
ARM Firmware Suite
Version 1.1

Reference Guide
Copyright © 1999, 2000 ARM Limited. All rights reserved.
ARM DUI 0102C

ent
right

ver,
r

iable
n in
Copyright © 1999, 2000 ARM Limited. All rights reserved.

Release Information

Proprietary Notice

ARM, the ARM Powered logo, Thumb, and StrongARM are registered trademarks of ARM Limited.

The ARM logo, AMBA, Angel, ARMulator, EmbeddedICE, ModelGen, Multi-ICE, PrimeCell,
ARM7TDMI, ARM7TDMI-S, ARM9TDMI, ARM9E-S, ETM7, ETM9, TDMI, STRONG, are trademarks
of ARM Limited.

All other products or services mentioned herein may be trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this docum
may be adapted or reproduced in any material form except with the prior written permission of the copy
holder.

The product described in this document is subject to continuous developments and improvements. All
particulars of the product and its use contained in this document are given by ARM in good faith. Howe
all warranties implied or expressed, including but not limited to implied warranties of merchantability, o
fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM Limited shall not be l
for any loss or damage arising from the use of any information in this document, or any error or omissio
such information, or any incorrect use of the product.

Change History

Date Issue Change

8 September 1999 A New document (internal release)

10 September 1999 B First release

15 February 2000 C Second release
ii Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

Contents
ARM Firmware Suite

Preface
About this document .. viii
Further reading .. x
Feedback .. xii

Chapter 1 Introduction to the ARM Firmware Suite
1.1 What is firmware? ... 1-2
1.2 About the ARM Firmware Suite ... 1-3

Chapter 2 An Introduction to µHAL
2.1 About µHAL ... 2-2
2.2 Building a new µHAL-based application .. 2-7
2.3 Building the µHAL library .. 2-8

Chapter 3 µHAL Application Programming Interfaces
3.1 About the µHAL APIs .. 3-2
3.2 Simple API memory functions ... 3-4
3.3 Simple API interrupt functions ... 3-8
3.4 Simple API MMU and cache functions .. 3-11
3.5 Simple API timer functions .. 3-13
3.6 Simple API support functions .. 3-20
3.7 Simple API LED control functions ... 3-22
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. iii

Contents
3.8 Serial input/output functions, definitions, and macros 3-26
3.9 Extended API initialization functions ... 3-32
3.10 Extended API interrupt handling functions ... 3-34
3.11 Extended API software interrupt (SWI) function 3-39
3.12 Extended API MMU and cache functions ... 3-40
3.13 Extended API processor execution mode functions 3-44
3.14 Extended API timer functions ... 3-47
3.15 Extended API coprocessor access functions ... 3-51
3.16 Library support functions .. 3-53

Chapter 4 ARM Boot Monitor
4.1 About the boot monitor ... 4-2
4.2 Common commands for the boot monitor .. 4-4
4.3 Integrator-specific commands for boot monitor .. 4-12
4.4 Prospector-specific commands for boot monitor 4-22
4.5 Using the boot monitor on Integrator .. 4-25
4.6 Using boot monitor on Prospector .. 4-30
4.7 Rebuilding the boot monitor .. 4-34

Chapter 5 Operating Systems and µHAL
5.1 About porting operating systems .. 5–2
5.2 Simple operating systems .. 5–3
5.3 Complex operating system ... 5–12

Chapter 6 Angel
6.1 About Angel .. 6-2
6.2 Angel on Integrator ... 6-4
6.3 Angel on Prospector ... 6-7
6.4 µHAL-based Angel ... 6-8
6.5 Building a µHAL-based Angel ... 6-10
6.6 Source file descriptions .. 6-13
6.7 Device drivers ... 6-21

Chapter 7 Flash Library Specification
7.1 About the flash library ... 7-2
7.2 About flash management .. 7-4
7.3 ARM flash library specifications .. 7-5
7.4 Functions listed by type .. 7-11
7.5 Flash library functions ... 7-16
7.6 File processing functions .. 7-29
7.7 SIB functions .. 7-34
7.8 Using the library .. 7-41
7.9 Rebuilding the flash library ... 7-44
iv Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

Contents
Chapter 8 Using the ARM Flash Utilities
8.1 About the AFU .. 8-2
8.2 Starting the AFU ... 8-3
8.3 AFU commands .. 8-4
8.4 The Boot Flash Utility .. 8-21
8.5 BootFU commands ... 8-23

Chapter 9 PCI Management Library
9.1 About PCI .. 9-2
9.2 PCI configuration .. 9-4
9.3 The PCI library .. 9-7
9.4 PCI library functions and definitions .. 9-13
9.5 About µHAL PCI extensions ... 9-15
9.6 µHAL PCI function descriptions .. 9-16
9.7 Example PCI device driver .. 9-23
9.8 PCI initialization on Integrator ... 9-26
9.9 Rebuilding the PCI library ... 9-37

Chapter 10 Troubleshooting and Frequently Asked Questions
10.1 Frequently asked questions .. 10-2
10.2 Troubleshooting .. 10-5

Chapter 11 Building AFS Components
11.1 AFS component variants ... 11-2
11.2 AFS source structure .. 11-4
11.3 Using ARM project files ... 11-6
11.4 Using GNUmake ... 11-12
11.5 Build output files .. 11-20
11.6 Using the ADS C libraries ... 11-21

Glossary
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. v

Contents
vi Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

. It
Preface

This preface introduces the ARM Firmware Suite and its reference documentation
contains the following sections:

• About this documenton page viii

• Further readingon page x

• Feedbackon page xii.
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. vii

Preface

of

line

to a

nd
About this document

This book provides a guide on how to setup and use the ARM Firmware Suite. It
describes its major components and features, and how to use them to develop
applications for ARM-based hardware platforms.

Intended audience

This book is written for hardware and software developers to aid the development
ARM-based products and applications. It assumes that you are familiar with ARM
architectures and have an understanding of computer hardware.

Using this book

This document is organized into the following chapters:

Chapter 1 Introduction to the ARM Firmware Suite

Read this chapter for an introduction to theARM Firmware Suite(AFS).
It describes the individual components of AFS.

Chapter 2 An Introduction to µHAL

Read this chapter for a description of µHAL (pronouncedMicro-HAL), a
Hardware Abstraction Layerthat is designed to conceal hardware
differences between different ARM-based systems.

Chapter 3 µHAL Application Programming Interfaces

Read this chapter for information about the µHAL applications
programming interface. This chapter describes the µHAL parameter
types and functions.

Chapter 4 ARM Boot Monitor

Read this chapter for a description of the boot monitor. This chapter
describes how the boot monitor functions and describes its command-
interface.

Chapter 5 Operating Systems and HAL

Read this chapter for a description how operating systems are ported
platform which has µHAL ported to it.

Chapter 6 Angel

Read this chapter for a description of how the Angel debug monitor a
µHAL are related.
viii Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

Preface

is
ribes

ter
ribes

, file

ion

is to
Chapter 7 Flash Library Specification

Read this chapter for reference information about the flash library. Th
chapter discusses the approach to flash management used and desc
the firmware flash library functions.

Chapter 8 Using the ARM Flash Utilites

Read this chapter for information about using theARM Flash Utility
(AFU) andBoot Flash Utility(BootFU).

Chapter 9 PCI Management Library

Read this chapter for information about PCI management. This chap
describes how PCI resources are initialized and managed, and desc
the PCI management functions.

Chapter 10 Troubleshooting and Frequently Asked Questions

Read this appendix for answers to common questions or problems.

Chapter 11 Building AFS Components

Read this appendix for a description of how to rebuild ARM firmware
suite components.

Typographical conventions

The following typographical conventions are used in this book:

typewriter Denotes text that may be entered at the keyboard, such as commands
and program names, and source code.

type writer Denotes a permitted abbreviation for a command or option. The
underlined text can be entered instead of the whole command or opt
name.

typewriter italic

Denotes arguments to commands and functions where the argument
be replaced by a specific value

italic Highlights important notes, introduces special terminology, denotes
cross-references, and citations.

bold Highlights interface elements, such as menu names. Also used for
emphasis in descriptive lists and for ARM processor signal names.

typewriter bold

Denotes language keywords when used outside example code.
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. ix

Preface

nt

:

Further reading

This section lists publications from ARM and third parties that provide additional
information about developing on ARM processors.

ARM publications

The following publications provide information about ARM Integrator products:

• ARM Integrator/CM920T User Guide(ARM DDI 0097)

• ARM Integrator/CM940T User Guide(ARM DDI 0125)

• ARM Integrator/CM720T User Guide(ARM DDI 0126)

• ARM Integrator/CM740T User Guide(ARM DDI 0124)

• ARM Integrator/CM7TDMI User Guide(ARM DDI 0126)

• ARM Integrator/SP User Guide(ARM DUI 0099)

• ARM Integrator/AP User Guide(ARM DUI 0098).

The following publication provides information about ARM Prospector products:

• ARM Prospector/P1100 User Guide(ARM DUI 122A)

The following publications provide reference information about ARM architecture:

• AMBA Specification(ARM IHI 0011)

• ARM Architectural Reference Manual(ARM DDI 0100).

