

Contents
1. Code Development .. 1-1

1.1. 實驗目的 ...1-1
1.2. 實驗原理 ...1-1
1.3. 引導實驗 ...1-2

1.3.1. 實驗步驟: Basic Software Development Flow1-3
1.3.2. 實驗步驟: ARM/Thumb Interworking1-18

1.4. 實驗要求 ...1-25
1.4.1. Exercise 1 ..1-25
1.4.2. Exercise 2 ..1-25
1.4.3. Exercise 3 ..1-25

1.5. 問題與討論 ..1-26
1.6. 參考文件及網頁...1-26

Code Development

 教育部SoC聯盟教材 1-1

1. Code Development

1.1. 實驗目的

This Lab first describes how to create an application using ARM Developer
Suite (ADS). Then several examples are used to illustrate how to change
between ARM state and Thumb state when writing code for different
instruction sets.

1.2. 實驗原理

You can mix ARM and Thumb code as you wish, provided that the code
conforms to the requirements of the ARM/Thumb Procedure Call Standard.
The ARM compilers always create code that conforms to this standard. If you
are writing ARM assembly language modules you must ensure that your code
conforms. The ARM linker detects when an ARM function is being called from
Thumb state, or a Thumb function is being called from ARM state. The ARM
linker alters call and return instructions, or inserts small code sections called
veneers, to change processor state as necessary.
If you are linking several source files together, all your files must use
compatible ATPCS options. If incompatible options are detected, the linker will
produce an error message.

In order to branch to Thumb state, the bit 0 in the branch target address is set,
this changes the processor state after branching. The bit 5 in the CPSR (t bit)
would change to 1 indicating it’s in Thumb state.

Figure 1. ARM/Thumb branching.

Code Development

 教育部SoC聯聯盟教材 1-2

1.3. 引導實驗

Creating a new project
from ARM project

stationery

Adding source files to
the project

Building the project

Debugging the projectExisting
files/library

Creating a new (header)
file using CodeWarrior's

built-in editor

Configuring the settings
of build targets

Figure 2. Flow diagram of this Lab.

The CodeWarrior IDE provides a graphical user interface to configure the
ARM tools to compile, assemble, and link your project code. It enables you to
organize source code files, library files, other files, and configuration settings
into a project. Each project enables you to create and manage multiple build
targets. A build target is the collection of build settings and files that
determines the output, which is created when you build your project. Build
targets can share files in the same project, while using their own build settings.

CodeWarrior for the ARM Developer Suite provides preconfigured project
stationery files for common project types, including:
• ARM Executable Image
• ARM Object Library
• Thumb Executable Image
• Thumb Object Library
• Thumb/ARM Interworking Image.

You can use the project stationery as a template when you create your own
projects. The non-interworking ARM project stationery files define three build
targets. The interworking (i.e., Thumb/ARM Interworking Image) project
stationery defines an additional three build targets to compile Thumb-targeted
code. The basic build targets for each of the stationery projects are:
 Debug: This build target is configured to build output binaries that are

fully debuggable, at the expense of optimization.
 Release: This build target is configured to build output binaries that are

fully optimized, at the expense of debug information (i.e., no
source level debug information, but full optimization).

 DebugRel: This build target is configured to build output binaries that
provide adequate optimization, and give a good debug view.
This is a trade-off between Debug and Release.

Code Development

 教育部SoC聯盟教材 1-3

1
2
3
4

/* This preprocessor results in the C library function
clock () begin used for timing measurements.*/

#defin MSC_CLOCK

1.3.1. 實驗步驟: Basic Software Development Flow

Step 1: Creating a new header file using CodeWarrior’s built-
in editor
1. Select Programs →ARM Developer Suite →CodeWarrior for ARM

Developer Suite from the Windows Start menu to start the CodeWarrior
IDE.

2. Select File → New Text File (or Ctrl+N).
3. Enter the following C text. Make sure that “#defin” instead of “#define” is typed.

Figure 3. Simple C header file.

