
SOC Consortium Course Material

ARMARM--Based Based SoCSoC Design Design
Laboratory CourseLaboratory Course

Speaker: Juin-Nan Liu

Adopted from National Chiao-Tung University
IP Core Design

1SOC Consortium Course Material

Outline
Introduction to SoC
ARM-based SoC and Development Tools
SoC Labs
Available Lab modules in NTU
Summary

2SOC Consortium Course Material

SoC: System on Chip
System
A collection of all kinds of components and/or
subsystems that are appropriately interconnected to
perform the specified functions for end users.
A SoC design is a “product creation process” which
– Starts at identifying the end-user needs
– Ends at delivering a product with enough functional

satisfaction to overcome the payment from the end-user

3SOC Consortium Course Material

SoC Definition
Complex IC that integrates the major functional
elements of a complete end-product into a single
chip or chipset
The SoC design typically incorporates
– Programmable processor
– On-chip memory
– HW accelerating function units (DSP)
– Peripheral interfaces (GPIO and AMS blocks)
– Embedded software

Source: “Surviving the SoC revolution – A Guide to Platform-based Design,”
Henry Chang et al, Kluwer Academic Publishers, 1999

4SOC Consortium Course Material

SoC Architecture

5SOC Consortium Course Material

SoC Example

6SOC Consortium Course Material

SoC Application
Communication
– Digital cellular phone
– Networking

Computer
– PC/Workstation
– Chipsets

Consumer
– Game box
– Digital camera

7SOC Consortium Course Material

Benefits of Using SoC
Reduce overall system cost
Increase performance
Lower power consumption
Reduce size

8SOC Consortium Course Material

Evolution of Silicon Design

Source: “Surviving the SoC revolution – A Guide to Platform-based Design,”
Henry Chang et al, Kluwer Academic Publishers, 1999

9SOC Consortium Course Material

SoC Challenges (1/2)
Bigger circuit size (Size does matter)
– Design data management, CAD capability
– Forced to go for high-level abstraction

Smaller device geometries, new processing (e.g.,
SOI)
– Short channel effect, sensitivity, reliability
– Very different, complicated device model

Higher density integration
– Shorter distance between devices and wires: cross-talk

coupling
Low Power requirement
– Standby leakage power is more significant, lower noise

margin

10SOC Consortium Course Material

SoC Challenges (2/2)
Higher frequencies
– Inductance effect, cross talk coupling noise

Design Complexity
– µCs, DSPs, HW/SW, RTOS’s, digital/analog IPs, On-

chips buses
IP Reuse
Verification, at different levels
– HW/SW co-verification
– Digital/analog/memory circuit verification
– Timing, power and signal integrity verification

Time-to-market

11SOC Consortium Course Material

How to Conquer the Complexity
Use a known real entity
– A pre-designed component (IP reuse)
– A platform (architecture resue)

Partition
– Based on functionality
– Hardware and software

Modeling
– At different level
– Consistent and accurate

12SOC Consortium Course Material

Outline
Introduction to SoC
ARM-based SoC and Development Tools
SoC Labs
Available Lab modules in NTU
Summary

13SOC Consortium Course Material

ARM-based System Development
Processor cores
ARM On-Chip Bus: AMBA
Platform: PrimeXsys
System building blocks: PrimeCell
Development tools
– Software development
– Debug tools
– Development kits
– EDA models
– Development boards

14SOC Consortium Course Material

ARM Architecture Version

v5TEJARM7EJ-S, ARM926EJ-S, ARM1026EJ-S
v6ARM11

v5TEARM9E-S, ARM10TDMI, ARM1020E
v4TARM9TDMI, ARM920T, ARM940T
v4StrongARM, ARM8, ARM810

v4TARM7TDMI, ARM710T, ARM720T, ARM740T
v3ARM6, ARM60, ARM610, ARM7, ARM710, ARM7D, ARM7DI
v2ARM2, ARM2as, ARM3
v1ARM1

ArchitectureCore

15SOC Consortium Course Material

ARM Coprocessors
Application specific coprocessors
– e.g. For specific arithmetic extensions
– Developed a new decoupled coprocessor interface
– Coprocessor no longer required to carefully track

processor pipeline.