The following publications provide information about the ARM Software Developme
Toolkit 2.5:

• ARM Software Development Toolkit User Guide(ARM DUI 0040)

• ARM Software Development Toolkit Reference Guide(ARM DUI 0041).

The following publications provide information about the ARM Developer Suite 1.0

• ADS Getting Started(ARM DUI 0064)

• ADS Tools Guide(ARM DUI 0067)

• ADS Debuggers Guide(ARM DUI 0066)

• ADS Debug Target Guide(ARM DUI 0058)

• ADS Developer Guide(ARM DUI 0056)

• ADS CodeWarrior IDE Guide(ARM DUI 0065).

Further information can be obtained from the ARM web site at:

http://www.arm.com
x Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

Preface

cts
Other publications

The following publications provide information and guidelines for developing produ
for Microsoft Windows CE:

• HARP Enclosure Requirements for Microsoft® Windows® CE 1998 Microsoft
Corporation

• Standard Development Board for Microsoft® Windows® CE 1998 Microsoft
Corporation.

Further information on Microsoft CE is available from the Microsoft web site:

http://www.microsoft.com

The following publication provides information about µC/OS-II:

• MicroC/OS-II, The Real-Time Kernel, Jean Labrosse, R&D Technical Books,
ISBN 0-87930-543-6.
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. xi

Preface

ier.

ened
Feedback

Feedback on both the Firmware suite and the documentation is welcome.

Feedback on this book

If you have any comments on this book, please send email toerrata@arm.com giving:

• the document title

• the document number

• the page number(s) to which you comments apply

• a concise explanation of your comments.

General suggestions for additions and improvements are also welcome.

Feedback on the ARM Firmware Suite

If you have any problems with the ARM Firmware Suite, please contact your suppl
To help them provide a rapid and useful response, please give:

• details of the release you are using

• details of the platform you are running on, such as the hardware platform,
operating system type and version

• a small standalone sample of code that reproduces the problem

• a clear explanation of what you expected to happen, and what actually happ

• the commands you used, including any command-line options

• sample output illustrating the problem

• the version string of the tool used, including the version number and date.
xii Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

id
apter
Chapter 1-
Introduction to the ARM Firmware Suite

TheARM Firmware Suite(AFS) is a collection of tools and utilities designed as an a
to developing applications and operating systems on ARM-based systems. This ch
contains the following sections:

• What is firmware?on page 1-2

• About the ARM Firmware Suiteon page 1-3
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 1-1

Introduction to the ARM Firmware Suite

an
oint

h

the
1.1 What is firmware?

Firmware is low-level software that runs on evaluation boards and products. You c
use the functions in the firmware directly, or you can use the functions as a starting p
for developing your own applications.

One difference between firmware and other code libraries is that the firmware is
designed to be development-board and operating-system neutral.

AFS provides a collection of standard functions with a knownApplication
Programming Interface(API). This API enables applications to perform
hardware-specific operations without requiring a version of the application for eac
hardware configuration.

AFS includes many example applications as well as flash utilities and low-level
libraries that you can build into your application.

Figure 1-1 shows the logical organization of code in a development board and how
AFS firmware simplifies application creation by separating low-level board-specific
code from higher-level applications.

Figure 1-1 Logical organization

User application

C and C++ libraries

Development board

General

Specific

AFS board-specific µHAL routines

AFS utilites

AFS support
routines
1-2 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

Introduction to the ARM Firmware Suite

s

h,
an
t

s.
e

el
ty

ly.
or

d

e

1.2 About the ARM Firmware Suite

AFS provides:

µHAL libraries

µHAL (pronouncedMicro-HAL) is the ARM Hardware Abstraction
Layer that is the basis of the AFS. µHAL is a set of low-level function
that simplify the porting of operating systems and applications.

Flash libraries

The flash library provides an API for programming and reading flash
memory. The API provides access to individual blocks or words in flas
and access to images and files. The flash management utilities have
easy to use interface that simplifies using flash memory. Use the boo
switcher, for example, to select and run one of the images in flash.

Development environment

AFS is an easy to use environment for evaluating ARM-based platform
The library APIs enable rapid development of applications and devic
drivers. Reusable code is provided to help develop applications and
product architectures on a wide range of ARM and third-party
development platforms.

AFS is compatible with ADS 1.0 and SDT 2.5, and it supports the Ang
debug monitor, Multi-ICE (if the target board supports it), and third-par
debug monitors.

Additional components

Additional components provided with AFS include a boot monitor,
generic applications, and board-specific applications. Use these
components to verify that your development board is working correct
You can use the source code for the applications as a starting point f
your own applications.

Additional libraries

AFS supplies libraries for specialized hardware. For example, the
supplied PCI library supports the PCI bus on the Integrator board.

Angel A version of Angel that has been implemented using µHAL is include
with AFS.

µC/OS-II AFS includes a port of µC/OS made to the ARM architecture using th
µHAL interfaces.
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 1-3

Introduction to the ARM Firmware Suite

r of
AL

vel

ut

you
1.2.1 µHAL Libraries

µHAL masks hardware differences between platforms by providing a standard laye
board-dependent functions for I/O, RAM, boot flash, and application flash. The µH
API provides common and uniform access to other firmware components and
applications.

Board and processor-independence for applications is achieved by a set of low-le
functions that:

• identify and initialize the system processor or multiple processors

• identify and initialize the system memory

• identify and initialize the system buses, for example PCI or PCMCIA

• identify and initialize system devices, for example serial interfaces

• initialize and handle interrupts

• access code or data stored in flash memory.

The µHAL API consists of two types of function:

Simple The basic functions allow you to program an application through a
minimal number of calls.

Extended The extended functions allow a more complex usage of the system, b
you must be aware of the way µHAL fits together and how it works.
Within µHAL itself, the basic functions are built using the extended
functions.

Examples of specific functional modules in µHAL are:

• system initialization

• serial ports

• generic timers

• generic LEDs

• interrupt control

• memory management (cache and MMU).

In addition to providing a linkable library, µHAL also provides a set of definitions
(board and processor) and reusable code. Even if you do not use the µHAL library,
can use the µHAL definitions in your application.
1-4 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

Introduction to the ARM Firmware Suite

em

nt,
t
these

and

n:
You can write µHAL applications to operate in one of two modes:

Standalone A standalone application is one that has complete control of the syst
from boot time onwards.

Semihosted A semihosted application is one for which an application or debug age
such as Angel or Multi-ICE, provides or simulates facilities that do no
exist on the target system. In the case of a debug agent, accesses to
facilities are requested by usingSoftware Interrupt Instructions(SWIs).

The implementation of µHAL is described in Chapter 2An Introduction to µHAL, and
using the µHAL applications programming interface is described in Chapter 3µHAL
Application Programming Interfaces.

1.2.2 Flash libraries and utilities

ARM development boards contain flash memory that you can use to store programs
data. You can:

• use the library functions to access flash from your own application

• use the AFS utilities to load applications into the flash or RAM memory.

The flash library APIs

The flash library provides four types of function that you can use in your applicatio

• functions that directly access flash memory

• functions related to low-level file structures

• functions related to high-level file access

• functions related to application-defined storage areas.

The flash management library is described in Chapter 7Flash Library Specification.
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 1-5

Introduction to the ARM Firmware Suite

nt

d
to
E

ion
sh.
r to

a

uns
ror
The ARM Flash Utility

TheARM Flash Utility(AFU) application can manipulate and store data within a
system that uses the flash library. The AFU runs within an ARM debug environme
such as the ARM Multi-ICE server and theARM Debugger for Windows(ADW)
environment. AFU commands are available to:

• list image information

• delete a block of flash

• program an image from the host computer into flash

• read an image from flash and send it to the host computer

• examine a block of flash for problems.

Using the utilities is described in Chapter 8Using the ARM Flash Utilites.

The ARM Boot Flash Utility

With theARM Boot Flash Utility(BootFU) application, you can program the boot an
FPGA areas of flash memory. BootFU must be loaded into the target system RAM
operate. BootFU runs within an ARM debug environment such as the ARM Multi-IC
server and theARM Debugger for Windows(ADW) environment.

Boot switcher

The boot switcher is a small subprogram, normally located within the first applicat
that is run on reset. The boot switcher selects and runs an image in application fla
You can store one or more code images in flash memory and use the boot switche
start the image at reset.

When the ARM development board is reset, the boot switcher reads the status of
hardware switch and, depending on the value, either:

• Runs the default application. (The default application is typically the boot
monitor command interpreter.)

• Searches flash for the image specified in the system information block and r
that image instead of the boot monitor. If the image is not found in flash, an er
code is passed to the default application and it displays an error message.

See Chapter 4ARM Boot Monitorfor more information on the boot monitor and boot
switcher.
1-6 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

Introduction to the ARM Firmware Suite

he

the

d in

One
n be
Managing images in flash

The flash memory on development boards is logically divided into two areas:

Application Application flash holds data and user applications. You normally load t
your own programs into the application flash.

Boot Boot flash holds the boot monitor and boot switcher utilities used for
loading and debugging applications.

The images stored in flash memory have three to five parts:

Code and data

The actual code and data for the image.

Header If the original image contained a header, the header is moved to after
end of the image. Not all images have a header.

Image info The Image Information Block holds additional information about the
image such as image name and start address.

