

Core Peripherals

Speaker: Tzu-Wei Tseng

Adopted from National Chiao-Tung University IP Core Design

SOC Consortium Course Material

Goal of This Lab

- ☐ Familiarize with ARM Hardware Development Environment
 - ARM Integrator/AP
 - Core Module
 - Logic Module
- ☐ How to use Timer/Interrupt

Outline

- □ ARM Integrator Core Module (CM) [1]
- □ ARM Integrator Logic Module (LM) [2]
- □ ARM Integrator ASIC Application Platform (AP) [3]
- ☐ System Memory Map [1]
- Lab3 Core Peripheral

ARM Integrator Core Module/CM

- ☐ CM provides ARM core personality.
- □ CM could be used as a standalone development system without AP.
- □CM could be mounted onto AP as a system core.
- □ CM could be integrated into a 3rd-party development or ASIC prototyping system.

Core module

COC Commontinuo Commo Motorial

ARM Integrator/CM Feature (CM9TDMI)

- □ ARM9TDMI microprocessor core
 - ARM940T/ARM920T
- ☐ Core module controller FPGA :
 - SDRAM controller
 - System bus bridgeReset controller
 - Interrupt controller
- □Supports 16MB~256MB PC66/PC100 168pin
- SDRAM

 □ Supports 256/512 KB SSRAM
- ☐ Multi-ICE, logic analyzer, and optional trace connectors.

FPGA functional diagram

ARM Integrator Core Module FPGA

- ☐ SDRAM controller
 - Supports for DIMMs from 16MB to 256MB.
- ☐ Reset controller
 - Initializes the core.
 - Process resets from different sources.
- ☐ Status and configuration space
 - Provides processor information.
 - CM oscillator setup.
 - Interrupt control for the processor debug communications channel.
- ☐ System bus bridge
 - Provides Interface between the memory bus on the CM and the system bus on the AP.

Connecting Multi-ICE with CM

Outline

- □ ARM Integrator Core Module (CM) [1]
- □ ARM Integrator Logic Module (LM) [2]
- □ ARM Integrator ASIC Application Platform (AP) [3]
- ☐ System Memory Map [1]
- □ Lab3 Core Peripheral

ARM Integrator/LM Logic Module

- □LM is designed as a platform for development

 AHB/ASB/APB peripherals for use with ARM cores.
- □ LM could be mounted with an Integrator/CM, and ar
- □ LM could be mounted with an Integrator/CM, and an Integrator/AP motherboard.
- □LM could be used as a CM with Integrator/AP if a synthesized ARM core, such as ARM9TDMI-S, is programmed into the FPGA.

Integrator/LM

SOC Concertium Course Meterial

ARM Integrator/LM Feature (XCV-2000E)

- ☐ Altera or Xilinx FPGA
- ☐ Configuration PLD and flash memory for storing FPGA configurations
- □ 1MB SSRAM
- ☐ Clock generators and reset resources
- □ Switches
- □ LEDs□ Prototyping grid
- □JTAG, Trace, and logic analyzer connectors
- ☐ System bus connectors to a motherboard or other modules

LM Architecture

Using Multi-ICE with LM

SOC Congestium Course Meterie

Outline

- □ ARM Integrator Core Module (CM) [1]
- □ ARM Integrator Logic Module (LM) [2]
- □ ARM Integrator ASIC Application Platform (AP)
 [3]
- ☐ System Memory Map [1]
- □ Lab3 Core Peripheral

About ARM Integrator/AP

- □ An ATX motherboard which can be used to support the development of applications and hardware with ARM processor.
- □ Platform board provides the *AMBA* backbone and system infrastructure required.
- □ Core Modules (CM) & Logic Modules (LM) could be attached to ASIC Platform.

ARM Integrator/AP Features

- ☐ System controller FPGA.
 - System bus to CMs and LMs
 - System bus arbiter
 - Interrupt controller
 - Peripheral I/O controller
 - 3 counter/timers
 - Reset controller
 - System status and control registers
- □ Clock Generator
- ☐ Two serial ports (RS232 DTE)

- □ PCI bus interface supporting onboard expansion.
- ☐ External Bus Interface (EBI) supporting external memory expansion.
- ☐ 256KB boot ROM
- □ 32MB flash memory.
- □ 512K SSRAM.