ARM
Core

Co-processor

16SOC Consortium Course Material

ARM On-Chip Bus

ARM Core On-Chip
RAM

DMA
Master

Bridge
AHB/ASB

UART

Timer

PIO

Keypad

APB
Memory
Interface

A typical AMBA system

AHB: Advanced High-performance Bus
ASB: Advanced System Bus

APB: Advanced Peripheral Bus

17SOC Consortium Course Material

PrimeXsys
It is no longer the case that a single Intellectual
Property (IP) or silicon vendor will be able to supply
all of the IP that goes into a device.
With the PrimeXsys range, ARM is going one step
further in providing a known framework in which the
IP has been integrated and proven to work.
Each of the PrimeXsys platform definitions will be
application focused – there is no ‘one-size-fits-all’
solution.
ARM will create different platform solutions to meet
the specific needs of different markets and
applications.

18SOC Consortium Course Material

PrimeCell (1/2)
ARM PrimeCell Peripherals are re-usable soft IP
macrocells developed to enable the rapid assembly
of system-on-chip (SoC) designs.
Fully verified and compliant with the AMBA on-chip
bus standard, the ARM PrimeCell range is designed
to provide integrated right-first-time functionality and
high system performance.
Using the ARM PrimeCell Peripheral range,
designers save considerable development time and
cost by concentrating their resources on developing
the system design rather than the peripherals.

19SOC Consortium Course Material

PrimeCell (2/2)

A typical AMBA SoC design using PrimeCell
Peripherals. Ancillary or general-purpose
peripherals are connected to the Advanced
Peripherals Bus (APB), while main high-
performance system components use the
Advanced High-performance Bus (AHB).

20SOC Consortium Course Material

ARM’s Point of View of SoCs
Integrating Hardware IP
Supplying Software with the Hardware

ARM has identified the minimum set of building
blocks that is required to develop a platform with the
basic set of requirements to:
– Provide the non-differentiating functionality, pre-integrated

and pre-validated;
– Run an OS;
– Run application software;
– Allow partners to focus on differentiating the final solution

where it actually makes a difference.

21SOC Consortium Course Material

ARM-based System Development
Processor cores
ARM On-Chip Bus: AMBA
Platform: PrimeXsys
System building blocks: PrimeCell
Development tools
– Software development
– Debug tools
– Development kits
– EDA models
– Development boards

22SOC Consortium Course Material

Main Components in ADS (1/2)
ANSI C compilers – armcc and tcc
ISO/Embedded C++ compilers – armcpp and tcpp
ARM/Thumb assembler - armasm
Linker - armlink
Project management tool for windows -
CodeWarrior
Instruction set simulator - ARMulator
Debuggers - AXD, ADW, ADU and armsd
Format converter - fromelf
Librarian – armar
ARM profiler - armprof ADS: ARM Developer Suite

23SOC Consortium Course Material

Main Components in ADS (2/2)
C and C++ libraries
ROM-based debug tools (ARM Firmware Suite, AFS)
Real Time Debug and Trace support
Support for all ARM cores and processors including
ARM9E, ARM10, Jazelle, StrongARM and Intel
Xscale

24SOC Consortium Course Material

The Structure of ARM Tools

C/C++ source C libraries asm source

object libraries

C compiler assembler

linker Librarian

.o
ELF object file

With DWARF2 debug tables

.axf
ELF/DWARF2 image

debug

ARMsd

ARMulator

System models

development
board

ELF: Executable and linking formatDWARF: Debug With Arbitrary Record Format

25SOC Consortium Course Material

View in CodeWarrier
The CodeWarrior IDE provides a simple, versatile,
graphical user interface for managing your software
development projects.
Develop C, C++, and ARM assembly language
code
targeted at ARM and Thumb processors.
It speeds up your build cycle by providing:
– comprehensive project management capabilities
– code navigation routines to help you locate routines

quickly.

26SOC Consortium Course Material

ARM Emulator: ARMulator (1/2)
A suite of programs that models the behavior of
various ARM processor cores and system
architecture in software on a host system
Can be operates at various levels of accuracy
– Instruction accurate
– Cycle accurate
– Timing accurate

27SOC Consortium Course Material

ARM Emulator: ARMulator (2/2)
Benchmarking before hardware is available
– Instruction count or number of cycles can be measured

for a program.
– Performance analysis.

