ARM-Based SoC Design
Laboratory Course

Speaker: Juin-Nan Liu

Adopted from National Chiao-Tung University
IP Core Design

SOC Consortium Course M aterial

Outline

diIntroduction to SoC

JARM-based SoC and Development Tools
dSoC Labs

dAvailable Lab modules in NTU
dSummary

e Y ol o Yy L. o U W [.y |

SoC: System on Chip

d System

A collection of all kinds of components and/or
subsystems that are appropriately interconnected to
perform the specified functions for end users.

A SoC design is a “product creation process” which
— Starts at identifying the end-user needs

— Ends at delivering a product with enough functional
satisfaction to overcome the payment from the end-user

e Y ol o Yy L. o U W [.y | A~

SoC Definition

dComplex IC that integrates the major functional
elements of a complete end-product into a single
chip or chipset

dThe SoC design typically incorporates
— Programmable processor
— On-chip memory
— HW accelerating function units (DSP)
— Peripheral interfaces (GPIO and AMS blocks)
— Embedded software

Source: “Surviving the SoC revolution — A Guide to Platform-based Design,”
Henry Chang et al, Kluwer Academic Publishers, 1999

e Y ol o Yy L. o U W [.y |

SoC Architecture

Memory

Processor DSP

Embedded or
Software Special FU

LA OCB Architecture

Configurable
Hardware

e Y ol o Yy L. o U W [.y |

JTAG

Peripherals

SoC Example

RGB Monitor LCD, Mono/Colour

1n 1\ (STNITFT)

SDRAM
ROM
FLASH
PCcard RS232
CF
RS232
MMC
==
Joystick
RF Pen

Speaker/Mic RF

e Y ol o Yy L. o U W [.y |

SoC Application

Jd Communication

— Digital cellular phone
— Networking

d Computer
— PC/Workstation
— Chipsets

L Consumer
— Game box
— Digital camera

CONL™ ™ vttt amm S

PRSP W By Ry |

Benefits of Using SoC

dReduce overall system cost
dIncrease performance
dLower power consumption
JReduce size

e Y ol o Yy L. o U W [.y |

Evolution of Silicon Design

Year 1997 1998 1999 2002
Process Technology 0.35u 0.25u 0.18u 0.13u
Design Cycle (month) 18 ~ 12 12~10 10~8 8~6
Derivative Cycle (month) 8-6 6~4 4~2 3~ 4
Silicon Complexity (gate) 200 - 500 k 1-2M 4-6M 10=-25M
Applications Cellular, PDAs, Set-top boxes, Internet Ubigquitous
oDvD Wireless PDA appliances, computing

Anything portable Intelligent, inter-

(=m] I]i—_:-:_:li;.'l'l CON=

trollers

Source: “Surviving the SoC revolution — A Guide to Platform-based Design,”
Henry Chang et al, Kluwer Academic Publishers, 1999

e Y ol o Yy L. o U W [.y | P~

SoC Challenges (1/2)

Bigger circuit size (Size does matter)
— Design data management, CAD capability
— Forced to go for high-level abstraction

dSmaller device geometries, new processing (e.gd.,
SOIl)

— Short channel effect, sensitivity, reliability
— Very different, complicated device model
dHigher density integration
— Shorter distance between devices and wires: cross-talk
coupling
dLow Power requirement

— Standby leakage power is more significant, lower noise
marain J

SoC Challenges (2/2)

dHigher frequencies
— Inductance effect, cross talk coupling noise

dDesign Complexity

— uCs, DSPs, HW/SW, RTOS'’s, digital/analog IPs, On-
chips buses

JIP Reuse

Verification, at different levels

— HW/SW co-verification

— Digital/analog/memory circuit verification

— Timing, power and signal integrity verification
d Time-to-market

e Y ol o Yy L. o U W [.y |

ﬁ

How to Conquer the Complexity

dUse a known real entity
— A pre-designed component (IP reuse)
— A platform (architecture resue)

L Partition
— Based on functionality
— Hardware and software

dModeling

— At different level
— Consistent and accurate

e Y ol o Yy L. o U W [.y |

Outline

dintroduction to SoC

JARM-based SoC and Development Tools
dSoC Labs

d Avallable Lab modules in NTU

dSummary

e Y ol o Yy L. o U W [.y |

ARM-based System Development

ﬁ

J Processor cores

dARM On-Chip Bus: AMBA
dPlatform: PrimeXsys

d System building blocks: PrimeCell

dDevelopment tools

— Software development
— Debug tools

— Development kits

— EDA models

— Development boards

CMNL™ ™ mvmrmrmrrt i s srmm St tvrr~m~ N1 ~+ [y |

ARM Architecture Version

50¢

ARM1 vl
ARM2, ARM2as, ARM3 V2
ARM6, ARM60, ARM610, ARM7, ARM710, ARM7D, ARM7DI v3
ARM7TDMI, ARM710T, ARM720T, ARM740T v4T
StrongARM, ARM8, ARM810 v4
ARM9TDMI, ARM920T, ARM940T v4T
ARM9E-S, ARM10TDMI, ARM1020E VOTE
ARMT7EJ-S, ARM926EJ-S, ARM1026EJ-S VoTEJ