1. Select File → Save As (or Ctrl+S).
4.1 Navigate the directory structure to your working directory, e.g.,

c:\ARMSoC\Lab_01\.
4.3 And enter the filename dhry_def.h

2. Click Save. Click Yes to overwrite (if necessary).

Step 2: Creating a new project from ARM project stationery
1. Select File →New… (or Ctrl+Shift+N). A New dialog is displayed (Figure 4).
2. Ensure that the Project tab in Figure 4 is selected. The available ARM

project stationery is listed in the left of the dialog, together with the Empty
Project stationery and the Makefile Importer Wizard.

Figure 4. New dialog.

Code Development

 教育部SoC聯聯盟教材 1-4

3. Select ARM Executable Image from the list of project stationery.
4. Set the directory where you want to save the project in the Location field or

click the Set… button (a Create New Project dialog is displayed) next to
the Location field to navigate to the directory c:\ARMSoC\Lab_01\.
Enter a project name, for example My_Project. A result is shown in Figure 5.

Figure 5. Setting project name and location path.

5. Click OK. The CodeWarrior IDE creates a new project based on the ARM
Executable Image project stationery, and displays a new project window
with the Files tab is highlighted and DebugRel is selected as the build
target by default (Figure 6). Other build targets can be selected by clicking
on the drop-down box. It is the DebugRel variant that we shall use for the
remainder of this Lab.

Figure 6. New Project.

• Close ADS
• Double click on My_project.mcp, the ADS IDE starts and displays the

project window as it did at step Five (Figure 6).

Code Development

 教育部SoC聯盟教材 1-5

Step 3: Adding source files to the project

1. Ensure that the project (titled as My_Project.mcp in this example) window

is the active window.
2. Select Project →Add Files⋯(Figure 7). A Select files to add⋯ dialog is

displayed. Navigate to the dhryansi directory in the install_directory\
Examples (e.g., C:\Program Files \ARM \ADSv1_2\ Examples\dhryansi\)
directory and Shift-click on dhry_1.c and dhry_2.c to select them (Figure 8).

Figure 7. Add file.

Figure 8. Select files to add… dialog.

3. Click Add. The CodeWarrior IDE displays an Add Files dialog (Figure 9).
The dialog contains a checkbox for each build target defined in the current
project. In this example, the dialog contains three checkboxes
corresponding to the three build targets defined in the ARM Executable
Image project stationery.

Code Development

 教育部SoC聯聯盟教材 1-6

Figure 9. Add Files.

4. Leave all the build target checkboxes selected and click OK. The
CodeWarrior IDE adds the source files to each target in the project and
displays a Project Messages window (Figure 10) to inform you that the
directory containing the source files has been added to the access paths for
each build target.

Figure 10. Project Message window.

------------Note------------
The access paths for each build target define the directories that will be
searched for source and header files. You do not need to explicitly add the
header files for the dhryansi project because the CodeWarrior IDE locates
them in the newly added access path. As the message “The following access
path has been added to target “DebugRel”: {Compiler}Examples\dhryansi”
shown in the Project Message window. However, you can add header files
explicitly if you want, follow the instruction described in step 2 of Section 1.1.3.

Repeat sub-step 2~4 to add the dhry_def.h file you build in Step 1.

5. Ensure that the Files tab is selected in the project window. The project

window displays all the source files in the project. (Figure 11).

Code Development

 教育部SoC聯盟教材 1-7

Figure 11. Source files in Files view.

6. Select dhry_def.h from the project window and click right button on it. Select
Preprocess. After preprocessing this header file, two windows appear. At
Error and Warring window, two messages are shown as below:

Error : (Serious) C2858E: Unknown directive: #defin
dhry_def.h line 4

C:\ARMSoC\Lab_01\dhry_def.h: 0 warnings, 0 errors, 1 serious error

The Lower section of the window contains a section of the code that caused
the first error message.

Figure 12. File handling in Project Window.