Run software on ARMulator
– Through ARMsd or ARM GUI debuggers, e.g., AXD
– The processor core model incorporates the remote debug

interface, so the processor and the system state are
visible from the ARM symbolic debugger

– Supports a C library to allow complete C programs to run
on the simulated system

28SOC Consortium Course Material

ARM µHAL API
µHAL is a Hardware Abstraction Layer that is
designed to conceal hardware difference between
different systems
ARM µHAL provides a standard layer of board-
dependent functions to manage I/O, RAM, boot
flash, and application flash.
– System Initialization Software
– Serial Port
– Generic Timer
– Generic LEDs
– Interrupt Control
– Memory Management
– PCI Interface

29SOC Consortium Course Material

µHAL Examples

µHAL API provides simple & extended functions
that are linkable and code reusable to control the
system hardware.

User application AFS utilities

AFS board-specific µHAL routines
AFS support

routines

Development board

C and C++ libraries

General

Specific

AFSF: ARM Firmware Suit

30SOC Consortium Course Material

ARM Symbolic Debugger (ARMsd) (1/2)
ARMsd: ARM and Thumb symbolic debugger
– can single-step through C or assembly language sources,
– set break-points and watch-points, and
– examine program variables or memory

It is a front-end interface to debug program running
either
– under emulation (on the ARMulator) or
– remotely on a ARM development board (via a serial line

or through JTAG test interface)

31SOC Consortium Course Material

ARM Symbolic Debugger (ARMsd) (2/2)
It allows the setting of
– breakpoints, addresses in the code
– watchpoints, memory address if accessed as data

address
cause exception to halt so that the processor state can

be examined

32SOC Consortium Course Material

Debugger-Target Interface

To debug your application you must choose:
– a debugging system, that can be either:

• hardware-based on an ARM core
• software that simulates an ARM core.

– a debugger, such as AXD, ADW, ADU, or armsd.

33SOC Consortium Course Material

Debugger
A debugger is software that enables you to make use of a
debug agent in order to examine and control the execution of
software running on a debug target.
Examples: AXD, ADU, ADW, armsd
– armsd (ARM Symbolic Debugger)
– ADU (ARM Debugger for UNIX)
– ADW (ARM Debugger for Windows)
– AXD (both Windows and UNIX versions)

• AXD is the recommended debugger. It provides functionality that is not
available in the other debuggers. ADW and ADU will not be supplied in
future versions of ADS.

• The main improvements in AXD, compared to the earlier ARM debuggers,
are:
- a completely redesigned graphical user interface offering multiple

views
- a new command-line interface

AXD: the ARM eXtended Debugger

34SOC Consortium Course Material

Debug Agent
A debug agent performs the actions requested by
the debugger, for example:
– setting breakpoints
– reading from memory
– writing to memory.

The debug agent is not the program being
debugged, or the debugger itself
Examples: ARMulator, Angel, Multi-ICE

35SOC Consortium Course Material

Debug Target
Different forms of the debug target
– early stage of product development, software
– prototype, on a PCB including one or more processors
– final product

The form of the target is immaterial to the debugger
as long as the target obeys these instructions in
exactly the same way as the final product.
The debugger issues instructions that can:
– load software into memory on the target
– start and stop execution of that software
– display the contents of memory, registers, and variables
– allow you to change stored values

36SOC Consortium Course Material

Views in AXD
Various views allow you to examine and control
the processes you are debugging.
In the main menu bar, two menus contain items that
display views:
– The items in the Processor Views menu display views

that apply to the current processor only
– The items in the System Views menu display views that

apply to the entire, possibly multiprocessor, target
system

AXD: the ARM eXtended Debugger

37SOC Consortium Course Material

AXD Desktop
ToolbarMenu

Status bar

Disassembly processor view

Source processor view

Console processor view

Control System view

Control System view

Variable processor view

Watch processor view

Watch system view

38SOC Consortium Course Material

ARM Debug Architecture (1/2)
Two basic approaches to debug
– from the outside, use a logic analyzer
– from the inside, tools supporting single stepping,

breakpoint setting
Breakpoint: replacing an instruction with a call to
the debugger
Watchpoint: a memory address which halts
execution if it is accessed as a data transfer
address
Debug Request: through ICEBreaker programming
or by DBGRQ pin asynchronously

