching can be performed at the same time.

I-cycles

C-cycles Coprocessor register transfer cycle. The ARM core wishes
to use the data bus to communicate with a coprocessor, but
does not require any action by the memory system.

Total The sum of the S-Cycles, N-Cycles, I-Cycles and C-Cycles.

15
SOC Consortium Course Material

Code D
evelopm

ent

Map File
If no map file is specified:
– ARMulator will use a 4GB bank of ‘ideal’ memory, i.e., no wait states.

The map file defines regions of memory, and, for each region:
– The address range to which that region is mapped.
– The data bus width (in bytes).
– The access times for the memory region (in ns)

armsd.map typically contains something like:
00000000 00020000 ROM 2 R 150/100 150/100
10000000 00008000 RAM 4 RW 100/65 100/65
– Columns are (left to right):

start address (in hex) access type (read-only or read/write)
length (in hex) read timing in ns (NON-Seq / Seq)
name writing timing in ns (NON-Seq / Seq)
width (1, 2, or 4 bytes)

16
SOC Consortium Course Material

Code D
evelopm

ent

Configure for Target System

ARMulator startup Message

Cached core additional statistics

17
SOC Consortium Course Material

Code D
evelopm

ent

Dhrystone Result Example

Target: ARM940T, 4kB I-cache, 4kB D-cache, 10.00MHz core clock,
(Physical memory, 3.3MHz)

Iteration 1: 673 x 1 / 3,333,333 = 216.6us
Iteration n: 149 x 1 / 3,333,333 = 44.7us

446/149 = 2.993
Iteration 1~n: Total Core Cycles: 27074407

Total Bus Cycles : 9034428
Cache Efficiency : 2.9979 (MCCFG=3)
Cache Efficiency % : 100 x (Cache Efficiency x MCCFG) = 99.93%

Cached with different clock domains

18
SOC Consortium Course Material

Code D
evelopm

ent

Dhrystone Analysis

TCM on ARM966E-S

Cached with different
clock domains

19
SOC Consortium Course Material

Code D
evelopm

ent

Code Development

General/Machine-dependent guideline
– Compiler optimization:

• Space or speed (e.g, -Ospace or -Otime)
• Debug or release version (e.g., -O0 ,-O1 or -O2)
• Instruction scheduling

– Coding style
• Parameter passing
• Loop termination
• Division operation and modulo arithmetic
• Variable type and size

20
SOC Consortium Course Material

Code D
evelopm

ent

Remainders – Modulo Arithmetic
The remainder operator ‘%’ is commonly used in modulo
arithmetic.
– This will be expensive if the modulo value is not a power of two
– This can be avoid by rewriting C code to use if () statement heck

unsigned counter1 (unsigned
counter)

{ return (++counter % 60);

}

counter1

STMFB sp!, {lr}

ADD r1, r0, #1

MOV r0, #0x3C

BL __rt_udiv

MOV r0, r1

LDMIA sp!, {pc}

unsigned counter2 (unsigned
counter)

{ if (++counter >= 60)

counter=0;

return counter

}

counter2

ADD r0, r0, #1

CMP r0, #0x3C

MOVCS r0, #0

MOV pc, lr

21
SOC Consortium Course Material

Code D
evelopm

ent

Variable Types – Size Examples

wordinc

ADD a1,a1,#1

MOV pc,lr

char charinc (char
a)

{ return a + 1;

}

int wordinc
(int a)

{ return a + 1;

}

short shortinc
(short a)

{ return a + 1;

}

shortinc

ADD a1,a1,#1

MOV a1,a1,LSL #16

MOV a1,a1,ASR #16

MOV pc,lr

charinc

ADD a1,a1,#1

AND a1,a1,#&ff

MOV pc,lr

22
SOC Consortium Course Material

Code D
evelopm

ent

Data Layout
Default

char a;
short b;
char c;
int d;

Optimized

char a;
char c;
short b;
int d;

occupies 12 bytes, with 4 bytes of padding occupies 8 bytes, without any padding

Group variables of the same type together. This is the best way to
ensure that as little padding data as possible is added by the compiler.

a pad b

c pad

d

a bc

d

23
SOC Consortium Course Material

Code D
evelopm

ent

Stack Usage

C/C++ code uses the stack intensively. The stack is used
to hold:
– Return addresses for subroutines
– Local arrays & structures

To minimize stack usage:
– Keep functions small (few variables, less spills)minimize the

number of ‘live’ variables (I.e., those which contain useful data
at each point in the function)

– Avoid using large local structures or arrays (use malloc/free
instead)

– Avoid recursion

24
SOC Consortium Course Material

Code D
evelopm

ent

Global Data Issues
When declaring global variables in source code to be compiled
with ARM Software, three things are affected by the way you
structure your code:
– How much space the variables occupy at run time. This determines the

size of RAM required for a program to run. The ARM compilers may insert
padding bytes between variables, to ensure that they are properly aligned.

– How much space the variables occupy in the image. This is one of the
factors determining the size of ROM needed to hold a program. Some global
variables which are not explicitly initialized in your program may
nevertheless have their initial value (of zero, as defined by the C standard)
stored in the image.

– The size of the code needed to access the variables. Some data
organizations require more code to access the data. As an extreme example,
the smallest data size would be achieved if all variables were stored in
suitably sized bitfields, but the code required to access them would be much
larger.