Empty If the image and related data does not completely fill the flash block,
there is an area of empty flash before the footer.

Footer The owner of the image, a checksum, and the image number are store
the footer.

There are three images in the flash memory map shown in Figure 1-2 on page 1-8.
of the images is the boot monitor itself. Two other images have been loaded and ca
run from the boot switcher. Two other memory blocks are shown in the figure:

Unused This area can be used to hold additional user images.

SIB A System Information Block(SIB) flash block is a non-volatile storage
area for various processes.
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 1-7

Introduction to the ARM Firmware Suite

the
e

er a

ew
Figure 1-2 Images in flash

1.2.3 Boot monitor

Use the boot monitor to load an image from the serial port and select it to run when
development board is reset. The boot monitor also provides a simple command-lin
interface that provides system debug and self-test functions.

The boot monitor communicates with a host computer using simple commands ov
serial port. The boot monitor conforms to theMicrosoft Standard Development Board
Requirements for Windows CE Specification. The requirements of theMicrosoft Harp
Specificationhave been extended by the ARM boot monitor to aid development of n
hardware. In particular, new system-specific commands have been added.

See Chapter 4ARM Boot Monitorfor more information on the boot monitor.

Boot monitor code

SIB (Image 1)

Boot switcher

SIB (boot monitor)

Code and data

Footer

Footer

Code and data

SIB (Image 2)

Empty

Unused

(Low memory)

Boot address
(remapped to 0x0)

Contains number
of image to run

Image number and
checksum

Image 1

Image 2

SIB block footer

Boot monitor footer

Image number and
checksum

Header

Header

Image information

Image Information

SIB
block

Start of flash

Application
flash

Boot
flash

(High memory)
1-8 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

Introduction to the ARM Firmware Suite

to
lly

ew

is

n)

od
1.2.4 Generic µHAL demonstration programs

Use the generic µHAL demonstration programs on the AFS CD to understand how
use the µHAL API. Use the test programs to verify that µHAL has been successfu
ported to a system. The generic programs include:

• Simple tests

• Timing testson page 1-10.

Simple tests

These demonstration programs are typically the first images you might run on a n
target. The following simple tests demonstrate and verify a specific functionality:

hello.c This program outputs data to the serial port.

io.c This program takes data input on the serial port and echoes it on the
output.

led.c This program flashes the LEDs in a binary pattern. It requires no
additional functionality (such as serial ports) to be working in order to
run.

NoteNote
The semihosted version prints out a banner and description, since th
functionality is known to be available in semihosted mode.

heap.c This program allocates and then frees some memory.

simple-caches.c

This program gives an example of simple cache (Data and Instructio
usage that:

• reads the cache and MMU state

• resets the cache and MMU

• turns caches and MMU on and off

• restores the original state.

system-timers.c

This program combines serial output, LED flashing, timers, and
interrupts. This program uses most of the features of µHAL and is a go
indicator that a target is functional.
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 1-9

Introduction to the ARM Firmware Suite

e

S

. The

list
ugh

t
ing
0 by

nd
file-io.c A file I/O program. It performs file functions on the host and returns th
size of a specified file.

NoteNote
This program only runs when built semihosted and linked with the AD
C Library.

exception.c

This program shows how the ADS C Library handles a divide-by-zero
exception.

NoteNote
The compiler displays a warning when building this program.

Timing tests

These demonstration programs are computation and memory-intensive, and
demonstrate how the performance of applications is affected by caching strategies
tests are:

bubble.c This program sorts a list by comparing each adjacent pair of items in a
in turn, swapping the items if necessary, and repeating the pass thro
the list until no swaps are required.

queens.c This is one of the benchmark programs that you can use to measure
performance with different caching regimes. The problem of the eigh
queens is a well known example of the use of recursion and backtrack
algorithms. The program calculates how 20 queens can placed on a 2
20 chess board so that no queens checks against any other queen.

sieve.c This is an implementation of the Sieve of Eratosthenes algorithm to fi
all prime numbers up to a certainN. Begin with an (unmarked) array of
integers from 2 toN. The first unmarked integer, 2, is the first prime.
Mark every multiple of this prime. Repeatedly take the next unmarked
integer as the next prime and mark every multiple of the prime.
1-10 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

Introduction to the ARM Firmware Suite

a

hat

ples

e,

s.

in
sieve500.c

This is a repeat of thesieve.c test, however the main loop is unrolled
to guarantee that the instruction cache is ineffective.

NoteNote
There are no build files forsieve500 . Use the build files forsieve as a
starting point.

1.2.5 Board-specific demonstration programs

The AFS distribution CD contains demonstration program sources and images for
specific board and processor combination. The sources enable you to bring new
hardware into operation quickly and to gain experience with building applications t
use AFS.

Each development board has its own collection of demonstration programs. Exam
of the programs available for Integrator are:

TestSuite A collection of test routines for the LEDs, serial ports, keyboard, mous
interrupt handlers, and timers.

irda Infrared transmit and receive applications.

keyboard Application to scan the keyboard and display key codes.

1.2.6 PCI management libraries

Some ARM development systems are equipped with PCI expansion card interface
Use the PCI library and µHAL library extensions to initialize and manage a PCI
interface.

The PCI library code has three main functions:

• to initialize the PCI subsystem, that is, to identify the PCI devices and buses
the system and then assign them resources

• to locate PCI devices by device drivers

• to allow the PCI device drivers to control their devices.

Using the PCI management library is described in Chapter 9PCI Management Library.
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 1-11

Introduction to the ARM Firmware Suite

ning

ical

el

ed

an
ially
ing
1.2.7 Angel

The Angel debug monitor is an application that allows you to develop and debug
applications on ARM-based systems. Angel can be used to debug applications run
in either the ARM state or Thumb state.

A typical Angel system has two main components that communicate through a phys
link, such as a serial cable:

Debugger The debugger runs on the host computer. It gives instructions to Ang
and displays the results obtained from it. All ARM debuggers support
Angel, and you can use any other debugging tool that supports the
communications protocol used by Angel.

Angel Debug Monitor

The Angel debug monitor runs alongside the application being debugg
on the development board.

Using Angel is described in Chapter 6Angel.

1.2.8 µC/OS-II

µC/OS-II is a portable, ROM-able, preemptive, real-time, multitasking kernel that c
manage up to 63 tasks. µC/OS-II is comparable in performance to many commerc
available kernels. AFS includes a port of µC/OS made to the ARM architecture us
the µHAL interfaces.Operating systems are described in Chapter 5Operating Systems
and HAL.
1-12 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

Chapter 2-
An Introduction to µHAL

This chapter describes µHAL and how it conceals hardware differences between
different ARM-based development systems. This chapter contains the following
sections:

• About µHALon page 2-2

• Building a new µHAL-based applicationon page 2-7

• Building the µHAL libraryon page 2-8.
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 2-1

An Introduction to µHAL

cts.
cts.

he

rd
on

them
st be

h

ve
not
2.1 About µHAL

ARM processor cores are highly integrated and are used in a wide range of produ
The ARM processor core is often the only common feature shared by these produ
µHAL consists of a low-level interface that provides a common set of functions for
these different ARM-based systems.

In addition to providing a linkable library, µHAL also provides a set of definitions
(board and processor) and reusable code. All the AFS components are built with t
µHAL libraries. Even if you do not use the µHAL library, you can use the µHAL
definitions in your application.

µHAL simplifies building applications for development boards by providing a standa
layer of board-dependent functions to manage I/O, RAM, boot flash, and applicati
flash. Figure 2-1 shows a block diagram of a development platform.

Figure 2-1 Development board with AFS

2.1.1 Licensing

µHAL and its demonstration programs are freely reusable and you can redistribute
as long as they are used on ARM-based platforms. The other AFS components mu
licensed from ARM. See the license agreement on the AFS CD for details of whic
components are licensed.

If you want to use µHAL in commercial projects, contact ARM to ensure that you ha
the appropriate µHAL version. Because the other AFS base-level components are
free, you must be careful which parts are used and where.

Angel

User image

Switches
LEDs
I/O
Serial port

AFS in
boot
flash

User
flash

Development board

Flash memory

System-dependent
hardware

Default application
(boot monitor)

Boot switcher
2-2 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

An Introduction to µHAL

n be

nd

ut
it

em

nt,
t
these

erial
a

2.1.2 Frequently asked questions

The answers to some common setup problems and frequently asked questions ca
found in Chapter 10Troubleshooting and Frequently Asked Questions.

The ARM Support pages on the ARM web site have additional information on AFS a
on other ARM products:
http://www.arm.com/DevSupp/Sales+Support/faq.html

2.1.3 Application programming interfaces

The µHAL API consists of two types of functions:

Simple The basic functions allow you to program an application through a
minimal number of calls.

Extended The extended functions allow a more complex usage of the system, b
you must be aware of the way µHAL components fit together and how
works. Within µHAL itself, the basic functions are built using the
extended functions.

For a complete list and description of these functions, see Chapter 3µHAL Application
Programming Interfaces.

2.1.4 Application operating modes

µHAL applications can be written to operate in one of two modes:

Standalone A standalone application is one that has complete control of the syst
from boot time onwards.