ARM11

V6

ARM Coprocessors

 Application specific coprocessors
— e.g. For specific arithmetic extensions
— Developed a new decoupled coprocessor interface

— Coprocessor no longer required to carefully track
processor pipeline.

e Y ol o Yy L. o U W [.y |

ARM On-Chip Bus

ARM Core

AHB/ASB APB

Memory

Interface

DMA

Master Keypad

A typical AMBA system

AHB: Advanced High-performance Bus
ASB: Advanced System Bus

APB: Advanced Peripheral Bus

e Y ol o Yy L. o U W [.y | . o~

PrimeXsys

It is no longer the case that a single Intellectual
Property (IP) or silicon vendor will be able to supply
all of the IP that goes into a device.

dWith the PrimeXsys range, ARM is going one step
further in providing a known framework in which the
IP has been integrated and proven to work.

dEach of the PrimeXsys platform definitions will be
application focused — there is no ‘one-size-fits-all’
solution.

JARM will create different platform solutions to meet
the specific needs of different markets and
applications.

CMNL™ ™ mmnrrmrrtirsrnm S s tvrevem M At~ 1

PrimeCell (1/2)

dARM PrimeCell Peripherals are re-usable soft IP
macrocells developed to enable the rapid assembly
of system-on-chip (SoC) designs.

d Fully verified and compliant with the AMBA on-chip
bus standard, the ARM PrimeCell range is designed
to provide integrated right-first-time functionality and
high system performance.

dUsing the ARM PrimeCell Peripheral range,
designers save considerable development time and
cost by concentrating their resources on developing
the system design rather than the peripherals.

CMNL™ ™ mmnrrmrrtirsrnm S s tvrevem M At~ 1

PrimeCell (2/2)

PrimeCell
SMC

PrimeCell
SDRAMC

A typical AMBA SoC design using PrimeCell
Peripherals. Ancillary or general-purpose
peripherals are connected to the Advanced
Peripherals Bus (APB), while main high-
performance system components use the
Advanced High-performance Bus (AHB).

e Y ol o Yy L. o U W [.y |

ARM’s Point of View of SoCs

dIntegrating Hardware IP
dSupplying Software with the Hardware

dARM has identified the minimum set of building
blocks that is required to develop a platform with the
basic set of requirements to:

— Provide the non-differentiating functionality, pre-integrated
and pre-validated,;

— Run an OS;
— Run application software,;

— Allow partners to focus on differentiating the final solution
where it actually makes a difference.

e Y ol o Yy L. o U W [.y | P~ o~

ARM-based System Development

ﬁ

J Processor cores

JARM On-Chip Bus: AMBA
dPlatform: PrimeXsys

d System building blocks: PrimeCell

dDevelopment tools

— Software development
— Debug tools

— Development kits

— EDA models

— Development boards

CMNL™ ™ mvmrmrmrrt i s srmm St tvrr~m~ N1 ~+ [y |

Main Components in ADS (1/2)

ﬁ
JANSI C compilers — armcc and tcc
d1SO/Embedded C++ compilers — armcpp and tcpp
JARM/Thumb assembler - armasm
dLinker - armlink

 Project management tool for windows -
CodeWarrior

JInstruction set simulator - ARMulator

1 Debuggers - AXD, ADW, ADU and armsd

J Format converter - fromelf

A Librarian — armar

QARM profiler - armprof ADS: ARM Developer Suite

e Y ol o Yy L. o U W [.y |

Main Components in ADS (2/2)

foc
dC and C++ libraries

JROM-based debug tools (ARM Firmware Suite, AFS
dReal Time Debug and Trace support

dSupport for all ARM cores and processors including
ARM9E, ARM10, Jazelle, StrongARM and Intel
Xscale

e Y ol o Yy L. o U W [.y |

The Structure of ARM Tools

C/C++ source

C libraries __.=-""""| asmsource

N et |

C compiler assembler

.0
ELF object file
With DWARF2 debug tables

linker Librarian

A 4
.axf/ debug
ELF/DWARF2 image

object libraries

ARMsd

System models

~,

development l

ARMulator board

DWAREF: Debug With Arbitrary Record Format ELF: Executable and linking format

e Y ol o Yy L. o U W [.y | Y~ &

View In CodeWarrier

dThe CodeWarrior IDE provides a simple, versatile,

graphical user interface for managing your software
development projects.

dDevelop C, C++, and ARM assembly language
code

dtargeted at ARM and Thumb processors.
It speeds up your build cycle by providing:

— comprehensive project management capabilities

— code navigation routines to help you locate routines
quickly.