----------Note----------
 Source files in the project window can be edited by double clicking on their

icons.
 Select the file in the project window and press “delete” will remove the file

added in step 2~4 form the project.
 If you close CodeWarrior IDE after the fifth step, the files added to

My_project.mcp are automatically saved without your indication. Double
click on My_project.mcp, the CodeWarrior IDE starts and displays the
project window as it did on the fifth step (Figure 11).

7. Double click on the first error message. The editor window is opened, with

Build Target pop-up

Code Development

 教育部SoC聯聯盟教材 1-8

focus placed on the problem line (line 4 of dhry_def.h). You may already
find out that “#defin” should be replaced with “#define”. Instead of doing
correctness in this way, we remove (delete) dhry_def.h from the project and
supply it as a command line parameter to the C compiler, which will be
described in the next section.

Step 4: Configuring the settings of build targets for your
project
Build target settings must be selected separately for each build target in your
project. To set build target options for the dhryansi example:

1. Ensure that the DebugRel build target is currently selected. By default, the

DebugRel build target is selected when you create a new project based on
the ARM project stationery. The currently selected build target is displayed
in the Build Target pop-up menu in the project toolbar (Figure 11).

2. Select Edit→DebugRel Settings⋯ (or Alt + F7), as shown in Figure 13.

The name of this menu item (Debug, Release, or DebugRel) changes
depending on the name of the currently selected Build Target. The
CodeWarrior IDE displays the DebugRel Settings Panel (Figure 15). All
the target-specific settings are accessible through configuration panels
listed at the left of the panel. An alternative way to do this step is to hit the
Build Target Setting button in Project Window, as displayed in Figure 14.

Figure 13. Select DebugRel Settings

Figure 14. Select DebugRel Settings from Project Window.

Code Development

 教育部SoC聯盟教材 1-9

Figure 15. DebugRel Settings.

Click the Access Paths entry in the Settings Panels list. As displayed in
Figure 14, the path {Compiler}Examples\dhryansi added in previous step
appears in the User Path. You can add other path by clicking the add button.

Figure 16. Access Path configuration

3. Click the ARM C Compiler entry in the Settings Panels list to display the
configuration panel for the C compilers. The Target and Source panel is
displayed. The panel consists of a number of tabbed panes containing
groups of configuration options. For this example, the dhryansi source
requires a predefined macro be set before it will compile.

Code Development

 教育部SoC聯聯盟教材 1-10

Figure 17. ARM C compiler panel.

4. Click the Preprocessor tab to display a list of predefined macros (Figure
18). Type MSC_CLOCK into the text field beneath the List of #DEFINES
and click Add to define the MSC_CLOCK macro. In Figure 19, the
CodeWarrior IDE adds MSC_CLOCK to the List of #DEFINES and the
Equivalent Command Line text box displays the compiler command-line
option required to define MSC_CLOCK.

Figure 18. ARM C compiler preprocessor panel.

Code Development

 教育部SoC聯盟教材 1-11

Figure 19. MSC_CLOCK defined.

6. Click OK to save your changes, and close the DebugRel Settings panel.

At this point you have defined the MSC_CLOCK macro for the DebugRel build
target only. You must also define the MSC_CLOCK macro for the Release
and Debug build targets if you want to use them. To select the Release build
target:
1. Select Release from the Build Target pop-up menu (Figure 11) to change

the current build target.
2. Apply the steps you followed above to define MSC_CLOCK for the Release

build target.
3. Click on the Debug/Opt tab to display Debug and Optimization options for

the Release build target. Select the For time Optimization Criterion button.
The Equivalent Command Line text box reflects the change, as shown in
Figure 20.

Figure 20. Debug/Opt configuration panel.

Code Development

 教育部SoC聯聯盟教材 1-12

4. Click Ok to save your settings.
5. Define MSC_CLOCK in the Debug build target in the same way as you

have for the DebugRel and Release build targets. Your project is now
equivalent to the dhryansi example project
(INSTALL_PATH\ADSv1_2\Examples\dhryansi\dhryansi.mcp) supplied
with the ARM Developer Suite.