Semihosted A semihosted application is one for which an application or debug age
such as Angel or Multi-ICE, provides or simulates facilities that do no
exist on the target system. In the case of a debug agent, accesses to
facilities are requested by usingSoftware Interrupt Instructions(SWIs).

For example, the serial interface code in a standalone application requires a real s
port to transmit characters. A semihosted application does not necessarily require
serial port of its own to transmit characters, because it uses a SWI to access a
communications channel provided by the debug agent.
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 2-3

An Introduction to µHAL

the

his

tion

set

ing
es
ls

y a
2.1.5 System support provided by µHAL

µHAL provides system support for a variety of target platforms. It does this by
providing routines for specific functional modules. These functions are described in
following sections:

• System initialization software

• Serial port

• Generic timer

• Generic LEDon page 2-5

• Interrupt controlon page 2-5

• Memory managementon page 2-5

System initialization software

This software initializes the system so that the standard µHAL API is supported. T
might involve:

• switching the memory map over from its initial state to the normal state (for
example from ROM mapped to physical address0x00000000 to RAM mapped
to virtual address0x00000000)

• building page tables and setting up memory management or memory protec
units

• enabling virtual memory.

The system initialization code can be much simpler if the system has already been
up by a debug agent such as Angel.

Serial port

If the system has one or more serial ports, µHAL allows character-level polled read
and writing to that device by way of low-level C routines or C macros. It also includ
a very basicprintf() implementation. In semihosted mode, µHAL makes SWI cal
to the debug host to runprintf() .

Generic timer

µHAL provides a generic interface to manage any timers present in the system. In
semihosted mode, µHAL ensures that it does not use timers that are being used b
memory-resident debug agent such as Angel.
2-4 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

An Introduction to µHAL

o-one
at

is
ping,
Generic LED

If your system has LEDs, µHAL provides a generic interface to these LEDs.

Interrupt control

µHAL v1.1 supports interrupts that useInterrupt Requests(IRQs). This support
includes:

• support for applications that request control of an interrupt

• interrupt handling

• interrupt enabling and disabling.

µHAL v1.1 assumes that it has complete control of the IRQs. If the application is
semihosted, the debug agent can use theFast Interrupt Requests(FIQs).

Memory management

If the system has not been set up by a debug agent, µHAL attempts to set a one-t
mapping between physical and virtual memory. The one exception is that memory
address 0 must be in RAM.

On systems based on SA-1100, ROM is at address 0. On this type of system, RAM
remapped to address 0, ROM is remapped to address 64M. Because of the remap
theMemory Management Unit(MMU) cannot be disabled or reset.

2.1.6 µHAL naming conventions

Every µHAL v1.1 routine has the following naming conventions:

• the prefixuHAL

• the object type

• underscore

• a meaningful capitalized name.

Table 2-1 lists these conventions by object type.

Table 2-1 µHAL naming conventions

Object type Sample

Basic routine, part of the API uHALr_GlobalRoutine

Extended routine, part of the API uHALir_InternalRoutine

Global variable, part of the exported API uHALv_GlobalVariable
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 2-5

An Introduction to µHAL

the
Caution
You must have an understanding of how µHAL operates internally before you use
extended routines.

Internal variable, not part of the exported API uHALiv_InternalVariable

Pointer uHALp_PointerVariable

Internal pointer uHALip_InternalPointer

Global structure, part of the exported API uHALs_GlobalStructure

Global enumerated variable uHALe_GlobalEnum

Table 2-1 µHAL naming conventions (continued)

Object type Sample
2-6 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

An Introduction to µHAL

ing.

the

ing
2.2 Building a new µHAL-based application

There are three ways to build a µHAL-based application:

• Take an existing demonstration program (for example
uHALDemos/Sources/hello.c) and modify it for your use. You can use the
program with any of the existing build systems.

• Create a new component and build your software there with one of the build
systems. You must understand the details of the build system that you are us

• Copy the prebuilt µHAL library that you wish to use, together with the include
files (bits.h , cdefs.h , platform.h , sizes.h anduhal.h) into a new
directory and build your application there. However, you must make sure that
µHAL library is the right variant (board, processor, semihosted versus
standalone) and thatplatform.h is for the system that you wish to run on. This
approach is suited to small applications. Determine the required files by view
the project files or makefiles for an existing application.
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 2-7

An Introduction to µHAL
2.3 Building the µHAL library

There are three ways of building the µHAL library and other AFS components:

• using ARM .mcp project files for the CodeWarrior IDE with ADS 1.0

• using ARM .apj project files for the ARM Project Manager IDE with SDT 2.5

• using GNU makefiles.

Each board and processor combination has its own build directory withinuHAL\Build .
Build directories are denoted by the.b suffix on the directory name. For example, the
build directory for the Integrator/CM940 core module is:

windows\source\Integrator940T\uHAL\Build\Integrator940T.b.

The project files and makefiles inIntegrator940T.b build two variants of the µHAL
library for the ARM940T Integrator core modules:

• standalone in the subdirectorystandalone

• semihosted in the subdirectorysemihosted .

NoteNote
The CodeWarrior IDE creates a new output directory calleduHALLibrary_Data and
creates thestandalone andsemihosted subdirectories in the new directory.

See Chapter 11Building AFS Componentsfor details on rebuilding components.
2-8 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

ing
Chapter 3-
µHAL Application Programming Interfaces

This chapter describes the simple and extended APIs to µHAL. It contains the follow
sections:

• About the µHAL APIson page 3-2

• Simple API memory functionson page 3-4

• Simple API interrupt functionson page 3-8

• Simple API MMU and cache functionson page 3-11

• Simple API timer functionson page 3-13

• Simple API support functionson page 3-20

• Simple API LED control functionson page 3-22

• Serial input/output functions, definitions, and macroson page 3-26

• Extended API initialization functionson page 3-32

• Extended API interrupt handling functionson page 3-34

• Extended API software interrupt (SWI) functionon page 3-39

• Extended API MMU and cache functionson page 3-40

• Extended API processor execution mode functionson page 3-44

• Extended API timer functionson page 3-47

• Extended API coprocessor access functionson page 3-51

• Library support functionson page 3-53.
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 3-1

µHAL Application Programming Interfaces

in

ier to
3.1 About the µHAL APIs

This section provides an overview of the general APIs provided by µHAL. SeeµHAL
PCI function descriptionson page 9-16 for a description of PCI functions contained
µHAL.

3.1.1 µHAL-specific function types

µHAL uses three function types that are abstracted to make interface routines eas
use. These are described in Table 3-1.

For example, with theuHALr_RequestTimer() declaration:

int uHALr_RequestTimer(PrHandler handler,
const unsigned char *devname)

an interrupt handler can be declared as:

void TickTimer(unsigned int interrupt)

and registered with µHAL using:

uHALr_RequestSystemTimer(TickTimer, "test");

Table 3-1 Parameter types

Description Syntax

A pointer to a function with no argument. The function
does not return a value.

typedef void (*PrVoid)(void);

A pointer to a function with one integer argument. The
function does not return a value.

typedef void (*PrHandler)(unsigned int);

A pointer to a function with no argument. The function
returns aPrVoid pointer to a function.

typedef PrVoid (*PrPrVoid)(void);
3-2 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

µHAL Application Programming Interfaces

or

All
3.1.2 Simple and extended API functions

Using the µHAL simple API does not require an understanding of how µHAL works,
of the ARM architecture.

Using the µHAL extended API requires an understanding of how µHAL functions.
functions and type definitions are contained inh\cdefs.h andh\uhal.h .

NoteNote
A number of demonstration programs that use this interface can be found in the
uHALDemossubdirectory of the AFS installation. The code examples used in this
section are taken from these demonstration programs.
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 3-3

µHAL Application Programming Interfaces

used
in
3.2 Simple API memory functions

This section describes the set of functions that are used to find free memory in the
system, and to allocate and free heap storage. Free memory is memory that is not
by µHAL itself or a debug agent. Prototypes for all of these functions are available
h\uhal.h .

The memory functions are:

• uHALr_StartOfRam()

• uHALr_EndOfFreeRam()

• uHALr_EndOfRam()on page 3-5

• uHALr_HeapAvailable()on page 3-5

• uHALr_InitHeap()on page 3-5

• uHALr_malloc()on page 3-6

• uHALr_free()on page 3-6.

There is an example of a program that allocates and de-allocates heap storage in
Example of heap allocation and de-allocationon page 3-7.

3.2.1 uHALr_StartOfRam()

This function returns the address of the first free uninitialized RAM location.

Syntax

void *uHALr_StartOfRam(void)

Return value

Returns thevoid* address of the first available RAM location.

3.2.2 uHALr_EndOfFreeRam()

This function returns the address of the last available RAM location.

Syntax

void *uHALr_EndOfFreeRam(void)

Return value

Returns thevoid* address of the last available RAM location.
3-4 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

µHAL Application Programming Interfaces

s

r

3.2.3 uHALr_EndOfRam()

This function returns the address of the last RAM location.

Syntax

void *uHALr_EndOfRam(void)

Return value

Returns a pointer to the address of last RAM location.

3.2.4 uHALr_HeapAvailable()

This function returns a flag to indicate whether this port of the µHAL library include
support for heap management.

