

Memory Controller

Speaker: Tzu-Wei Tseng

Adopted from National Taiwan University SoC Design Laboratory

Goal of This Lab

- □ Familiarize with ARM memory interface
- □Know ARM Integrator memory map well
- □ How to access memory

Outline

□ The ARM Memory Interface [1]

- □ ARM Integrator System Memory Map [2] [3]
- Lab Memory Control

Simple Memory Interface

- □ The simplest form of memory interface is suitable for operation with **ROM** and static RAM (**SRAM**).
- ■8-bit memory types, so **four** parts of each type are required to form a 32-bit memory.
- Since the bottom two address lines, A[1:0], are used for byte selection, they are used by the control logic and not connected to the memory.
- Although the ARM performs reads of both bytes and words, the memory system can ignore the difference and always simply supply a word quantity.

Basic ARM Memory System

SOC Concortium Course Material

Control Logic

- □ It decides when to activate the ARM and when to activate the ROM
 - A[31] = 0 => access ROM
 - A[30] = 1 => access RAM
- □ It controls the byte write enables during a write operation
 - Word write / half-word write / byte write
- It ensures that the data is ready before the processor continues
 - The simplest solution is to run *mclk* slowly enough to ensure that all the memory devices can be accessed within a single clock cycle

Simple ARM Memory System Control Logic

SOC Concortium Course Material

Transfer Widths

A[31]	r/w	mas[1]	mas[0]	A[1]	A[0]	Output signal	
0	0	×	×	×	×	ROMoe	
0	1	×	×	×	×	None	> Read
1	0	×	×	×	×	RAMoe	
1	1	0	0	×	×	Nega	
1	1	1	1	×	×	None	
1	1	1	0	×	×	Word (RAMwe0, RAMwe1,	
						RAMwe2, RAMwe3)	
1	1	0	1	0	×	Half word (RAMwe0, RAMwe1)	Write
1	1	0	1	1	×	Half word (RAMwe2, RAMwe3)	
1	1	×	×	0	0	Byte (RAMwe0)	
1	1	×	×	0	1	Byte (RAMwe1)	
1	1	×	×	1	0	Byte (RAMwe2)	
1	1	×	×	1	1	Byte (RAMwe3)	

DRAM memory organization

ras: row address strobe cas: column address strobe

Outline

- □ The ARM Memory Interface [1]
- □ ARM Integrator System Memory Map [2][3]
- Lab Memory Control

Core Module Memory Map

nMBDET	REMAP	Address range	Region size	Description
0	0	0x000000000 to 0x0003FFFF	256KB	Boot ROM (on motherboard)
0	1	0x000000000 to 0x0003FFFF	256KB	SSRAM
1	Х	0x00000000 to 0x0003FFFF	256KB	SSRAM
Х	Х	0x00040000 to 0x0FFFFFFF	256MB	Local SDRAM
х	Х	0x10000000 to 0x107FFFFF	8MB	Core Module registers
Х	Х	0x10800000 to 0x10FFFFFF	8MB	SSRAM alias
0	Х	0x11000000 to 0xFFFFFFFF	272MB to 4GB	System bus address space
1	Х	0x11000000 to 0xFFFFFFFF	272MB to 4GB	Abort

- The nMBDET signal is permanently grounded by the motherboard so that it is pulled LOW on the core module when it is fitted.
- □ The **REMAP** bit only has effect if the core module is attached to a motherboard (**nMBDET** = 0).

Core Module Memory Map (cont.)

Core Module Alias Address

SOC Concortium Course Material

Memory Map for Core Module

Memory Map for Logic Modules

System Memory Map (1/3)

System Memory Map (2/3)

System Memory Map (3/3)

Outline

- □ The ARM Memory Interface
- □ARM Integrator System Memory Map
- Lab Memory Control

Lab 7: Memory Controller

Goal

- Realize the principle of memory map and internal and external memory
- Principles
 - System memory map
 - Core Module Control Register
 - Core Module Memory Map
- Guidance
 - We use a simple program to lead student understanding the memory.

- Requirements and Exercises
 - Compare the performance between using SSRAM and SDRAM
- Discussion
 - Discuss the following items about Flash, RAM, and ROM.
 - Speed
 - Capacity
 - Internal /External

References

- [1] http://access.ee.ntu.edu.tw/course/SOC_LAB/index.html
- [1] <u>ARM System-on-Chip Architecture</u> by S.Furber, Addison Wesley Longman: ISBN 0-201-67519-6.
- [2] DUI0098B_AP_UG.pdf.
- [3] DUI0126B_CM7TDMI_UG.pdf