COMNL™ ™ mvmrmrtrd it avmm S~ s

ARM Emulator: ARMulator (1/2)

A suite of programs that models the behavior of
various ARM processor cores and system
architecture in software on a host system

L Can be operates at various levels of accuracy
— Instruction accurate
— Cycle accurate
— Timing accurate

e Y ol o Yy L. o U W [.y | P~ o~

ARM Emulator: ARMulator (2/2)

foc
dBenchmarking before hardware is available

— Instruction count or number of cycles can be measured
for a program.

— Performance analysis.

dRun software on ARMulator
— Through ARMsd or ARM GUI debuggers, e.g., AXD

— The processor core model incorporates the remote debug
Interface, so the processor and the system state are
visible from the ARM symbolic debugger

— Supports a C library to allow complete C programs to run
on the simulated system

e Y ol o Yy L. o U W [.y | o —

ARM pHAL API

AduHAL is a Hardware Abstraction Layer that is
designed to conceal hardware difference between
different systems

JARM UHAL provides a standard layer of board-
dependent functions to manage 1/0O, RAM, boot
flash, and application flash.

— System Initialization Software
— Serial Port

— Generic Timer

— Generic LEDs

— Interrupt Control

— Memory Management

o YooY T Iy Ry u--‘n P P~ CMNL™ ™ mmnrrmrrtirsrnm S s tvrevem M At~ 1

UHAL Examples

foc

JuHAL API provides simple & extended functions
that are linkable and code reusable to control the
system hardware.

General
User application AFS utilities
C and C++ libraries
e : AFS support
AFS board-specific uHAL routines . PP
routines
Development board
Specific

AFSF: ARM Firmware Suit

e Y ol o Yy L. o U W [.y | P~~~

ARM Symbolic Debugger (ARMsd) (1/2) ﬁ

JARMsd: ARM and Thumb symbolic debugger

— can single-step through C or assembly language sources,
— set break-points and watch-points, and
— examine program variables or memory

It is a front-end interface to debug program running
either
— under emulation (on the ARMulator) or

— remotely on a ARM development board (via a serial line
or through JTAG test interface)

e Y ol o Yy L. o U W [.y | P~ o~

ARM Symbolic Debugger (ARMsd) (2/2) ﬁ

It allows the setting of
— breakpoints, addresses in the code

— watchpoints, memory address if accessed as data
address

=» cause exception to halt so that the processor state can
be examined

e Y ol o Yy L. o U W [.y | P

Debugger-Target Interface

dTo debug your application you must choose:

— a debugging system, that can be either:
 hardware-based on an ARM core
e software that simulates an ARM core.

— a debugger, such as AXD, ADW, ADU, or armsd.

ARM Debugger
HDI
Remaote Debug Interface (RDI)
__________ H——————————=
Target (software) | Target (hardware)
ARMulator : Multi-ICE Angel
RDI | RDI RDI
: Remote A
Targel I ARM ARM
ermubkated m | [developrment developrment
softwarne | board board
|

e Y ol o Yy L. o U W [.y |

Debugger E

1 A debugger is software that enables you to make use of a
debug agent in order to examine and control the execution of
software running on a debug target.

O Examples: AXD, ADU, ADW, armsd
— armsd (ARM Symbolic Debugger)
— ADU (ARM Debugger for UNIX)
— ADW (ARM Debugger for Windows)

— AXD (both Windows and UNIX versions)

« AXD is the recommended debugger. It provides functionality that is not
available in the other debuggers. ADW and ADU will not be supplied in
future versions of ADS.

 The main improvements in AXD, compared to the earlier ARM debuggers,
are:

- a completely redesigned graphical user interface offering multiple
Views
- a new command-line interface

AXD: the ARM eXtended Debugger

e Y ol o Yy L. o U W [.y | P~~~

Debug Agent

A debug agent performs the actions requested by
the debugger, for example:
— setting breakpoints
— reading from memory
— writing to memory.

dThe debug agent is not the program being
debugged, or the debugger itself

d Examples: ARMulator, Angel, Multi-ICE

e Y ol o Yy L. o U W [.y |

ﬁ

Debug Target

d Different forms of the debug target
— early stage of product development, software
— prototype, on a PCB including one or more processors
— final product

dThe form of the target is immaterial to the debugger
as long as the target obeys these instructions Iin
exactly the same way as the final product.

dThe debugger issues instructions that can:
— load software into memory on the target
— start and stop execution of that software
— display the contents of memory, registers, and variables
— allow you to change stored values

e Y ol o Yy L. o U W [.y | [P

Views in AXD

ﬁ

dVarious views allow you to examine and control
the processes you are debugging.