Syntax

int uHALr_HeapAvailable(void)

Return value

Returns one of the following:

1 If the heap management functions are included in the library.

0 If heap management functions are not included.

3.2.5 uHALr_InitHeap()

This function initializes the heap. It must be called before any memory allocation o
de-allocation is attempted.

Syntax

void uHALr_InitHeap(void)
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 3-5

µHAL Application Programming Interfaces

–1.
3.2.6 uHALr_malloc()

This function allocates contiguous storage from the heap.

Syntax

void *uHALr_malloc(unsigned int size)

where:

size is the number of bytes of memory required.

Return value

Returns

0 If size was 0.

-1 If the memory could not be allocated.

pointer If successful, thevoid* address of allocated memory.

3.2.7 uHALr_free()

This routine frees previously allocated memory pointed at bymemPtr .

Syntax

void uHALr_free(void * memPtr)

where:

memPtr is a pointer to the heap memory to be freed. This value should not be
If the value is 0, the function returns without taking any action.
3-6 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

µHAL Application Programming Interfaces

p

3.2.8 Example of heap allocation and de-allocation

Example 3-1 shows an example of a program that allocates and de-allocates hea
storage. The program can be found inuHALDemos\Sources\heap.c .

Example 3-1 Allocating and de-allocating heap storage

#include "uhal.h"
int main (int argc, int *argv[])

{
int Ch ;
int i ;
void *memP ;
uHALr_printf("*** HEAP Allocation/Deallocation ***\n") ;
// init
uHALr_InitHeap() ;
// allocate and free some memory
for (i = 0 ; i < 16 ; i++) {

uHALr_printf("malloc'ing 0x%X bytes...", i * 16) ;
memP = uHALr_malloc(i * 16) ;
uHALr_printf("@ 0x%X\n", memP) ;
uHALr_free(memP) ;

}
return (OK);

}

ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 3-7

µHAL Application Programming Interfaces

all

ble

er.
3.3 Simple API interrupt functions

µHAL assumes that interrupts occur using IRQs. These routines allow you to:

• install a generic interrupt handler

• request control of a particular interrupt

• enable and disable that interrupt.

Your application can install different interrupt handlers for different interrupts, or inst
a single handler for many interrupts.

When an interrupt occurs, µHAL traps it and calls the appropriate handler routine,
passing it the number of the interrupt that occurred.

NoteNote
µHAL does not provide any support to the application for finding the source of
interrupts. It is the responsibility of the board-specific code to map the programma
interrupt controller format to and from a 32-bit quantity.

The interrupt functions are:

• uHALr_InitInterrupts()

• uHALr_RequestInterrupt()on page 3-9

• uHALr_FreeInterrupt()on page 3-9

• uHALr_EnableInterrupt()on page 3-10

• uHALr_DisableInterrupt()on page 3-10.

3.3.1 uHALr_InitInterrupts()

This function is called once on startup by the application. It initializes the µHAL
internal interrupt structures. This must be called before installing a new IRQ handl

Syntax

void uHALr_InitInterrupts(void)
3-8 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

µHAL Application Programming Interfaces

up
3.3.2 uHALr_RequestInterrupt()

This function assigns a high-level handler routine to the specified interrupt. It sets
the internal structures, but does not activate the interrupt.

Syntax

int uHALr_RequestInterrupt(unsigned int intNum ,
PrHandler handler ,
const unsigned char * devname)

where:

intNum is the number of the interrupt to be processed.

handler is a pointer to the routine that processes the interrupt.

devname is a pointer to a string identifying the function of the interrupt.

Return value

Returns one of the following:

0 If successful.

-1 If intNum is unknown or already assigned.

3.3.3 uHALr_FreeInterrupt()

This function removes the high-level handler from the specified interrupt.

NoteNote
An application should always calluHALr_DisableInterrupt() before calling this
routine. CalluHALr_FreeInterrupt() before attempting to change the routine
associated with an interrupt.

Syntax

int uHALr_FreeInterrupt(unsigned int intNum)

where:

intNum is the number of the interrupt to be freed.
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 3-9

µHAL Application Programming Interfaces

s a
he

upts

t if
Return value

Returns one of the following:

0 If successful.

-1 If intNum is unknown, reserved, or not allocated.

3.3.4 uHALr_EnableInterrupt()

This function enables the specified interrupt. On many ARM-based systems, this i
two-step process. It enables an on-board interrupt controller, and then it enables t
interrupt mask on the processor.

Syntax

void uHALr_EnableInterrupt(unsigned int intNum)

where:

intNum is the number of the interrupt to be enabled.

3.3.5 uHALr_DisableInterrupt()

This function disables the specified interrupt. On many ARM-based systems, interr
are enabled and disabled at two stages:

• an on-board controller

• the interrupt mask on the processor.

TheuHALr_DisableInterrupt() function disables the interrupt on the interrupt
controller and does not affect masking by the processor.

Syntax

void uHALr_DisableInterrupt(unsigned int intNum)

where:

intNum is the number of the interrupt to be disabled. The routine has no effec
the number is not in the range of valid interrupts.
3-10 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

µHAL Application Programming Interfaces

led.)

),
s

lso
r

3.4 Simple API MMU and cache functions

On processors that support it, µHAL allows an application to:

• Turn virtual memory on and off using theMemory Management Unit(MMU).
(On systems with read-only memory at address 0, the MMU cannot be disab

• Enable and disable the caches.

These functions are:

• uHALr_ResetMMU()

• uHALr_InitMMU()

• uHALr_EnableCache()on page 3-12

• uHALr_DisableCache()on page 3-12.

Memory management and cache code exampleon page 3-12 includes an example of a
basic cache manipulation program.

3.4.1 uHALr_ResetMMU()

This function safely resets the MMU (and caches) to a fully disabled state (all OFF
irrespective of the state they were originally in. If the MMU cannot be disabled, thi
function has no effect.

Syntax

void uHALr_ResetMMU(void)

3.4.2 uHALr_InitMMU()

This function initializes the MMU to a default one-to-one mapping. This mapping a
defines the types of access allowed to each area according to execution mode. Fo
example, flash can be written in Supervisor mode, but not User mode.

Syntax

void uHALr_InitMMU(int mode)

where:

mode is any combination of the MMU mode flags and cache bit flags,
EnableMMU, IC_ON, DC_ON, andWB_ON. See also
uHALir_WriteCacheMode()on page 3-43.
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 3-11

µHAL Application Programming Interfaces

sor.
3.4.3 uHALr_EnableCache()

This function provides a way to enable all caches that are supported by the proces

Syntax

void uHALr_EnableCache(void)

3.4.4 uHALr_DisableCache()

This function disables all caches that are supported by the processor.

3.4.5 Memory management and cache code example

Example 3-2 is an example of a simple cache manipulation program, taken from
uHALDemos\Sources\simple-caches.c :

Example 3-2 MMU and cache

#include "uhal.h"
#include "mmu_h.h"
int main (int argc, int *argv[]) {

// who are we?
uHALr_printf("Simple Cache Usage [v1.0]\n") ;
// First reset the caches to a known state
uHALr_printf("Resetting caches...") ;
uHALr_ResetMMU() ;
uHALr_printf("done\n") ;
// Now init the MMU to all on
uHALr_printf("Enabling the MMU and all caches...") ;
uHALr_InitMMU(IC_ON | DC_ON | WB_ON | EnableMMU) ;
uHALr_printf("done\n") ;
// Disable the caches
uHALr_printf("Disabling all caches...") ;
uHALr_DisableCache() ;
uHALr_printf("done\n") ;
// Finally, enable all of the caches
uHALr_printf("Enabling all caches...") ;
uHALr_EnableCache() ;
uHALr_printf("done\n") ;
// go home
return (OK);

}

3-12 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

µHAL Application Programming Interfaces

or
3.5 Simple API timer functions

µHAL provides a set of routines that allow an application to use a timer as a system
operating system timer. This is the simplest way to use timers in µHAL.

µHAL also provides generic timer access routines that give more direct access
(although with a little more complexity) to the timers in the system.

The timer functions are:

• uHALr_CountTimers()

• uHALr_InitTimers()on page 3-14

• uHALr_RequestSystemTimer()on page 3-14

• uHALr_InstallSystemTimer()on page 3-15

• uHALr_RequestTimer()on page 3-16

• uHALr_InstallTimer()on page 3-16

• uHALir_GetSystemTimer()on page 3-50

• uHALr_FreeTimer()on page 3-16

• uHALr_GetTimerInterval()on page 3-17

• uHALr_SetTimerInterval()on page 3-17

• uHALr_GetTimerState()on page 3-18

• uHALr_SetTimerState()on page 3-18

• uHALr_EnableTimer()on page 3-19.

System timer programming exampleon page 3-15 shows how to use a system timer.

3.5.1 uHALr_CountTimers()

This function returns the number of timers that are supported by the target.

Syntax

unsigned int uHALr_CountTimers(void)

Return value

Returns the number of timers supported by the target.
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 3-13

µHAL Application Programming Interfaces

alue

ithin

that

and
ce
3.5.2 uHALr_InitTimers()

This function must be called before any other timer function. This function

• initializes the µHAL internal interrupt structures

• resets all timers to a known state. (It sets the internal delays to a predefined v
and sets all timers off.)