39SOC Consortium Course Material

ARM Debug Architecture (2/2)
In debug state, the core’s internal state and the
system’s external state may be examined. Once
examination is complete, the core and system state
may be restored and program execution is resumed.
The internal state is examined via a JTAG-style
serial interface, which allows instructions to be
serially inserted into the core’s pipeline without
using the external data bus.
When in debug state, a store-multiple (STM) could
be inserted into the instruction pipeline and this
would dump the contents of ARM’s registers.

40SOC Consortium Course Material

In Circuit Emulator (ICE)
The processor in the target system is removed and
replaced by a connection to an emulator
The emulator may be based around the same
processor chip, or a variant with more pins, but it
will also incorporate buffers to copy the bus activity
to a “trace buffer” and various hardware resources
which can watch for particular events, such as
execution passing through a breakpoint

41SOC Consortium Course Material

Multi-ICE and Embedded ICE
Multi-ICE and Embedded ICE are JTAG-based
debugging systems for ARM processors
They provide the interface between a debugger and
an ARM core embedded within an ASIC
– real time address-dependent and data-dependent

breakpoints
– single stepping
– full access to, and control of the ARM core
– full access to the ASIC system
– full memory access (read and write)
– full I/O system access (read and write)

42SOC Consortium Course Material

Basic Debug Requirements
Control of program execution
– set watchpoints on interesting data accesses
– set breakpoints on interesting instructions
– single step through code

Examine and change processor state
– read and write register values

Examine and change system state
– access to system memory

• download initial code

43SOC Consortium Course Material

Debugging with Multi-ICE

The system being debugged may be the final
system

44SOC Consortium Course Material

ICEBreaker (EmbeddedICE Macrocell)

ICEBreaker is
programmed in a serial
fashion using the TAP
controller
It consists of 2 real-time
watch-point units,
together with a control
and status register
Either watch-point unit
can be configured to be
a watch-point or a
breakpoint

Processor

DBGRQI

A[31:0]

D[31:0]

nOPC

nRW

TBIT

MAS[1:0]

nTRANS

DBGACKI

BREAKPTI

IFEN

ECLK

nMREQ

ICEBreaker

EXTERN1

EXTERN0

RANGEOUT0

RANGEOUT1

DBGACK

BREAKPT

DBGRQ

DBGEN

TAP
nTRST

TCK

TMS

TDI

TDO

SDIN SDOUT

45SOC Consortium Course Material

Integrate All The Modules in The Integrator
Core Module (CM)
Logic Module (LM)
Integrator ASIC Development Platform
Integrator Analyzer Module
Integrator IM-PD1
Integrator/IM-AD1
Integrator/PP1 & PP2
Firmware Suite

ATX motherboard

46SOC Consortium Course Material

ARM Integrator within a ATX PC Case

Provided by NCTU

47SOC Consortium Course Material

Inside the Case

Provided by NCTU

48SOC Consortium Course Material

Logic Module

ZBT
SSRAMFlash

AHB SSRM
controllerAHB/APB

bridge

CSR

IntCntl

APB IP
AHB IP

Multi-ICE Config
PLD

Xchecker/
Download

EXPA/EXPB
connector

EXPIM
connector

Prototyping
grid (16x17)

FPGA

LEDs
Switchs
OSCs
Trace

Push B
LA C

LM

Provided by NCTU

49SOC Consortium Course Material

Extension with Prototyping Grid

You can use the prototyping

grid to:

− wire to off-board circuitry

− mount connectors

− mount small components

Provided by NCTU

50SOC Consortium Course Material

ARM Integrator – One Configuration

System bus

GPIO
Keyboard

Mouse
Serial 2

2xUART

LEDs

Clock
PLL
RTC
osc.