Integrator/AP

Not to scale

ARM Integrator/AP Block Diagram

Assembled Integrator Development System

Assembled Integrator/AP system

System Controller FPGA (1/2)

- ☐ System Bus Interface
 - Supports transfers between system bus and the Advanced Peripheral Bus (APB).
 - Supports transfers between system bus and the PCI bus.
 - Supports transfers between system bus and the External Bus Interface (EBI).
- ☐ System Bus Arbiter
 - Provides arbitration for a total of 6 bus masters.
 - Up to 5 masters on CMs or LMs.
 - PCI bus bridge. (the highest priority)
- ☐ Interrupt Controller
 - Handles IRQs and FIQs for up to 4 ARM processors.
 - IRQs and FIQs originate from the peripheral controllers,
 PCI bus, and other devices on LMs.

System Controller FPGA (2/2)

- □ Peripheral I/O Controllers
 - 2 ARM PrimeCell UARTs
 - ARM PrimeCell Keyboard & Mouse Interface (KMI)
 - ARM PrimeCell Real Time Clock (RTC)
 - 3 16-bit counter/timers
 - GPIO controller
 - Alphanumeric display and LED control, and switch reader
- □ Reset Controller
 - Initializes the Integrator/AP when the system is reset
- ☐ System Status & Control Register
 - Clock speeds
 - Software reset
 - Flash memory write protection

System Controller FPGA Diagram

Reset Controller

- □ A reset controller is incorporated into the system controller FPGA.
- ☐ The hardware reset sources are as follows:
 - Push-button PBRST and CompactPCI signal CP_PRST
 - ATX power OK signal nPW_OK and CompactPCI power fail signal CP_FAL
 - FPGADONE signal (routed through CPCI arbiter to become nRSTSRC5)
 - Logic modules using nEXPRST
 - Core modules (and Multi-ICE) using nSRST

Integrator/AP Reset Control

Interrupt Controller

- ☐ The system controller FPGA contains four interrupt controllers.
- ☐ The system controller incorporates a separate IRQ and FIQ controller for each core module.
- ☐ Interrupts are masked enabled, acknowledged, or cleared via registers in the interrupt controller.
- ☐ Main sources of interrupts:
 - System controller's internal peripherals
 - LM's devices
 - PCI subsystem
 - Software

Interrupt Controller Architecture

SOC Concertium Course Material

System Bus

- ☐ The HDRA/HDRB and EXPA/EXPB connector pairs are used to connect the system bus between the AP and other modules
 - Core modules on the connectors HDRA and HDRB
 - Logic modules on the connectors EXPA and EXPB
- □ There are three main system bus (A[31:0], C[31:0], and D[31:0]) and fourth bus B[31:0]
 - A[31:0]: This is the address bus
 - B[31:0]: Only connects HDRA to EXPA and reserved for future use
 - C[31:0]: Used to implement a system control bus
 - **D[31:0]**: This is the data bus

System Bus Architecture

Peripherals

- ☐ The peripheral devices incorporated into the system controller FPGA
 - Counter/timers
 - Real-time clock
 - UARTs
 - Keyboard and mouse interface
 - GPIO

Counter/Timers

- ☐ There are 3 counter/timers on an ARM Integrator AP.
- ☐ Each counter/timer generates an IRQ when it reaches 0.
- ☐ Each counter/timer has
 - A 16-bit down counter
 with selectable prescale
 - A load register
 - A control register

Counter/Timers Registers (1/2)

- ☐ These registers control the 3 counter/timers on the Integrator AP board.
- ☐ Each timer has the following registers.
 - TIMERX_LOAD: a 16-bit R/W register which is the initial value in free running mode, or reloads each time the counter value reaches 0 in periodic mode.
 - TIMERX_VALUE: a 16-bit R register which contains the current value of the timer.
 - TIMERX_CTRL: an 8-bit R/W register that controls the associated counter/timer operations.
 - TIMERX_CLR: a write only location which clears the timer's interrupt.