------------Note------------
 Compiler options

 -g Tells the compiler to add debug tables
 -O1 Tells the compiler to select good optimization
 -c Tells the compiler to compile only (not to link)

 There are configuration panels available for most of the ADS toolchain,
including the linker, fromELF, and the assembler. You can use the
configuration panels to specify most options available in the tools,
including:

 procedure call options
 the structure of output images
 the linker and postlinker to use
 the ARM debugger to call from the CodeWarrior IDE.

See the chapter on configuring a build target in the CodeWarrior IDE
Guide for a complete description of build target options.

Step 5: Building the project

The Project menu contains a number of commands to compile, or compile and
link your project files. These commands apply only to the current build target.
To compile and link the example project:
1. Select the build target you want to build (Figure 11). For this example,

select the DebugRel build target.

2. Select Project→Make (or F7), as shown in Figure 21 (or the Make button

from the Project Window, as shown in Figure 22). The CodeWarrior IDE
builds the project by:
• compiling newly added, modified, and touched source files to produce

ELF object files
• linking object files and libraries to produce an ELF image file, or a

partially linked object
• performing any postlink operations that you have defined for your build

target, such as calling fromELF to convert an ELF image file to another
format.

Code Development

 教育部SoC聯盟教材 1-13

Figure 21. Make the project.

Figure 22. Make the project from the Project Window.

The compiler displays build information, errors, and warnings for the build in
a messages window (Figure 23). The meaning of the “Image component
sizes” will be explained later on.

Code Development

 教育部SoC聯聯盟教材 1-14

Figure 23. Errors & Warning message window.

3. Choice either dhry_1.c or dhry_2.c listed in the Project Window (Figure
21). Then right-click on in the Project Window and select Disassemble
from the pop-up menu. The disassembled code is displayed in a
Disassembly window.

Step 6: Debugging the project

To execute and debug your example project:
1. Select the build target you want to build (Figure 11). For this example,

select the DebugRel build target.
2. Select Project →Debug (Ctrl + F5). The CodeWarrior IDE compiles and

links any source files that are not up to date, and calls the AXD debugger to
load the image and on standby to execute the image.

Code Development

 教育部SoC聯盟教材 1-15

Figure 24. Select Debug.

Other ways to start AXD
• Click on Run button from Project Window, as shown in Figure 25. The

CodeWarrior IDE then calls debugger to load and execute the image. The
term ARM Runner refers to the ARM debugger that is called to execute,
rather than debug, an image file.

• Double click on My_project.axf, AXD starts.
• Select Start →Programs →ARM Developer Suite 1.2 →AXD Debugger
• Using a Windows DOS shell: axd -debug filename.axf

Figure 25. Debug the project from Project Window.

3. Select debugging system from Options → Configure Target (Figure 26).
The AXD displays a Choose Target Panel (Figure 27). Select ARMUL and
then click OK.

Code Development

 教育部SoC聯聯盟教材 1-16

Figure 26. Configure Target.

Figure 27. Choose Target Panel.

4. Use File →Load Images… to load a new image. If you start AXD from the
CodeWarrior IDE, you can skip this step.

Figure 28. Loading an image.

5. Use Execute → Step (or F10) or the button shown in Figure 29 to step
through the application. The disassembled code is displayed and a pointer

Code Development

 教育部SoC聯盟教材 1-17

indicates the current position (Figure 30). Use F10 to execute the next
instruction.

Step out: Complete the current function & return to the caller

Run to Cursor: Continue execution until it reaches to the cursor position

Step in: Step to the next instruction, which will jump into called functions

Step: Step to the next instruction without jumping into called functions

Show Execution Context: Shows you the current execution position in the relevant
source or disassembly view

Toggle Breakpoint: set/Unset a breakpoint at the current
cursor position

Go: Execution stops if a breakpoint is reached or the value held at
a watchpoint changes. Otherwise it stops at the appropriate end
command.

Figure 29. The Execute menu.

Figure 30. The disassembled code.