d1n the main menu bar, two menus contain items that
display views:
— The items in the Processor Views menu display views
that apply to the current processor only

— The items in the System Views menu display views that
apply to the entire, possibly multiprocessor, target
system

AXD: the ARM eXtended Debugger

e Y ol o Yy L. o U W [.y | P~ o~

AXD Desktop

ﬁenu To;lbar
fla fearch Pmossor Tews #mtnfwn Epecun Oppors Hisdew Halp

B[] wF| oo Ve
Terget |buege |Bds | Clw |

b E ARMTT_I

Control Bystem view

ARMTT_L - Varahles
Lol | Ghobal | Cles |

YVariable

Variablg processor view

JlaElE

printt ("wn¥);
praintT ("Dheyvatons Benchmack,
praintt

#* Warning:

("wn%la

if (Rag)

printf

|_ |:|:|:|n:

kA 1'E g sl hreadal harw_1
A* Wasz migsing in publishsd program, Without thig HJ
f® Are 2 Zlobk [B] (7] weould have an undefined wvalua
With 1l6-Bit processors and Hunbec_oOf R
A% evarflow may ococur Tar thiz arcay slamant.

[e|l])T eP0] =17

+«—— Source proc

["Program compiled with fragistaer’ attributain”
printf [("\n");

Varelen 2.1 (Languags;

=i

Sk

or view

al | -+
SRHTTL-mah PO e : e St
Tk 1 |n11 | Tak3 | Tabd | ﬂﬂﬂﬂﬂldi [Dxeladf0i0es] MoV pcerld
Hatch Pros 5 [OxaSLEOLOD] 14r g0, OxDO00A0eD] : = S#0x0ODOC400
goooBelde [Ome3a01041] MW rl, ¥0x41
|_> OD00Els0 [OneSc0l000] strhk cl; [cD, #0] D bl .
. 0DD0B1led [0xe3a01000] mov £l, ¥0 isassem rocessor view
Watch processor view BN (103010040 i r1 (e, S0x14) yp
1 | & 000061ec [Oxelalfile] mov pe, rid /
main [Dxaf3Z2d44CT0] * stnld 13l 1rd=rll, rld]
Siem Woih ODOOB1E4 [Oxefdddiss] subk 13, r13, §luse
[Tebl |Tab2 | Tabd | Tabd | DDO0BLER [DweldallDi0] movw ri, #0x30 =
Watch dystem view | _.|] A000BIEC [OxeblD03ac] bl malloc 3
4 E] =
Syviem Cmipot Mocsior ARHTT | - Comends
mil:ﬂ | e Loge | =
Pagetables, IntCir, Tracer, Milisecand |20000 cycies_per_rmilisecond|, =] / Console processor view
Sermihost
RH RO 1B == ASTYHC RO Protocol Corvartar ADS «1.1 [Build numbes 7049] Cnpr:-nghilr'd -
*I I o g .

Bar Hilp, preze F1

[Law 87, CalD [ARMUL AEMTI_I [My_Porjciad

Control System view

CONL™ ™ v mr~re oy

Y - WIS B [y Ry |

Status bar

Prg—

ARM Debug Architecture (1/2)

ﬁ

dTwo basic approaches to debug
— from the outside, use a logic analyzer
— from the inside, tools supporting single stepping,
breakpoint setting

dBreakpoint: replacing an instruction with a call to
the debugger

Watchpoint: a memory address which halts
execution If it IS accessed as a data transfer
address

Debug Request: through ICEBreaker programming
or by DBGRQ pin asynchronously

e Y ol o Yy L. o U W [.y |

ARM Debug Architecture (2/2)

In debug state, the core’s internal state and the
system’s external state may be examined. Once
examination is complete, the core and system state
may be restored and program execution Is resumed.

dThe internal state is examined via a JTAG-style
serial interface, which allows instructions to be
serially inserted into the core’s pipeline without
using the external data bus.

dWhen in debug state, a store-multiple (STM) could
be Inserted into the instruction pipeline and this
would dump the contents of ARM'’s registers.

ﬁ

e Y ol o Yy L. o U W [.y |

In Circuit Emulator (ICE)

dThe processor in the target system is removed and
replaced by a connection to an emulator

dThe emulator may be based around the same
processor chip, or a variant with more pins, but it
will also incorporate buffers to copy the bus activity
to a “trace buffer” and various hardware resources
which can watch for particular events, such as
execution passing through a breakpoint

CMNL™ ™ mmnrrmrrtirsrnm S s tvrevem M At~ 1

Multi-ICE and Embedded ICE

dMulti-ICE and Embedded ICE are JTAG-based
debugging systems for ARM processors

dThey provide the interface between a debugger and
an ARM core embedded within an ASIC

— real time address-dependent and data-dependent
breakpoints

— single stepping

— full access to, and control of the ARM core
— full access to the ASIC system

— full memory access (read and write)