If this function is compiled for use with a debug agent, such as Angel, the timer
associated with the debug agent is not reset and is locked to prevent access from w
µHAL.

NoteNote
For the timer interrupt handler to be correctly installed, the application must ensure
uHALr_InitInterrupts() has been called before this function call.

Syntax

void uHALr_InitTimers(void)

3.5.3 uHALr_RequestSystemTimer()

This function installs a handler for the system timer, sets up the internal structures,
stops (and does not restart) the timer. By default, the system timer is set to tick on
every millisecond.

Syntax

int uHALr_RequestSystemTimer(PrHandler handler ,
const unsigned char * devname)

where:

handler is a pointer to the routine that will process the interrupt.

devname is a pointer to a string identifying the function of the interrupt.

Return value

Returns one of the following:

0 If successful.

-1 If the IRQ is already assigned.
3-14 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

µHAL Application Programming Interfaces
3.5.4 uHALr_InstallSystemTimer()

This function starts the timer and enables the interrupt associated with it.

Syntax

void uHALr_InstallSystemTimer(void)

3.5.5 System timer programming example

The program in Example 3-3 demonstrates how a system timer is used.

Example 3-3 System timer example

#include "uhal.h"
// High-level routine called by IRQ Trap Handler when the timer interrupts
static int OSTick = 0 ;
void TickTimer(unsigned int irq){

OSTick++ ;
}

int main (int argc, int *argv[]) {
int i, j ;

uHALr_printf("System Timer\n") ; // who are we?
uHALr_InitInterrupts() ; // Install new trap handlers and soft vectors
uHALr_InitTimers() ; // initialize the timers
OSTick = 0 ; // initialize the tick count
uHALr_printf("Timer init\n") ;
if (uHALr_RequestSystemTimer(TickTimer,(const unsigned char*)"test")<= 0)

uHALr_printf("Timer/IRQ busy\n") ;

uHALr_InstallSystemTimer() ; // Start system timer & enable the interrupt
// loop flashing a led and giving out the tick count
for (j = 0; ; j++) {

if (j & 1)
uHALr_SetLED(1) ;

else
uHALr_ResetLED(1) ;

uHALr_printf("Tick is %x\n", OSTick) ;
for (i = 0 ; i < 1000000 ; i++) ;

}
return (OK);

}

ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 3-15

µHAL Application Programming Interfaces

er is

rnal
3.5.6 uHALr_RequestTimer()

This function gets the next available timer and installs a handler. On return, the tim
initialized but not running.

Syntax

int uHALr_RequestTimer(PrHandler handler ,
const unsigned char * devname)

where:

handler is a pointer to the routine that will process the interrupt.

devname is a pointer to a string identifying the function of the interrupt.

Return value

Returns one of the following:

timer If successful, the timer number is returned.

-1 If the timer is unknown or already assigned.

3.5.7 uHALr_InstallTimer()

This function starts the specified timer by enabling the timer and the associated
interrupt.

void uHALr_InstallTimer(unsigned int timer)

where:

timer is the timer to be started.

3.5.8 uHALr_FreeTimer()

This function disables the specified timer, frees the interrupt, and updates the inte
structure.

Syntax

int uHALr_FreeTimer(unsigned int timer)

where:

timer is the number of the timer to be freed.
3-16 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

µHAL Application Programming Interfaces
Return value

Returns one of the following:

0 If successful.

-1 If the timer is unknown.

3.5.9 uHALr_GetTimerInterval()

This function gets the interval, in microseconds, for the specified timer.

Syntax

int uHALr_GetTimerInterval(unsigned int timer)

where:

timer is the number of the timer for which the interval is requested.

Return value

Returns one of the following:

interval If successful (return value in microseconds).

-1 If the timer is not found.

3.5.10 uHALr_SetTimerInterval()

This function sets the interval, in microseconds, for the specified timer.

Syntax

int uHALr_SetTimerInterval(unsigned int timer ,
unsigned int interval)

where:

timer is the timer number for which the interval is to be set.

interval is the number of microseconds between events.

Return value

Returns one of the following:

0 If the timer is found.

-1 If the timer is not found.
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 3-17

µHAL Application Programming Interfaces
3.5.11 uHALr_GetTimerState()

This function gets the current state of the specified timer.

Syntax

int uHALr_GetTimerState(unsigned int timer)

where:

timer is the timer number for which the state is requested.

Return value

Returns one of the following:

state If the timer is found, the current state is one of:

T_FREE Available.

T_ONESHOT Single-shot timer (in use).

T_INTERVAL Repeating timer (in use).

T_LOCKED Not available for µHAL.

-1 If the timer is not found.

3.5.12 uHALr_SetTimerState()

This function sets the timer state.

Syntax

int uHALr_SetTimerState(unsigned int timer ,
enum uHALe_TimerState state)

where:

timer is the timer number for which the state is being set.

state is a valid timer state which is one of:

T_ONESHOT Single-shot timer (in use).

T_INTERVAL Repeating timer (in use).
3-18 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

µHAL Application Programming Interfaces
Return value

Returns one of the following:

0 If the timer is found.

-1 If the timer is not found.

3.5.13 uHALr_EnableTimer()

This function reloads the interval and enables the specified timer.

Syntax

void uHALr_EnableTimer(unsigned int timer)

where:

timer is the timer to be enabled.
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 3-19

µHAL Application Programming Interfaces

f

3.6 Simple API support functions

In addition to the general routines, µHAL provides implementations of a number o
standard C library routines. The support functions include:

• uHALr_memset()

• uHALr_memcmp()

• uHALr_memcpy()on page 3-21

• uHALr_strlen()on page 3-21.

3.6.1 uHALr_memset()

This function places characterc into the firstn characters ofs , and returnss .

Syntax

void *uHALr_memset(char * s, int c, int n)

where:

s is the start address of memory to be set.

c is the character to be copied into memory.

n is the number of memory locations to be used.

Return value

Returnss .

3.6.2 uHALr_memcmp()

This function compares the firstn characters ofcs with ct .

Syntax

int uHALr_memcmp(char * cs , char * ct , int n)

where:

cs is the start of memory locations to be compared.

ct is the start of memory locations to be comparedagainst.

n is the number of memory locations to be compared.
3-20 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

µHAL Application Programming Interfaces
Return value

Returns one of the following:

1 If cs >ct .

0 If cs =ct .

-1 If cs <ct .

3.6.3 uHALr_memcpy()

This function copiesn characters fromct to s .

Syntax

int uHALr_memcpy(char * s, char * ct , int n)

where:

s is a pointer to the destination memory locations.

ct is a pointer to the source memory locations.

n is the number of memory locations to be copied.

Return value

Returns the address of the first location copied.

3.6.4 uHALr_strlen()

This function returns the length ofs .

Syntax

int uHALr_strlen(const char * s)

where:

s is a pointer to a zero-terminated string.

Return value

This function returns the size, in bytes, ofs .
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 3-21

µHAL Application Programming Interfaces

ED

erent

n

The
3.7 Simple API LED control functions

µHAL provides a set of simple routines for accessing any LEDs in the system. The L
control functions are:

• uHALr_CountLEDs()on page 3-23

• uHALr_InitLEDs()on page 3-23

• uHALr_ResetLED()on page 3-23

• uHALr_SetLED()on page 3-24

• uHALr_ReadLED()on page 3-24

• uHALr_WriteLED()on page 3-24.

An example of a simple LED flashing program is provided inLED control code
exampleon page 3-25.

3.7.1 LED states and addresses

The µHAL LED code is generic and manages any LEDs that can be accessed at diff
addresses on different boards. Logic 1 can indicate either ON or OFF.

The LED code in the moduleSources\led.c keeps the LED addresses (or homes) i
theuHALiv_LedHomes array. The set of pointers to LEDs is initialized to be the
contents ofuHAL_LED_OFFSETS. The addresses, pointers, and the number of LEDs
(uHAL_NUM_OF_LEDS), are defined in the board-specific definition filesplatform.s

andplatform.h .

For some systems, the platform files contain different addresses for different LEDs.
LED code also keeps a set of masks, one per LED, in theuHALiv_LedMasks array.
This is set to the contents ofUHAL_LED_MASKS.

When reading the LEDs, the LED code does the following:

1. Reads the LED using its home address.

2. ANDs the value read with the mask for this LED.

3. Compares the result with the board-specific literaluHAL_LED_ON. Some LEDs
report 0 as on.A board-specific LED write function,uHALr_WriteLED() in
board.c , is used to write to the LEDs.
3-22 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

µHAL Application Programming Interfaces
3.7.2 uHALr_CountLEDs()

This function returns the number of LEDs available to the µHAL application.

Syntax

unsigned int uHALr_CountLEDs(void)

Return value

Returns the number of LEDs:

0 If there are no LEDs.

count If there are LEDs.

3.7.3 uHALr_InitLEDs()

This function initializes the LEDs in the system toOFF.

Syntax

unsigned int uHALr_InitLEDs(void)

Return value

Returns the number of LEDs

3.7.4 uHALr_ResetLED()

This function turns the specified LED off.

Syntax

void uHALr_ResetLED(unsigned int led)

where:

led is the specified LED number.
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 3-23

µHAL Application Programming Interfaces
3.7.5 uHALr_SetLED()

This function turns the specified LED on.