CSR

Interrupt
controller

RTC

3 x timer/
counter
Reset

control

Bridge

PCI bridge
controller

Peripheral bus

SMC

reset

EBI

ArbiterExternal system
Bus interface

3 PCI slots

PCI PCI
bridge

CompatPCI

Boot ROM

(32MB) Flash

(512BK) SSRAM

256MB
SDRAM

ARM
7TDMI

Multi-ICE

SSRAM

SSRAM
controller

Memory bus

System bus
bridge

SDRAM
controller

CSR
Reset

controller

HDRA/HDRB
connector

Clock
generator

ZBT
SSRAMFlash

AHB SSRM
controllerAHB/APB

bridge

CSR

IntCntl

APB IP
AHB IP

Multi-ICE Config
PLD

Xchecker/
Download

EXPA/EXPB
connector

EXPIM
connector

Prototyping
grid (16x17)

FPGA FPGA

FPGA

LEDs
Switchs
OSCs
Trace

Push B
LA C

CM

AP

LM

51SOC Consortium Course Material

System Memory Map

ROM / RAM
and

peripherals

PCI

CM alias
memory

1GB

2GB

3GB

4GB

LM
LM
LM
LM

0xC000_0000

0xD000_0000

0xE000_0000

0xF000_0000 256MB SDRAM
(CM 3)

256MB SDRAM
(CM 2)

256MB SDRAM
(CM 1)

256MB SDRAM
(CM 0) Spare

GPIO
LED/Switch

Mouse
Keyboard
UART 1
UART 0

RTC
Int control

Counter/Timer
EBI regs

Sys control
CM regs

Reserved

EBI

Peripheral
regs

CM 0, 1, 2, 3

CS 3 (EXPM)
SSRAM
Flash

Boot ROM

256MB

512MB

768MB

1GB

64MB

128MB

192MB

256MB

0x9000_0000

0xA000_0000

0x8000_0000

0xB000_0000

0x0FFF_FFFF

0x0000_0000

0x2000_0000

0x2400_0000

0x2800_0000

0x2C00_0000

0x8000_0000

0x4000_0000

0x1000_0000

0x2000_0000

0x3000_0000

52SOC Consortium Course Material

Outline
Introduction to SoC
ARM-based SoC and Development Tools
SoC Labs
Available Lab modules in NCTU
Summary

53SOC Consortium Course Material

SoC Labs
Code development
Debugging and evaluation
Core peripherals
Real-time OS (RTOS)
On-chip bus
Memory controller
ASIC logic
Standard I/O
JTAG and ICE
Case Designs

54SOC Consortium Course Material

Code Development
General/Machine-dependent guideline
– Compiler optimization:

• Space or speed (e.g, -Ospace or -Otime)
• Debug or release version (e.g., -O0 ,-O1 or -O2)
• Instruction scheduling

– Coding style
• Parameter passing
• Loop termination
• Division operation and modulo arithmetic
• Variable type and size

55SOC Consortium Course Material

Data Layout

Default

char a;
short b;
char c;
int d;

Optimized

char a;
char c;
short b;
int d;

occupies 12 bytes, with 4 bytes of padding occupies 8 bytes, without any padding

Group variables of the same type together. This is the best way to
ensure that as little padding data as possible is added by the compiler.

a pad b

c pad

d

a bc

d

56SOC Consortium Course Material

Stack Usage
C/C++ code uses the stack intensively. The stack is
used to hold:
– Return addresses for subroutines
– Local arrays & structures

To minimize stack usage:
– Keep functions small (few variables, less spills)minimize

the number of ‘live’ variables (I.e., those which contain
useful data at each point in the function)

– Avoid using large local structures or arrays (use
malloc/free instead)

– Avoid recursion

57SOC Consortium Course Material

Software Quality Measurement
Memory Requirement
– Data type: Volatile (RAM), non-volatile (ROM)
– Memory performance: access speed, data width, size and

range
Performance Benchmarking
– Harvard Core

• D-cycles, ID-cycles, I-cycles

– von Newman Cores
• N-cycles, S-cycles, I-Cycles, C-Cycles

– Clock rate
• Processor, external bus

– Cache efficiency
• Average memory access time = hit time +Miss rate x Miss Penalty
• Cache Efficiency = Core-Cycles / Total Bus Cycles

58SOC Consortium Course Material

Global Data Issues
When declaring global variables in source code to be
compiled with ARM Software, three things are affected by
the way you structure your code:
– How much space the variables occupy at run time. This

determines the size of RAM required for a program to run. The
ARM compilers may insert padding bytes between variables, to
ensure that they are properly aligned.