— full /O system access (read and write)

e Y ol o Yy L. o U W [.y |

Basic Debug Requirements

d Control of program execution
— set watchpoints on interesting data accesses
— set breakpoints on interesting instructions
— single step through code

dExamine and change processor state
— read and write register values

dExamine and change system state

— access to system memaory
» download initial code

e Y ol o Yy L. o U W [.y | A~

Debugging with Multi-ICE

SoC
ARM CPU Macrocell

| Contral
Execution “ "

Address

The system being debugged may be the final
system

ICEBreaker (EmbeddedICE Macrocell)

JICEBreaker iIs

programmed In a serial | oeore
fashion using the TAP o
controller .
Qlt consists of 2 real-time | g’
watch-point units, e
together with a control e
and status register v

ICEBreaker

\ 4

:

A A

d Either watch-point unit f

y
SDOUTT
v |

A

can be configured to be

a watch-point or a TRST
breakpoint

TAP

A A A

e Y ol o Yy L. o U W [.y |

\ 4

Integrate All The Modules in The Integrator ﬁ

Core Module (CM)
Logic Module (LM)
Integrator ASIC Development Platforn
Integrator Analyzer Module
Integrator IM-PD1
Integrator/IM-AD1
Integrator/PP1 & PP2
- _Firmware Suite

ATX motherboard

e Y ol o Yy L. o U W [.y |

Inside the Case

Logic Module

. Config Xchecker
Multi-ICE PLD Flash
AHB SSRM

AHB/APB controller
bridge

EXPA/EXPB
connector

T Il R RDE.

e Y ol o Yy L. o U W [.y | ™ - - 2" o e NLAS™ 1 . o~

Extension with Prototyping Grid $OC

T LT (R s

You can use the prototyping
grid to:
— wire to off-board circuitry

— mount connectors

— mount small components

ARM Integrator — One Configuration

Reset
controller

SDRAM
controller

Clock

generator

Memory bus

SSRAM

System bus
bridge

HDRA/HDRB B \ulti-ICE
connector

SSRAM
controller

. Config Xchecker
Multi-ICE PLD Flash

Prototyping
grid (16x17)

AHB SSRM

AHB/APB controller
bridge

EXPIM
connector

IntCntl

EXPA/EXPB
connector

3 PCI slots

PCI PCI
bridge

CompatPCI
Boot ROM

(32MB) Flash

(512BK) SSRAM

reset

PCI bridge xternal system
controller Bus interface

_ System bus
Bridge
Clock Interrupt

eyboard

Serial 2
m 2XxUART

ouse

Reset LEDs
tro

Peripheral bus AP

CONL™ ™ v mr~re oy

Y - WIS B [y Ry | —

System Memory Map

0xF000_0000

0xE000_0000

0xD000_0000

0xC000_0000

0x8000_0000

0x4000_0000

4GB
LM
LM
0xB0@0_0000
LM
LM 0XA000_0000
3GB
. 0x9000_0000
CM alias S
memory
0x8000_0000
2GB
PCI Reserved
0x3000_0000
EBI
GB
0x2000_0000
ROM / RAM Peripheral
and 0x1000_0000 regs
eripherals
perp CMO, 1,2, 3
CONL™ ™ et s s S~

0x2C00_000,
0x2800_0p00
0x2400/0000

0x20G0_0000

OXOFFF_FHFF

0x0000/0000

GB

738MB

512MB

6MB

R N P Ry |

CS 3 (EXPM)

SSRAM

Flash

Boot ROM

Spare

GPIO

LED/Switch

Mouse

Keyboard

UART 1

UART O

RTC

Int control

Counter/Timer

EBIregs

Sys control

CMregs

256MB
192MB
128MB
64MB

Outline

dintroduction to SoC

JARM-based SoC and Development Tools
dSoC Labs

J Avalilable Lab modules in NCTU
dSummary

e Y ol o Yy L. o U W [.y |

SoC Labs

dCode development
dDebugging and evaluation
dCore peripherals
dReal-time OS (RTOS)
dOn-chip bus

dMemory controller

JASIC logic

dStandard 1/O

dJTAG and ICE

dCase Designs

e Y ol o Yy L. o U W [.y |

Code Development

d General/Machine-dependent guideline
— Compiler optimization:
e Space or speed (e.g, -Ospace or -Otime)
* Debug or release version (e.g., -0O0 ,-O1 or -02)
 Instruction scheduling
— Coding style
« Parameter passing
e Loop termination

 Division operation and modulo arithmetic
« Variable type and size

Data Layout

Default Optimized
char a; char a;
short b; char c;
char c; short b;
int d; ‘ int d;
a C b
d

occupies 12 bytes, with 4 bytes of padding occupies 8 bytes, without any padding

Group variables of the same type together. This is the best way to
ensure that as little padding data as possible is added by the compiler.