6. Interleaving source code.
It is often useful to see interleaved code, i.e., the high level C code, and the
low level assembled code together.
6.1 Select Processor Views Source, and then choose dhry_1.c.
6.2 Right click on the c/c++ source code window and select Interleave

disassembly.
6.3 Take a look at the c source code. The source code is now interleaved

with assembly code.
6.4 Press Go. Type 4000 in the Console Window when be asked.

“Program terminated normally.” Will be show in Console Window if the
program is successfully executed.

6.5 Close CodeWarrior and AXD.

------------Note------------
• Before loading an image, you have to make sure the selected target

(ARMulator, Multi-ICE, EmbeddedICE or Angel debug monitor) exists, or

Code Development

 教育部SoC聯聯盟教材 1-18

you cannot load a image (*.axf).
• The use of AXD will be explained in detail in next Lab.

1.3.2. 實驗步驟: ARM/Thumb Interworking

This lab contains the following examples and exercises to explain how to
change between ARM state and Thumb state when writing code for different
instruction sets.

Examples
 ARM/Thumb Interworking Examples
 ARM/Thumb Interworking in C/C++ only.
 ARM/Thumb Interworking in ASM only.

 No Veneer
 With Veneer

 ARM/Thumb Interworking between C/C++ and ASM.

Exercise
 Part A: Interworking using C/C++

 Thumb Main & ARM Sub
 Part B: Interworking using ASM

 Without Veneer
 With Veneer

 Part C: Interworking using C/C++ and ASM
 Modify the given example to practice the interworking using C/C++

and ASM.

ARM/Thumb Interworking using ASM (no Veneer)
The program addreg.s shown in Figure 31 does computations among
registers. No veneer is needed; interworking instruction change is
implemented manually.

The program consists of 4 parts:
1. Main: Start in ARM state. Generate branch address by an ADR

instruction to load the branch address and set the least significant bit
bit0=1 to arrive at target in Thumb mode. The ADR instruction generates
the address by loading r2 with the value pc+offset. See “ADS Compiler,
Linker, and Utilities Guide” for more information on the ADR instruction.

2. ThumbProg: Set values for r2 and r3, and then sum them to r2. Executed
in Thumb state.

3. ArmProg: Set values for r4, r5. Sum r4, r5 to r4. Executed in ARM state.
4. Stop: Terminate the program. Semihosting SWI is used to report normal

application exit. Refer to the “ADS Debug Target Guide” for more
information on Semihosting.

Code Development

 教育部SoC聯盟教材 1-19

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

 AREA AddReg,CODE,READONLY ;Name this block of code.
 ENTRY ;Mark first instruction to call.
Main
 ADR r0,ThumbProg +1 ;Generate branch target address

 ;and set bit 0,hence arrive
 ;at target in Thumb state.
 BX r0 ;Branch exchange to ThumbProg.
 CODE16 ;Subsequent instructions are Thumb code.
ThumbProg
 MOV r2,#2 ;Load r2 with value 2.
 MOV r3,#3 ;Load r3 with value 3.
 ADD r2,r2,r3 ;r2 =r2 +r3
 ADR r0,ARMProg
 BX r0
 CODE32 ;Subsequent instructions are ARM code.
ARMProg
 MOV r4,#4
 MOV r5,#5
 ADD r4,r4,r5
Stop
 MOV r0,#0x18 ;angel_SWIreason_ReportException
 LDR r1,=0x20026 ;ADP_Stopped_ApplicationExit
 SWI 0x123456 ;ARM semihosting SWI
 END ;Mark end of this file.

Figure 31. addreg.s

Enter the code by using any text editor and then save the file as addreg.s.

1. Building under DOS command line

1.1 Type armasm –g addreg.s to assemble the source file.
1.2 Type armlink addreg.o -o addreg to link the file.

2. Executing using ARM symbolic debugger, armsd, under command line (in

DOS window)
2.1 Type armsd addreg to load the module into the command-line

debugger.
2.2 Type step to step through the program one instruction at a time.
2.3 Type reg after each instruction execution to display the registers.

− Watch the processor enter Thumb state. CPSR changes from “t” to
“T” entering to Thumb state. (t: ARM state; T: Thumb state.)