Syntax

void uHALr_SetLED(unsigned int led)

where:

led is the specified LED number.

3.7.6 uHALr_ReadLED()

This function returns the state of the specified LED.

Syntax

int uHALr_ReadLED(unsigned int led)

where:

led is the specified LED number.

Return value

Returns one of the following:

TRUE If the LED state is on.

FALSE If the LED state is off.

-1 If the LED number specified is invalid.

TRUEis defined as 1 andFALSE is defined as 0.

3.7.7 uHALr_WriteLED()

This function writes a value to the specified LED.

Syntax

int uHALr_WriteLED(unsigned int led , unsigned int state)
3-24 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

µHAL Application Programming Interfaces
where:

led is the specified LED number.

state is the desired LED state:

TRUE to turn the led on (1).

FALSE to turn the led off (0).

Return value

Returns one of the following:

0 If successful.

-1 If the LED number specified is invalid.

3.7.8 LED control code example

Example 3-4 is an example of a simple LED flashing program (taken from
uHALDemos\Sources\led.c).

Example 3-4 LED flashing program

#include "uhal.h"
int main (int argc, int *argv[])
{

unsigned int count, max, on ;
unsigned int wait, i, j ;
count = uHALr_InitLEDs() ;
max = (1 << count) ;
while(1) {

for (i = 0 ; i < max ; i++) {
/* which LEDs are on? */
on = (max - 1) & i ;
for (j = 0; j < count ; j++)

if (on & (i << j)
uHALr_SetLED(j + 1);

else
uHALResetLED (j + 1);

/* wait a while */
for (wai t = 0 ; wait < 1000000 ; wait++) ;

}
}
return (OK);

}

ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 3-25

µHAL Application Programming Interfaces

of

gent
3.8 Serial input/output functions, definitions, and macros

If there is a serial port, µHAL provides access for the application by using a series
polled calls. In the case of a semihosted application, µHAL makes SWI calls to the
underlying debug agent to process the requests.

The simple serial I/O functions are:

• uHALr_ResetPort()

• uHALr_getchar()

• uHALr_putchar()on page 3-27

• uHALr_printf() on page 3-27.

A basic character I/O program example is provided in:

• Serial input/output code exampleon page 3-28.

The one extended serial function is:

• uHALir_InitSerial()on page 3-27.

3.8.1 uHALr_ResetPort()

This function resets the port defined forstdin /stdout to the board default state.

Syntax

void uHALr_ResetPort(void)

3.8.2 uHALr_getchar()

This function waits for a character from the default port. When compiled as a
semihosted application, this function uses the SWI handler provided by the debug a
to get the character from the host console.

Syntax

unsigned int uHALr_getchar(void)

Return value

Returns theunsigned int containing the character read from the serial port.
3-26 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

µHAL Application Programming Interfaces

gent
3.8.3 uHALr_putchar()

This function sends the given character to the default port. When compiled as a
semihosted application, this function uses the SWI handler provided by the debug a
to send the character to the host console.

Syntax

void uHALr_putchar(unsigned char c)

where:

c is the character to be sent to the serial port.

3.8.4 uHALr_printf()

This function converts, formats, and writes the arguments to the standard output.

Syntax

void uHALr_printf(char * format , ...)

where:

format is a pointer to the start of the zero-terminated formatting string. The
known format types are:

%i, %c, %s, %d, %u, %o, %x , and%X

You must insert one of these parameters into the format string.

... is a variable list of arguments to print.

3.8.5 uHALir_InitSerial()

This function initializes the specified port to the specified baud rate.

NoteNote
This is an extended API function.

Syntax

void uHALr_InitSerial(unsigned int port , unsigned int baudRate)
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 3-27

µHAL Application Programming Interfaces
where:

port is the base address of the serial port to be initialized.

baudRate is the platform-specific value used to set the data transfer rate.

3.8.6 Serial input/output code example

Example 3-5 is an example of a program performing simple character I/O.

Example 3-5 Serial interface program

#include "uhal.h"
extern void print_header(void);
char * test_name = "Input/Output Tests\n";
char * test_ver = "Program Version 1.0\n";
extern void print_end (void);

static int yesno(char *question, int preferred) {
int c ;
uHALr_printf(question) ; // ask the question
if (preferred)

uHALr_printf("[Yn]? ") ;
else

uHALr_printf("[Ny]? ") ;
c = uHALr_getchar() ; // get the answer and interpret it
uHALr_putchar(c) ;
if (c == '\n') return preferred ;
uHALr_putchar('\n') ;
return ((c == 'y')||(c == 'Y')) ;

}
int main (int argc, int *argv[]) {

int i ;
char buf[80] ;
U8 c ;
print_header(); // who are we?
// Ask for some characters (don't forget to echo)
uHALr_printf("Please enter a string terminated by C/R\n") ;
uHALr_printf("IO> ") ;
for (i = 0 ; i < sizeof(buf) ; i++) {

c = uHALr_getchar() ;
uHALr_putchar(c) ;
if ((c == '\n') || (c == '\r')) {

uHALr_putchar('\n') ;
break ;

}
}

3-28 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

µHAL Application Programming Interfaces

by

le

rt

gel

HAL
oard
ks
,

// ask the user if they saw it correctly
if (yesno("Were the characters echoed to screen properly", 1) == 1)

uHALr_printf("Successful!\n") ;
else

uHALr_printf("Failed!\n") ;

print_end ();
return (OK);

}

3.8.7 Serial input output board-specific definitions and macros

If µHAL is built to run as a semihosted application, all input and output is handled
the debug agent, for example Angel. In standalone mode, µHAL provides minimal
serial input and output support, enough to reset the defined serial port and to hand
polled input and output.

The board-specific definition files,platform.s andplatform.h , describe the COM
ports for a system and their usage. Example 3-6 on page 3-29 shows the COM po
definitions for an SA-1100 Prospector board.

Example 3-6 COM port definitions

/* define it so that it only ever uses one port */
/* Default port to talk to host (via debugger) */
#define HOST_COMPORT UART3_BASE
#define OS_COMPORT HOST_COMPORT

where:

HOST_COMPORT

is the COM port used to communicate with a debug host using the An
debug monitor.

OS_COMPORT

is the COM port used by an operating system or µHAL application.

On the Prospector board, these are defined to be the same so that a semihosted µ
application uses semihosting for serial input and output. Because the Prospector b
has two COM ports, you can use separate ports to prove that your application wor
using a real serial port. The board must supply a COM port-specific reset function
uHALir_InitSerial() . This can be found in the board-specificboard.c module.
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 3-29

µHAL Application Programming Interfaces

ific
NoteNote
If you are using Multi-ICE with a semihosted application, the COM port is still
reserved. Change the definition inplatform.h to free the port.

The µHAL COM port input and output code is found in the module
Sources\lib\iolib.c . It makes use of several macros (defined in the board-spec
definition files) to perform polled character input and output.

These macros are:

• GET_CHAR

• GET_STATUS

• RX_DATA

• TX_READY

• PUT_CHAR.

These macros support the µHAL input/output functions such asuHALr_PutChar() .
Example 3-7 shows macros for the Prospector.

Example 3-7 Prospector usage of serial input/output macros

* This board uses the SA-1100 UART3 as stdio */
#define UART3_BASE 0x80050000

/* UART primitives */
#define PUT_CHAR(p, c) ((*(volatile unsigned int *)

(p + UTDR)) = c)
#define GET_STATUS(p) (*(volatile unsigned int *)(p + UTSR1))
#define GET_CHAR(p) (*(volatile unsigned int *)(p + UTDR))
#define RX_DATA(s) (s & UTSR1_RNE)
#define TX_READY(s) ((s & UTSR1_TNF) != 0)
#define RX_ENABLE 0x09
#define TX_ENABLE 0x12
#define TX_BUSY(s) (s & UTSR1_TBY)
#define READ_INTERRUPT (p)(*(volatile unsigned int *)

(p + UTSR0))
#define RX_INTERRUPT 2
#define TX_INTERRUPT 1
3-30 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

µHAL Application Programming Interfaces
/* UART regs/values */
#define UTCR0 0x00
#define UTCR1 0x04
#define UTCR2 0x08
#define UTCR3 0x0C
#define UTDR 0x14
#define UTSR0 0x1C
#define UTSR1 0x20

/* Line status bits. */
#define UTSR1_TBY 1 /* transmitter busy flag */
#define UTSR1_RNE 2 /* receiver not empty (LSR_DR) */
#define UTSR1_TNF 4 /* transmit fifo non full */
#define UTSR1_PRE 8 /* parity read error (LSR_PE) */
#define UTSR1_FRE 16 /* framing error (LSR_FE) */
#define UTSR1_ROR 32 /* receive fifo overrun (LSR_OE) */
#define UTSR0_TFS 1 /* transmit fifo service request */
#define UTSR0_RFS 2 /* receive fifo service request */
#define UTSR0_RID 4 /* receiver idle */
#define UTSR0_RBB 8 /* receiver begin of break */
#define UTSR0_REB 16 /* receiver end of break */
#define UTSR0_EIF 32 /* error in fifo */
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 3-31

µHAL Application Programming Interfaces

o
in

y
flash

AM

atic

ned

s,

t up
3.9 Extended API initialization functions

The entry point to an ARM program is defined by either the-entry option of armlink
or the assemblerENTRYdirective. µHAL attaches this directive to the routine__main

in sources\boot.s . µHAL places the exception vectors at the start of the image s
that the application functions correctly from RAM or ROM at address 0. When used
a system with static memory at address 0, the default vectors in sources\boot.s must
be changed to correspond to the ones actually used in the high-level application.