Stack Usage

dC/C++ code uses the stack intensively. The stack Is
used to hold:
— Return addresses for subroutines
— Local arrays & structures

dTo minimize stack usage:

— Keep functions small (few variables, less spills)minimize
the number of ‘live’ variables (l.e., those which contain
useful data at each point in the function)

— Avoid using large local structures or arrays (use
malloc/free instead)

— Avoid recursion

CMNL™ ™ mmnrrmrrtirsrnm S s tvrevem M At~ 1 —

Software Quality Measurement

ﬁ

1 Memory Requirement
— Data type: Volatile (RAM), non-volatile (ROM)

— Memory performance: access speed, data width, size and
range
 Performance Benchmarking
— Harvard Core
« D-cycles, ID-cycles, I-cycles
— von Newman Cores
* N-cycles, S-cycles, I-Cycles, C-Cycles
— Clock rate
* Processor, external bus

— Cache efficiency
« Average memory access time = hit time +Miss rate x Miss Penalty
» Cache Efficiency = Core-Cycles / Total Bus Cycles

Global Data Issues

foc
O When declaring global variables in source code to be '
compiled with ARM Software, three things are affected by
the way you structure your code:

— How much space the variables occupy at run time. This
determines the size of RAM required for a program to run. The
ARM compilers may insert padding bytes between variables, to
ensure that they are properly aligned.

— How much space the variables occupy in the image. This is
one of the factors determining the size of ROM needed to hold
a program. Some global variables which are not explicitly
Initialized in your program may nevertheless have their initial
value (of zero, as defined by the C standard) stored in the
Image.

— The size of the code needed to access the variables. Some
data organizations require more code to access the data. As an
extreme example, the smallest data size would be achieved if
all variables were stored in suitably sized bitfields, but the code
required to access them would be much larger.

COMNL™ ™ vttt avmm S o 1 0r r~~ PRy | — e~

Debugger

d Functionality
— Execution Trace

— Exam/Modify program states
e Memory
» Registers (including PC)

— Control of program execution

« Run/Halt/Continue/Goto/Stepin
« Break point: conditional, repeat count

dIssue: debug optimized code in source

ﬁ

Concept of the Bus

A group of lines shared for interconnection of the
functional modules by a standard interface

— E.g., ARM AMBA, IBM CoreConnect

dInterconnection structure
— Point-to-Point
— On-chip bus
— On-chip network

 Network on Silicon
* Network on Chip

e Y ol o Yy L. o U W [.y | A~ o~

Bus Hierarchy

A The structure of multiple -2t m Iﬂ
buses within a system, [[— Pracsmr OC__
organized by bandwidth. | ‘=.,,,.” |m

A Local processor bus e e

— High processor-specific bl 663 V6 e

— Processor, cache, MMU, """‘"“U 1 .
coprocessor s T onh

 System bus (backbone)
— RISC processor, DSP, DMA (masters)
— Memory, high resolution LCD peripheral

1 Peripheral bus

— Components with other design considerations (power, gate
count, etc.)

— Bridge is the only bus master

Core Peripherals: Interrupt Schemes

Polled Interrupt

Intermupt
E-"té?tlﬁ ‘-I_""»._th
Bits : | ——{INT
/ "
' e |] | o e B [e CPU Memory
Status Reg Status Reg Status Reg
Device 1 Device 2 Device n
X Ssembus __J L
Vectored Interrupt
. It
j Device 1— ¢ ﬂaﬁ@ \
I “Program | [15RT)
_L 0
Interrupt h -~
i S S (ISR 3]
j Device 2 Controller C (1SR 4]

=1 1]

Real Time OS

JA RTOS is an abstraction from hardware and
software programming
— Shorter development time
— Less porting efforts
— Better reusability

dChoosing a RTOS is important
— High efforts when porting to a different OS

— The chosen OS may have a high impact on the amount of
resources needed

e Y ol o Yy L. o U W [.y | A~ o~

RTOS: Functionalities

dInterrupt service

dProcess (task) management
— Scheduler

— Synchronization mechanism
* Inter-process communication (IPC)
e Semaphores

dMemory management
d Service routine
dDevice driver

J Protection

CONL™ ™ vt s S

PRSP Y Y Ry |

Characteristics of a RTOS

d Multitasking

— Non-preemptive vs. preemptive
— Priority scheduling

dReal-time
— Soft and hard real time requirements

dSpeedy interrupt response
d Frequent Interrupts

e Y ol o Yy L. o U W [.y |

ﬁ

Memory Controller

dThe International Technology Roadmap for
Semiconductors (ITRS) shows memory already
accounting for over 50 percent of a typical SoC,
growing to 94 percent by the year 2014.
dMemory design
— Size, ports, device number, memory hierarchy
— Application-specific behavior
dMemory power management

e Y ol o Yy L. o U W [.y |

Outline

dIntroduction to SoC

JARM-based SoC and Development Tools
dSoC Labs

dAvailable Lab modules in NTU
dSummary

e Y ol o Yy L. o U W [.y |

Lab 1: Code Development

4 Goal Steps
— How to create an application — Basic software development
using ARM Developer Suite (tool chain) flow
(ADS)

_ How to change between ARM — AR-M/Thumb Interworking
state and Thumb state when ~ d Requirements and

writing code for different Exercises
Instruction sets :
.. — See next slide
4 Principles QD .
— Processor’s organization Discussion
— ARM/Thumb Procedure Call — The advantages and
Standard (ATPCS) disadvantages of ARM and
O Guidance Thumb instruction sets.

