

Case Study JPEG Encoder

Speaker: 沈文中 Code Supported by NCTU

SOC Concontium Course Material

Outline

How to design an IP with AMBA standard

□ JPEG Spec.

Lab requirement

Memory definition

AMBA IP design

□ Software part

- Write a function to control hardware
- Delay number of clocks by NOOP (asm) instruction
- □ Hardware part
 - Add MYIP.v into top module
 - Change ahbdecoder.v
 - Change AHBMuxS2M.v
 - Change ahbahbtop.v

Add MYIP.v into top module

- Write your own module in AMBA interface

Change ahbdecoder.v

- Add HSELMYIP signal to select your own slave IP to response
- Address are defined in decoder

Change AHBMuxS2M.v

Use mux to select slave which can use HRDATA

Change ahbahbtop.v

- Add your module in AMBA Bus
- Connect the above net connection

Architecture

Outline

How to design an IP with AMBA standard

JPEG Spec.

Lab requirement

JPEG spec.

Target :JPEG baseline sequential DCTbased encoder

- RGB->YUV
- DCT (discrete cosine transform)
- DQT (quantization)
- Zig-Zag scan
- Entropy coding (run length coding+Huffman coding)

JPEG encoder overview

Split into 8x8 pixels per block Use FDCT, Quantizer, and Entropy encoder to compress data

RGB->YUV

 $\Box Y = 0.299 R + 0.587 G + 0.114 B$

□ Cb = -0.1687 R - 0.3313 G + 0.5 B + 128

□ Cr = 0.5 R - 0.4187 G - 0.0813 B + 128

Y-Luminance(亮度) Cb,Cr-Chrominance domain(色差)

YUV arrange

- Order of block is from left to right, and then from up to down.
- □ Each block obeys the order of Y->U->V
- □ YUV can be sub-sampled as 4:2:2 ratio

Figure 13 - Interleaved order for components with different dimensions

DCT

Encoding procedure use 8x8 pixels as a compressing unit

□ FDCT is composed of 2 times of 1D-DCT

Quantization

Entropy Coding

- Entropy coding transfer the quantized data to compressed data
- Entropy coding is composed of *Run* Length Coding and Variable Length Coding (Huffman Coding)
- 15,0,-2,-1,-1,-1,0,0,...
 ->15,(1,-2)(0,-1)(0,-1)(0,-1),...
 After RLC
 ->101111...
 After VLC

AC Run Length Coding

Zero is the value occurs at highest frequency in quantized data

Variable Length Coding (DC Huffman Coding)

	SSSS DI		FF values		Category	Code	Code word		
	0		0			length	51		
	1		-1,1		0	2	00		
	2	3	3,-2,2,3		1	3	010		
	3	-7	74,47		2	3	011		
	4	-1	58,8,15		3	3	100		
	5	-13.	16,1631		4	3	101		
					5	3	110		
	DC Diff magnitude category								
					DC	Huffman Tabl	le		
	DIFF values -1,1		Code word		DC code word = Category code word + DIFF value code wor				
			0,1						
	-32.2.3 00.01.10.11				15 → 101 1111				

Variable Length Coding (AC Huffman Coding)

8	SSSS	AC coefficients		Run/Size	Code	Code word
	1	-1,1			length	
	2	-3,-2,2,3		0/0 (EOB)	4	1010
	3	-74,47		0/1	2	00
	4	-158,8,15				
	5	-1316,1631		1/2	5	11011
	6	-127		312		
		64,64127		2/1	5	11100
	<i></i>					
1	AC coefficient magnitude category AC Huffman Table					

AC Huffman Table

AC code word = Run/Size code word + AC coefficient code word

<1,-2> <0,-1> <0,-1> <0,-1> <2,-1> $\leq EOB >$ 1010

Outline

How to design an IP with AMBA standard

□ JPEG Spec.

Lab requirement

Lab requirement

- Try to explain the given dct IP content
- Try to partition the hw/sw part for implement
- □ Implement the JPEG encoder
- Compare the timing constraint of your own design with the one of reference code

Reference

Im_xcv600e_revc.pdf
DUI146C_LM600_UG.pdf
Code Example supplied by NCTU
JPEG Still Image Specification