– How much space the variables occupy in the image. This is
one of the factors determining the size of ROM needed to hold
a program. Some global variables which are not explicitly
initialized in your program may nevertheless have their initial
value (of zero, as defined by the C standard) stored in the
image.

– The size of the code needed to access the variables. Some
data organizations require more code to access the data. As an
extreme example, the smallest data size would be achieved if
all variables were stored in suitably sized bitfields, but the code
required to access them would be much larger.

59SOC Consortium Course Material

Debugger
Functionality
– Execution Trace
– Exam/Modify program states

• Memory
• Registers (including PC)

– Control of program execution
• Run/Halt/Continue/Goto/Stepin
• Break point: conditional, repeat count

Issue: debug optimized code in source

60SOC Consortium Course Material

Concept of the Bus
A group of lines shared for interconnection of the
functional modules by a standard interface
– E.g., ARM AMBA, IBM CoreConnect

Interconnection structure
– Point-to-Point
– On-chip bus
– On-chip network

• Network on Silicon
• Network on Chip

61SOC Consortium Course Material

Bus Hierarchy

System bus (backbone)
– RISC processor, DSP, DMA (masters)
– Memory, high resolution LCD peripheral

Peripheral bus
– Components with other design considerations (power, gate

count, etc.)
– Bridge is the only bus master

The structure of multiple
buses within a system,
organized by bandwidth.
Local processor bus
– High processor-specific
– Processor, cache, MMU,

coprocessor

62SOC Consortium Course Material

Core Peripherals: Interrupt Schemes
Polled Interrupt

Vectored Interrupt

63SOC Consortium Course Material

Real Time OS
A RTOS is an abstraction from hardware and
software programming
– Shorter development time
– Less porting efforts
– Better reusability

Choosing a RTOS is important
– High efforts when porting to a different OS
– The chosen OS may have a high impact on the amount of

resources needed

64SOC Consortium Course Material

RTOS: Functionalities
Interrupt service
Process (task) management
– Scheduler
– Synchronization mechanism

• Inter-process communication (IPC)
• Semaphores

Memory management
Service routine
Device driver
Protection

65SOC Consortium Course Material

Characteristics of a RTOS
Multitasking
– Non-preemptive vs. preemptive
– Priority scheduling

Real-time
– Soft and hard real time requirements

Speedy interrupt response
Frequent Interrupts

66SOC Consortium Course Material

Memory Controller
The International Technology Roadmap for
Semiconductors (ITRS) shows memory already
accounting for over 50 percent of a typical SoC,
growing to 94 percent by the year 2014.
Memory design
– Size, ports, device number, memory hierarchy
– Application-specific behavior

Memory power management

67SOC Consortium Course Material

Outline
Introduction to SoC
ARM-based SoC and Development Tools
SoC Labs
Available Lab modules in NTU
Summary

68SOC Consortium Course Material

Lab 1: Code Development
Goal
– How to create an application

using ARM Developer Suite
(ADS)

– How to change between ARM
state and Thumb state when
writing code for different
instruction sets

Principles
– Processor’s organization
– ARM/Thumb Procedure Call

Standard (ATPCS)
Guidance
– Flow diagram of this Lab
– Preconfigured project

stationery files

Steps
– Basic software development

(tool chain) flow
– ARM/Thumb Interworking

Requirements and
Exercises
– See next slide

Discussion
– The advantages and

disadvantages of ARM and
Thumb instruction sets.