2.4 Type help for help info.
2.5 Type quit to quit armsd.

ARM/Thumb interworking using ASM (using Veneer)
This example explains how you can make use of interworking veneers to
interwork between assembly language modules. The example shows how the
code sets the values for r0, r1 and r2. Interworking option is then added while
linking such that veneer is added by the linker. This example consists of 2 files:
1. Arm.s: Sets the values for r0, r2. Calls for ThumbProg. Executed in ARM

state.

Code Development

 教育部SoC聯聯盟教材 1-20

1
2
3
4
5
6
7
8
9
10
11
12

 AREA Arm,CODE,READONLY ;Name this block of code.
 IMPORT ThumbProg
 ENTRY ;Mark 1st instruction to call.
ARMProg
 MOV r0,#1 ;Set r0 to show in ARM code.
 BL ThumbProg ;Call Thumb subroutine.
 MOV r2,#3 ;Set r2 to show returned to ARM.
 ;Terminate execution.
 MOV r0,#0x18 ;angel_SWIreason_ReportException
 LDR r1,=0x20026 ;ADP_Stopped_ApplicationExit
 SWI 0x123456 ;ARM semihosting SWI
 END

1
2
3
4
5
6
7

 AREA Thumb,CODE,READONLY;Name this block of code.
 CODE16 ;Subsequent instructions are Thumb.
 EXPORT ThumbProg
ThumbProg
 MOV r1,#2 ;Set r1 to show reached Thumb code.
 BX lr ;Return to ARM subroutine.
 END ;Mark end of this file.

2. Thumb.s: Sets the value for r1. Return back to ArmProg. Executed in
Thumb state.

Figure 32. arm.s

Figure 33. thumb.s

1. Building under command line
1.1 Type armasm arm.s
1.2 Type armasm -16 -apcs /interwork thumb.s
1.3 Type armlink arm.o thumb.o -o count

------------Note------------

 The ARM assembler can assemble both Thumb code and ARM code. By
default, it assembles ARM code unless it is invoked with the -16 option.

 The callee must be compiled with interworking option if it is implemented in
a different state from the caller.

2. Running under command line

2.1 Type armsd count.
2.2 Type list 0x8000 to list the linked code at the armsd command prompt

to list the ode. Figure 34 shows the output.
2.3 Observe that VenAT$$ThumbProg is added to the code. This is the

veneer added by the linker.
2.4 Type quit to quit armsd.

Code Development

 教育部SoC聯盟教材 1-21

armsd: list 0x8000
ArmProg

0x00008000: 0xe3a00001 : > mov r0,#1
0x00008004: 0xeb000005 : bl VenAT$$ThumbProg
0x00008008: 0xe3a02003 . .. : mov r2,#3
0x0000800c: 0xe3a00018 : mov r0,#0x18
0x00008010: 0xe59f1000 : ldr r1,0x00008018 ; = #0x00020026
0x00008014: 0xef123456 V4..: swi 0x123456
0x00008018: 0x00020026 &... : dcd 0x00020026 &...

ThumbProg
+0000 0x0000801c: 0x2102 .! : mov r1,#2
+0002 0x0000801e: 0x4770 pG : bx r14
VenAT$$ThumbProg
+0000 0x00008020: 0xe59fc000 : ldr r12,0x00008028 ; = #0x0000801d
+0004 0x00008024: 0xe12fff1c ../. : bx r12
+0008 0x00008028: 0x0000801d : dcd 0x0000801d
+000c 0x0000802c: 0xe800e800 : dcd 0xe800e800
+0010 0x00008030: 0xe7ff0010 : dcd 0xe7ff0010
+0014 0x00008034: 0xe800e800 : dcd 0xe800e800
+0018 0x00008038: 0xe7ff0010 : dcd 0xe7ff0010

1
2
3
4
5
6
7
8
9
10

#include <stdio.h>
extern void thumb_function(void);

int main(void)
{
 printf("Hello from ARM\n");
 thumb_function();
 printf("And goodbye from ARM\n");
 return (0);
}

Figure 34. Veneer code segment.