— Flow diagram of this Lab

— Preconfigured project
stationery files

ﬁ

Lab 1: Code Development (cont’)

dARM/Thumb Interworking

— Exercise 1: C/C++ for “Hello” program
o Caller: Thumb
o Callee: ARM

— Exercise 2: Assembly for “SWAP” program, w/wo veneers
o Caller: Thumb
« Callee: ARM
— Exercise 3: Mixed language for “SWAP” program, ATPCS
for parameters passing

o Caller: Thumb in Assembly
o Callee: ARM in C/C++

e Y ol o Yy L. o U W [.y | A~ o~

ﬁ

Lab 2: Debugging and Evaluation

JGoal

— A variety of debugging tasks and software quality
evaluation
* Debugging skills
— Set breakpoints and watchpoints

— Locate, examine and change the contents of variables, registers and
memory

» Skills to evaluate software quality
— Memory requirement of the program

— Profiling: Build up a picture of the percentage of time spent in each
procedure.

— Evaluate software performance prior to implement on hardware
— Thought in this Lab the debugger target is ARMulator, but
the skills can be applied to Multi-ICE/Angel with the ARM
development board(s).

Lab 2: Debugging and Evaluation (cont’) ﬁ

IEI Principles d Requirements and
Exercises

— Optimize 8x8 inverse discrete
cosine transform (IDCT) [1]

— The Dhrystone Benchmark
— CPU'’s organization

. Guidance according to ARM’s
_ Steps only architecture.
— Deliverables
d Steps

[Discussion

— Debugging skills — Explain the approaches you

— Memory requirement and apply to minimize the code
Profiling size and enhance the
_ Virtual prototyping performance of the lotto

program according to ARM’s
architecture.

— Select or modify the
algorithms of the code
segments used in your
program to fit to ARM's
architecture.

COMNL™ ™ vttt avmm S o 1 0r r~~ P -—

— Efficient C programming

Lab 3: Core Peripherals

ﬁ

1 Goal

— Understand the HW/SW
coordination
 Memory-mapped device

* Operation mechanism of polling
and Timer/Interrupt

« HAL

— Understand available resource of
ARM Integrator

* semihosting
O Principles
— Semihosting
— Interrupt handler

— Architecture of Timer and
Interrupter controller

1 Guidance

— Introduction to Important
functions used in interrupt
handler

O Steps
— The same to that of code
development
O Requirements and Exercises

— Use timer to count the total data
transfer time of several data
references to SSRAM and

SDRAM.

O Discussion

— Compare the performance
between using SSRAM and
SDRAM.

Lab 4: Real-Time OS

d Goal O Steps
— A guide to use RTOS and port — Building pC/OS-II
q pri pr.o?rams o1t — Building Program with pC/OS-II
rmCIp_eS - — Porting Program to pC/OS-Il
— Basic concepts and capabilities _ _
of RTOS d Requirements and Exercises
» Task, task scheduling & context — Write an embedded software for
switch ID checking engine and a front—
« Resource management using end interface
Semaphore)]
* Inter-process communication J Discussion

using Mailbox — What are the advantages and

* Memory management disadvantages of using RTOS in
— Coding guideline for a program SoC design?
running on the embedded RTOS

— Setting up the ARMulator
O Guidance

e Y ol o Yy L. o U W [.y |

Lab 5: On-Chip Bus

1 Goal

To introduce the interface design
conceptually. Study the
communication between FPGA
on logic module and ARM
processor on core module. We
will introduce the ARMB in detail.

4 Principle

Overview of the AMBA
specification

Introducing the AMBA AHB
AMBA AHB signal list

The Arm-based system overview

d Guide

We use a simple program to lead

student understanding the ARMB.

O Requirements and Exercises
— To trace the hardware code and

software code, indicate that
software how to communicate
with hardware using the ARMB
interface.

L Discussion
— If we want to design an

accumulator (1,2,3...) , how
could you do to implement it
using the scratch code?

If we want to design a hardware
using FPGA, how could you do
to add your code to the scratch
code and debugger it ?

To study the ARMB bus standard.
try to design a simple ARMB
interface.