Counter/Timers Registers (2/2)

☐ Counter	Timer	Registers

Address	Name	Type	Size	Function
0x13000000	TIMER0_LOAD	R/W	16	Timer0 load register
0x13000004	TIMER0_VALUE	R	16	Timer0 current value reg
0x13000008	TIMER0_CTRL	R/W	8	Timer0 control register
0x1300000C	TIMER0_CLR	W	1	Timer0 clear register

☐ Timer Control Register

Bits	Name	Function
7	ENABLE	Timer enable: 0=disable; 1=enable.
6	MODE	Timer mode: 0=free running; 1=periodic
5:4	unused	Unused, always 0
3:2	PRESCALE	Prescale divisor: 00=none; 01 = div by 16
		10=div by 256; 11 = undefined
1:0	Unused	Unused,always 0

COC Congestium Course Metaria

The IRQ and FIQ Control Registers

- ☐ Implemented in the system controller FPGA.
- ☐ Provides interrupt handling for up to 4 processors.
- ☐ There's a 22-bit IRQ and FIQ controller for each processor.

IRQ Registers (1/2)

- ☐ The registers control each processor's interrupt handler on the Integrator AP board.
- ☐ Each IRQ has following registers:
 - IRQX_STATUS: a 22-bit register representing the current masked IRQ status.
 - IRQX_RAWSTAT: a 22-bit register representing the raw IRQ status.
 - IRQX_ENABLESET: a 22-bit location used to set bits in the enable register.
 - IRQX_ENABLECLR: a 22-bit location used to clear bits in the enable register.

IRQ Registers (2/2)

Address	Name	Type	Size	Function
0x14000000	IRQ0_STATUS	R	22	IRQ0 status
0x14000004	IRQ0_RAWSTAT	R	22	IRQ0 IRQ status
0x14000008	IRQ0_ENABLESET	R/W	22	IRQ0 enable set
0x1400000C	IRQ0_ENABLECLR	W	22	IRQ0 enable clear

<u>Bit</u>	Name	Function
0	SOFTINT	Software interrupt
5	TIMERINT0	Counter/Timer interrupt
6	TIMERINT1	Counter/Timer interrupt
7	TIMERINT2	Counter/Timer interrupt

Outline

- □ ARM Integrator Core Module (CM) [1]
- □ ARM Integrator Logic Module (LM) [2]
- □ ARM Integrator ASIC Application Platform (AP) [3]
- □ System Memory Map [1]
- □ Lab3 Core Peripheral

System Memory Map

Core Module Memory Map

SOC Congortium Course Material

Outline

- □ ARM Integrator Core Module (CM) [1]
- □ ARM Integrator Logic Module (LM) [2]
- □ ARM Integrator ASIC Application Platform (AP) [3]
- ☐ System Memory Map [1]
- □ Lab3 Core Peripheral

Lab 3: Core Peripherals

- □ Goal
 - Understand available resource of ARM Integrator
 - Integrator/AP
 - Core Module (CM)
 - Logic Module (LM)
 - Memory-mapped device
 - Timer/Interrupt
- ☐ Principles
 - ARM ASIC Platform Resources
 - Semihosting
 - Interrupt handler
 - Architecture of Timer and Interrupter controller

- □ Guidance
 - Introduction to Important functions used in interrupt handler

The same to that of code

- ☐ Steps
- development
- ☐ Requirements and Exercises
 - Modified the C program. We use Real-Time Clock instead of timer to show our IRQ0 values.
- □ Discussion
 - How to use multitimer/interrupt.

Timer/Interrupt example without uHAL

- ☐ Several important functions are used in this example:
 - Install_Handler: This function install the IRQ handler at the branch vector table at 0x18.
 - myIRQHandler: This is the user's IRQ handler. It performs the timer ISR in this example.
 - enableIRQ: The IRQ enable bit in the CPSR is set to enable IRQ.
 - LoadTimer, WriteTimerCtrl, ReadTimer, ClearTimer:
 Timer related functions.

References

- [1] http://twins.ee.nctu.edu.tw/courses/ip_core_02/index.html
- [2] DUI0126B_CM7TDMI_UG.pdf
- [3] LM-XCV2000E.pdf
- [4] DUI0098B_AP_UG.pdf.