ARM/Thumb interworking using C/C++
This example consists of 2 parts:
armmain.c for main function using ARM instructions set.
 Print strings
 Call Thumb function
 Compiled using ARM C/C++ compiler.

thumbsub.c for sub function called by main function using Thumb instructions
set.
 Print strings
 Return to main function
 Compiled using Thumb C/C++ compiler.

Figure 35. armmain.c

Code Development

 教育部SoC聯聯盟教材 1-22

1
2
3
4
5

#include <stdio.h>
void thumb_function(void)
{
 printf("Hello and goodbye from Thumb\n");
}

Figure 36. thumbsub.c

1. Building under MS-DOS command line
1.1 Type armcc -c -g -O1 -apcs /interwork armmain.c

 -c stands for compile.
 -g generate debug information.
 -O1 compile with median optimization.

1.2 Type tcc -c -g -O1 -apcs /interwork thumbsub.c
1.3 Type armlink armmain.o thumbsub.o -o armtothumb.axf -info veneers -

info totals -callgraph -list interworking.log
 -o specify output image name
 -info veneer print out veneer information (e.g., size) on screen.
 -info totals print out memory size information on screen.
 -callgraph creates static callgraph of functions in an HTML file.
 -list XXX.log redirects information to print in a text file.

1.4 Observe the result recorded in the interworking.log file.

2. Building under CodeWarrior IDE
2.1 Start CodeWarrior IDE.
2.2 File New to create a new project.

2.2.1 Select Thumb ARM Interworking Image under the Project tab.
2.2.2 Type the project name, C_interworking.
2.2.3 Specify the working directory, e.g., C:\ARMSoC\Lab_01\

2.3 Copy armmain.c & thumbsub.c from
“Install_path/ADSv1_2/Examples/Interworking” to project directory.

2.4 Select Project Add Files... to add these two files to the project.
After adding files to the project, a Project Management Window would
appear.

3. Setting build target

3.1 Hit Build Target Setting button .
3.2 A ThumbDebRel Setting window appears. Click Language

Settings ARM C Compiler in Target Setting Panel, and then click
ATPCS tab Figure 37.

 Check ARM/Thumb Interworking in ARM/Thumb Procedure
Call Standard Options. A line “-apcs /interwork” would be added
to Equivalent Command line automatically.

Code Development

 教育部SoC聯盟教材 1-23

Adding veneers to the image

 Adding AT veneer (12 bytes) for call to '__rt_lib_init' from kernel.o(.text).
 Adding AT veneer (12 bytes) for call to '__rt_lib_shutdown' from kernel.o(.text).
 Adding AT veneer (12 bytes) for call to '_sys_exit' from kernel.o(.text).
 Adding AT veneer (12 bytes) for call to '__raise' from rt_raise.o(.text).
 Adding AT veneer (12 bytes) for call to '_no_fp_display' from printf2.o(xfplprintf2).

5 Veneer(s) (total 60 bytes) added to the image.

Figure 37. ATPCS setting.

4. Hit the Make button to compile and link the project.
4.1 A compiling and linking status window would appear to indicate making

progress.
4.2 After finishing compiling and linking, a result messages window would

appear. Check for errors and warnings.

5. Using “armlink -info veneers armmain.o thumbsub.o” to see Veneers

information (An example is shown in Figure 38. You may get different
results).

Figure 38. Veneers information.

6. Run the program and trace how the program running in both source and
disassembly view.

Code Development

 教育部SoC聯聯盟教材 1-24

1
2
3
4
5
6

 AREA Arm,CODE,READONLY ;Name this block of code.
 EXPORT arm_function
arm_function
 ADD r0, r0, #4 ;Add 4 to first parameter.
 BX LR ;Return
 END

1
2
3
4
5
6
7
8
9

#include <stdio.h>
extern int arm_function(int);
int main(void)
{
 int i =1;
 printf("i =%d \n",i);
 printf("And now i =%d \n", arm_function(i));
 return (0);
}

ARM/Thumb interworking between C/C++ & ASM using Veneer
As we know, C and C++ code compiled to run in one state can call assembly
language code designed to run in the other state, and vice versa. To do this,
write the caller routine as any non-interworking routine and, if calling from
assembly language, use a BL instruction to make the call. The following
example is that the thumb C caller calls the ARM ASM callee with a parameter
i. The ARM ASM callee then returns that parameter with a constant four
added.