69SOC Consortium Course Material

Lab 1: Code Development (cont’)
ARM/Thumb Interworking
– Exercise 1: C/C++ for “Hello” program

• Caller: Thumb
• Callee: ARM

– Exercise 2: Assembly for “SWAP” program, w/wo veneers
• Caller: Thumb
• Callee: ARM

– Exercise 3: Mixed language for “SWAP” program, ATPCS
for parameters passing

• Caller: Thumb in Assembly
• Callee: ARM in C/C++

70SOC Consortium Course Material

Lab 2: Debugging and Evaluation
Goal
– A variety of debugging tasks and software quality

evaluation
• Debugging skills

– Set breakpoints and watchpoints
– Locate, examine and change the contents of variables, registers and

memory
• Skills to evaluate software quality

– Memory requirement of the program
– Profiling: Build up a picture of the percentage of time spent in each

procedure.
– Evaluate software performance prior to implement on hardware

– Thought in this Lab the debugger target is ARMulator, but
the skills can be applied to Multi-ICE/Angel with the ARM
development board(s).

71SOC Consortium Course Material

Lab 2: Debugging and Evaluation (cont’)
Principles
– The Dhrystone Benchmark
– CPU’s organization

Guidance
– Steps only

Steps
– Debugging skills
– Memory requirement and

Profiling
– Virtual prototyping
– Efficient C programming

Requirements and
Exercises
– Optimize 8x8 inverse discrete

cosine transform (IDCT) [1]
according to ARM’s
architecture.

– Deliverables
Discussion
– Explain the approaches you

apply to minimize the code
size and enhance the
performance of the lotto
program according to ARM’s
architecture.

– Select or modify the
algorithms of the code
segments used in your
program to fit to ARM's
architecture.

72SOC Consortium Course Material

Lab 3: Core Peripherals
Goal
– Understand the HW/SW

coordination
• Memory-mapped device
• Operation mechanism of polling

and Timer/Interrupt
• HAL

– Understand available resource of
ARM Integrator

• semihosting
Principles
– Semihosting
– Interrupt handler
– Architecture of Timer and

Interrupter controller
Guidance
– Introduction to Important

functions used in interrupt
handler

Steps
– The same to that of code

development
Requirements and Exercises
– Use timer to count the total data

transfer time of several data
references to SSRAM and
SDRAM.

Discussion
– Compare the performance

between using SSRAM and
SDRAM.

73SOC Consortium Course Material

Lab 4: Real-Time OS
Goal
– A guide to use RTOS and port

programs to it
Principles
– Basic concepts and capabilities

of RTOS
• Task, task scheduling & context

switch
• Resource management using

Semaphore
• Inter-process communication

using Mailbox
• Memory management

– Coding guideline for a program
running on the embedded RTOS

– Setting up the ARMulator
Guidance

Steps
– Building µC/OS-II
– Building Program with µC/OS-II
– Porting Program to µC/OS-II

Requirements and Exercises
– Write an embedded software for

ID checking engine and a front–
end interface

Discussion
– What are the advantages and

disadvantages of using RTOS in
SoC design?

74SOC Consortium Course Material

Lab 5: On-Chip Bus
Goal
– To introduce the interface design

conceptually. Study the
communication between FPGA
on logic module and ARM
processor on core module. We
will introduce the ARMB in detail.

Principle
– Overview of the AMBA

specification
– Introducing the AMBA AHB
– AMBA AHB signal list
– The Arm-based system overview

Guide
– We use a simple program to lead

student understanding the ARMB.

Requirements and Exercises
– To trace the hardware code and

software code, indicate that
software how to communicate
with hardware using the ARMB
interface.

Discussion
– If we want to design an

accumulator (1,2,3…) , how
could you do to implement it
using the scratch code?

– If we want to design a hardware
using FPGA, how could you do
to add your code to the scratch
code and debugger it ?

– To study the ARMB bus standard,
try to design a simple ARMB
interface.

75SOC Consortium Course Material

Lab 6: Memory Controller
Goal
– Realize the principle of

memory map and internal
and external memory

Principles
– System memory map
– Core Module Control

Register
– Core Module Memory Map
Guidance
– We use a simple program to

lead student understanding
the memory.

Requirements and
Exercises
– Modify the memory usage

example. Use timer to count
the total access time of
several data accessing the
SSRAM and SDRAM.
Compare the performance
between using SSRAM and
SDRAM.