Lab 6: Memory Controller

J Goal

Realize the principle of

memory map and internal

and external memory

d Principles

System memory map

Core Module Control
Register

Core Module Memory Map
O Guidance

We use a simple program to
lead student understanding

the memory.

1 Requirements and
Exercises

— Modify the memory usage
example. Use timer to count
the total access time of
several data accessing the
SSRAM and SDRAM.
Compare the performance
between using SSRAM and
SDRAM.

1 Discussion
— Discuss the following items
about Flash, RAM, and ROM.
* Speed
» Capacity
* |nternal /External

Lab 7: ASIC Logic

O Goal
— HW/SW Co-verification using
Rapid Prototyping
O Principles

— Basics and work flow for
prototyping with ARM Integrator

— Target platform: AMBA AHB sub-
system
O Guidance

— Overview of examples used in
the Steps

O Steps

— Understand the files for the
example designs and FPGA tool

— Steps for synthesis with Xilinx
Foundation 3.1i

O Requirements and Exercises

— RGB-to-YUV converting
hardware module

d Discussion

— In example 1, explain the
differences between the Flash
version and the FPGA one.

— In example 1, explain how to
move data from DRAM to
registers in MYIP and how
program access these registers.

— In example2, draw the
interconnect among the
functional units and explain the
relationships of those
interconnect and functional units
in AHB sub-system

— Compare the differences of
polling and interrupt mechanism

[P LY o Y W [Ry | — o~

Lab 8: Standard |/O

J Goal

— Introduce students to control
IO and learn the principle of
polling, interrupt, and

semihosting through this Lab.

4 Principle

— How to access /O via the
existing library function call.

J Guidance
— Micro Hardware Abstraction
Layer
— How CPU access input
devices

d Steps

— This program controls the
Intergator board LED and
print strings to the host using
uHal API.

1 Requirements and
Exercises

— Modify the LED example.
When it counts, we press any
key to stop counting and then
press any key to continue
counting numbers.

J Discussion

— Explain the advantage and
disadvantage of polling &
Interrupt.

— A system can be divided into
hardware, software, and
firmware. Which one contains
u HAL.

Lab 9: JTAG and MultilCE

1 Goal

— Learn how to start-up the
Multi-ICE server and debug
program.

4 Principle
— Debugger introduction

— ARM eXtended Debugger
(AXD)

— What is Multi-ICE and its
function

] Guidance
— Steps only

 Steps

— The same as Lab3 except
you do the debugging tasks
with Multi-ICE. You will learn
how to start-up the Multi-ICE
server and debug program.

 Requirements and
Exercises
— Write a lotto program that
generates N sets of number.
 Discussion

— What's different between
ARMulator and MultilCE that
we do the debugging task.

Lab 10: Case design

4 Goal 1 Steps

— Study how to use the ARM- — We divide our program into
based platform to implement two parts:
Mp3 system. In this chapter, « Hardware
we will describe the Mp3 « Software

Igorithm i il .
algorithm In detal 1 Requirements and

4 Principle Exercises

— Detall of design method and

. . — Try to understand the
corresponding algorithm

communication between the

1 Guidance software part and hardware
— In this section, we will part. To check the computing
introduce the mp3 software resglt IS correct. You can
file (.cpp) in detail. We will easily check that the output

introduce the hardware value from the FPGA on LM

module.

Lab 10: Case design (cont’)

] Discuss

— We describe the decoder part
algorithm on reference 3, try
to implement it on ARM-
based platform. You can
divide to two parts: software
& hardware.

Hint:

we will give you the mp3 software try to analyze the
code. On hardware part, you can refer to chapter 8. And
software/hardware co-design, you can refer to section
10.3 on this chapter.

Summary

1 To build SoC labs

— Software tools

» Code development\debug\evaluation (e.g. ARM Developer Suite)
e Cell-based design EDA tools

— Development boards, e.g., ARM Integrator
e Core Module: 7TDMI, 720T, 920T, etc
* Logic Module (Xilin XCV2000E, Altera LM-EP20K1000E)
e ASIC Development Platform (Integrator/AP AHB)
e Multi-ICE Interface

— Advanced labs: RTOS (e.g., uC/OS-Il)
Verification/Validation

Summary

dThe ARM has played a leading role in the opening
of this era since its very small core size leaves more
silicon resources available for the rest of the system
functions.

dSoC labs are challenges to universities
— Various expertise
— Tight schedule for (M.S.) students

e Y ol o Yy L. o U W [.y | P~ o~

Reference

ﬁ

[1] http://twins.ee.nctu.edu.tw/courses/ip_core_02/index.htm|

[2] ARM System-on-Chip Architecture by S.Furber, Addison
Wesley Longman: ISBN 0-201-67519-6.

[3] http://www.arm.com

e Y ol o Yy L. o U W [.y | P~ p~