Figure 39. thumb.c

Figure 40. armsub.s

1. Building both programs under command line
1.1 Type tcc -c -apcs /interwork thumb.c
1.2 Type armasm -apcs /interwork armsub.s
1.3 Type armlink armsub.o thumb.o -o add

2. Running under command line

2.1 Type armsd add to load the code
2.2 Type go.
2.3 Type list main to list the linked code for main function.
2.4 Type list arm_function to list the linked code.
2.5 Observe that VenAT$$ThumbProg is added to the code. This is the

veneer added by the linker.

Code Development

 教育部SoC聯盟教材 1-25

1.4. 實驗要求

1.4.1. Exercise 1

Write a program in C/C++. The main function is implemented in Thumb
instructions set. The called function is implemented in ARM state.

 Specifications:

 Thumbmain: Prints “Hello from thumb main!” & “Goodbye from
Thumb main!!”. Calls ARM function. Implemented in Thumb
instructions set.

 Armsub: Prints “Hello from ARM sub.” Return back to main.
Implemented in ARM instruction set.

 Show the veneers in the linked code and its info.
 Observe how the t-bit in CPSR changes.

1.4.2. Exercise 2

Write a program in ASM that swaps the value of [r1, r2], [r3, r4].

 No linker added veneers should be attached.

 Swap function is implemented in ARM instructions.
 Main Program is implemented in Thumb instructions.
 Manually change the instruction set using, no linker added veneer.
 Observe the linked code and the registers.

 Using veneer:
 Do the above exercise using linker added veneer.
 Show the veneers added.

 Hints & Notes:

 ARM is in ARM state at the beginning. A change to Thumb state is
needed.

 ARMASM doesn’t include ARM-to-Thumb header automatically as
ARMCC does. You must manually change the state to thumb at
initial.

 Veneers are added when there’s a ARM/THUMB or THUMB/ARM
procedure call.

1.4.3. Exercise 3

Modify the last example (interworking between C/C++ and ASM using veneer)
such that the main is implemented in ASM and the function is implemented in
C.

 Specifications:

Code Development

 教育部SoC聯聯盟教材 1-26

 Main: Implement in ASM using Thumb instructions. Call the
subroutine with a parameter.

 Sub: Implement in C/C++ using ARM instructions. Add 4 to the
parameter passed from main and return.

 Show the linked code.
 Observe the register.
 No need to print the results in the console window.

 Hints & Notes:

 C functions called by ASM code must have a return value.
 1st parameter and function return value use R0 to pass value.
 2nd to 4th parameters use R1 to R3 to pass values.
 5th and other more parameters should use stack to pass values.
 Standard I/O in C function does not work when it is being called by

ASM codes, which means you cannot use printf() in C functions
called by ASM main.

1.5. 問題與討論

1. Discuss the advantages and disadvantages of ARM and Thumb instruction
sets.

1.6. 參考文件及網頁

 Code Development flow: ARM Developer Suite Version 1.2 Getting
Started Guide”.

 CodeWarrior IDE Guide
 Overview of ARM architecture: ADS Assembler Guide
 ARM instruction reference: ADS Assembler Guide, QRC_Armside
 Thumb instruction reference: ADS Assembler Guide, QRC_Thumbside
 Interworking with ARM & Thumb: ADS Developer Guide
 ARM-Thumb Procedure Call Standard: ADS Developer Guide, ATPCS

spec
 AXD, armsd: ADS Debugger Guide
 Mixing C, C++, ASM: ADS Developer Guide
 http://twins.ee.nctu.edu.tw/courses/ip_core_02/index.html
 http://twins.ee.nctu.edu.tw/courses/ip_core_01/index.html