Discussion
– Discuss the following items

about Flash, RAM, and ROM.
• Speed
• Capacity
• Internal /External

76SOC Consortium Course Material

Lab 7: ASIC Logic
Goal
– HW/SW Co-verification using

Rapid Prototyping
Principles
– Basics and work flow for

prototyping with ARM Integrator
– Target platform: AMBA AHB sub-

system
Guidance
– Overview of examples used in

the Steps
Steps
– Understand the files for the

example designs and FPGA tool
– Steps for synthesis with Xilinx

Foundation 3.1i

Requirements and Exercises
– RGB-to-YUV converting

hardware module
Discussion
– In example 1, explain the

differences between the Flash
version and the FPGA one.

– In example 1, explain how to
move data from DRAM to
registers in MYIP and how
program access these registers.

– In example2, draw the
interconnect among the
functional units and explain the
relationships of those
interconnect and functional units
in AHB sub-system

– Compare the differences of
polling and interrupt mechanism

77SOC Consortium Course Material

Lab 8: Standard I/O
Goal
– introduce students to control

IO and learn the principle of
polling, interrupt, and
semihosting through this Lab.

Principle
– How to access I/O via the

existing library function call.
Guidance
– Micro Hardware Abstraction

Layer
– How CPU access input

devices
Steps
– This program controls the

Intergator board LED and
print strings to the host using
uHal API.

Requirements and
Exercises
– Modify the LED example.

When it counts, we press any
key to stop counting and then
press any key to continue
counting numbers.

Discussion
– Explain the advantage and

disadvantage of polling &
interrupt.

– A system can be divided into
hardware, software, and
firmware. Which one contains
μHAL.

78SOC Consortium Course Material

Lab 9: JTAG and MultiICE
Goal
– Learn how to start-up the

Multi-ICE server and debug
program.

Principle
– Debugger introduction
– ARM eXtended Debugger

(AXD)
– What is Multi-ICE and its

function

Guidance
– Steps only

Steps
– The same as Lab3 except

you do the debugging tasks
with Multi-ICE. You will learn
how to start-up the Multi-ICE
server and debug program.

Requirements and
Exercises
– Write a lotto program that

generates N sets of number.
Discussion
– What’s different between

ARMulator and MultiICE that
we do the debugging task.

79SOC Consortium Course Material

Lab 10: Case design
Goal
– Study how to use the ARM-

based platform to implement
Mp3 system. In this chapter,
we will describe the Mp3
algorithm in detail.

Principle
– Detail of design method and

corresponding algorithm

Guidance
– In this section, we will

introduce the mp3 software
file (.cpp) in detail. We will
introduce the hardware
module.

Steps
– We divide our program into

two parts:
• Hardware
• Software

Requirements and
Exercises
– Try to understand the

communication between the
software part and hardware
part. To check the computing
result is correct. You can
easily check that the output
value from the FPGA on LM

80SOC Consortium Course Material

Lab 10: Case design (cont’)
Discuss
– We describe the decoder part

algorithm on reference 3, try
to implement it on ARM-
based platform. You can
divide to two parts: software
& hardware.

Hint:
we will give you the mp3 software try to analyze the
code. On hardware part, you can refer to chapter 8. And
software/hardware co-design, you can refer to section
10.3 on this chapter.

81SOC Consortium Course Material

Summary
To build SoC labs
– Software tools

• Code development\debug\evaluation (e.g. ARM Developer Suite)
• Cell-based design EDA tools

– Development boards, e.g., ARM Integrator
• Core Module: 7TDMI, 720T, 920T, etc
• Logic Module (Xilin XCV2000E, Altera LM-EP20K1000E)
• ASIC Development Platform (Integrator/AP AHB)
• Multi-ICE Interface

– Advanced labs: RTOS (e.g., µC/OS-II)
Verification/Validation

82SOC Consortium Course Material

Summary
The ARM has played a leading role in the opening
of this era since its very small core size leaves more
silicon resources available for the rest of the system
functions.
SoC labs are challenges to universities
– Various expertise
– Tight schedule for (M.S.) students

83SOC Consortium Course Material

Reference
[1] http://twins.ee.nctu.edu.tw/courses/ip_core_02/index.html
[2] ARM System-on-Chip Architecture by S.Furber, Addison

Wesley Longman: ISBN 0-201-67519-6.
[3] http://www.arm.com