All ARM processors execute their first instruction at address 0. In many systems,
however, this address contains volatile RAM. Implementations that assert theHIVECS
input pin to start CPU execution from an address other than 0 are not supported b
µHAL. Each system must implement a mechanism to allow static memory, such as
or ROM, to overlay this RAM so the program can start.

The startup procedure is:

1. Switch the memory map back to its normal layout by using theGOTO_ROMmacro
in the target specifictarget.s file.

2. Initialize the memory systems (if necessary) and determine the amount of R
in the system.

3. If the application is compiled standalone, copy the exception vectors from st
memory to RAM, starting at address 0.

4. Set up the stacks for the different processor modes and initialize the predefi
data areas for the high-level application.

5. Initialize the rest of the system, including MMU, cache, serial ports, interrupt
and timers.

Some applications might hide this completely within the boot-up section. Others se
only the required functions from within the application.

The initialization functions are:

• uHALir_InitTargetMem()on page 3-33

• uHALir_InitBSSMemory()on page 3-33

• uHALir_PlatformInit()on page 3-33.
3-32 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

µHAL Application Programming Interfaces

ss of

t

trol
3.9.1 uHALir_InitTargetMem()

This function checks and initializes the memory system and then returns the addre
the top of available memory. This function does not corrupt memory if it is already
initialized.

NoteNote
This routine cannot be called from C because it assumes there is no stack and tha
registers do not have to be preserved.

Syntax

void *uHALir_InitTargetMem(void)

Return value

ReturnsTop of Memory +1 (in bytes) and stores it inuHALiv_TopOfMemory .

3.9.2 uHALir_InitBSSMemory()

This function initializes the predefined variables and zeroed memory used by the
high-level application.

NoteNote
This routine overwrites any variables declared within the application.

Syntax

void uHALir_InitBSSMemory(void)

3.9.3 uHALir_PlatformInit()

This function initializes any platform-specific systems that must be setup before con
is passed to the application.

Syntax

void uHALir_PlatformInit(void)
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 3-33

µHAL Application Programming Interfaces

n:
3.10 Extended API interrupt handling functions

The ARM processor has IRQ and FIQ interrupts. µHAL avoids using FIQs, leaving
them available to the debugger and/or user application.

How µHAL initializes interrupts depends on the mode you have built it to execute i

• For standalone applications, the full set of vectors (contained in
\sources\boot.s) is usually copied to memory at physical address
0x00000000 .

• For semihosted applications, µHAL installs an interrupt handler when the
application requests one. This vector contains the address of
uHALir_IRQProcess() , a dummy IRQ handler.

When IRQs are installed (usinguHALr_InitInterrupts()), µHAL installs a pointer
to the default trap handling functionuHALr_TrapIRQ() (in Sources\irqtrap.s)
into the exception vector at offset0x18 .

When an interrupt occurs,uHALr_TrapIRQ() saves all the registers in an
APCS-compliant manner and, optionally, calls several handler routines to actually
handle the IRQ. These handlers are called:

• after the context has been saved on the IRQ stack

• after the source of the interrupt has been determined

• at the end of the interrupt, just before the PC is restored from LR.

These routine addresses are stored inuHALp_StartIRQ , uHALp_HandleIRQ , and
uHALp_FinishIRQ , respectively. The interrupt exception vector is modified using
uHALir_NewVector() .

The interrupt handler functions are:

• uHALir_TrapIRQ()on page 3-35

• uHALir_NewVector()on page 3-35

• uHALir_NewIRQ()on page 3-36

• uHALir_DefineIRQ()on page 3-36

• uHALir_DispatchIRQ()on page 3-37

• uHALir_UnexpectedIRQ()on page 3-38.
3-34 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

µHAL Application Programming Interfaces

ctly

r.

are
3.10.1 uHALir_TrapIRQ()

This function:

1. saves all the registers in an APCS-compliant manner

2. calls aStartIRQ() function, if defined

3. reads the interrupt mask and calls the high-level handlerHandleIRQ()

4. calls aFinishIRQ() function, if defined

5. jumps to a returned value as an address to finish IRQ processing, if
FinishIRQ() returns this value.

You can specify your own handler to use instead of the default trap handler by dire
calling this low-level interrupt installer (found inSources\irqlib.s). The
application must completely handle its own interrupts. µHAL itself calls this routine
from uHALr_InitIRQ() to install the low-level trap handleruHALr_TrapIRQ() and
the high-level IRQ dispatcheruHALr_DispatchIRQ() .

NoteNote
This function is intended as an IRQ handler and not a user-called function.

Syntax

void uHALir_TrapIRQ(void)

3.10.2 uHALir_NewVector()

This function replaces the specified exception vector with the given routine pointe

NoteNote
This routine is not ACPS-compliant as it may be called before stacks and memory
defined. The function must be called in Supervisor mode.

Syntax

int *uHALir_NewVector(void * Vector , PrVoid LowLevel)

where:

Vector is the address of the vector to be replaced.

LowLevel is a pointer to the low-level exception handler.
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 3-35

µHAL Application Programming Interfaces

tors.

the

ler
t and

ult,

. If

e
eter.
Register contents

The register contents on return are:

r2 The address of the old vector, branch, or NULL.

r1 The address of the new vector, branch, or NULL.

r0 The status:

• 0 if the new exception vector could not be written

• 1 if the old exception was an LDR PC instruction

• 2 otherwise.

3.10.3 uHALir_NewIRQ()

This function installs both the high-level and low-level IRQ routines. To install the
low-level routine, its address is copied to the vector array used by the exception vec

Assuming that the application chooses to use the default trap handler, µHAL allows
application to specify handlers for the start and end of each interrupt, in addition to
allowing it to actually handle the interrupt. For simple interrupts, only the IRQ hand
is needed. However, some operating systems ported to µHAL make use of the star
finish handlers to aid context switching (typically done at the end of timer interrupt
handling). Use this function to define any of these three interrupt handlers.

Syntax

void uHALir_NewIRQ(PrHandler HighLevel , PrVoid LowLevel)

where:

HighLevel is a pointer to the high-level routine that processes interrupts. By defa
this isuHALr_DispatchIRQ() .

LowLevel is a pointer to the low-level routine. This routine must switch out of IRQ
mode and restore correct operation of the application upon completion
this pointer is zero, the default routineuHALr_TrapIRQ() is installed.

3.10.4 uHALir_DefineIRQ()

This function allows some or all of the functionality of the low-level IRQ handler to b
defined. If zero is passed as the pointer contents, no action is taken for that param

This is the default interrupt dispatcher (found inSources\irq.c). This is passed the
interrupt sources as a 32-bit value. How the interrupt sources are determined is
board-specific and theREAD_INT macro intarget.s is used for this purpose.
3-36 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

µHAL Application Programming Interfaces

hat
no
Syntax

void uHALir_DefineIRQ(PrVoid Start , PrPrVoid Finish ,
PrVoid Trap)

where:

Start is a pointer to the routine to be executed at the start of every IRQ.

Finish is a pointer to the routine to be executed at the finish of every IRQ.

Trap is a pointer to a different low-level IRQ handler. This handler might
function differently than the default operation. The default interrupt
routine isuHALr_TrapIRQ() .

Usage

Start andFinish are zero if not required, but ifTrap is zero, the current vector is not
overwritten. This routine should be called before the call to
uHALr_InitInterrupt() .

3.10.5 uHALir_DispatchIRQ()

This is the high-level interrupt handler that scans the IRQ flags to find the interrupt t
caused the exception. The appropriate installed interrupt handler is then called. If
handler is found, a common unexpected IRQ routine is called.

The interrupts themselves are owned by an interrupt handler. The µHAL code in
Sources\irq.c maintains theuHALv_IRQVector array ofuHALis_IRQ structs that
describe the handler for each interrupt source.

The format of the data structure is:

struct uHALis_IRQ {
PrHandler handler ; /* Routine for */

/* specific interrupt */
unsigned int flags ;
unsigned int mask ;
const unsigned char *name ; /* Debug, owner id */
struct uHALis_IRQ *next ; /* Useful for shared */

/* interrupts */
};

There areNR_IRQSelements.NR_IRQSis defined in the board-specificplatform.s

andplatform.h files. µHAL applications install interrupt handlers using the
uHALr_RequestInterrupt() function described on page 3-9. The application
enables the interrupt by callinguHALr_EnableInterrupt() .
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 3-37

µHAL Application Programming Interfaces

upt
cted

pt is
This function unmasks this particular interrupt by calling the board-specific
uHALir_UnmaskIrq() function (found inboard.c), and enables IRQs in the
processor by callinguHALir_EnableInt() (found inSources\lib\irqlib.s).

When the interrupt occurs,uHALr_DispatchIRQ() calls the interrupt handler for
every pending bit set in the interrupt flags. To enable an application to have one
interrupt handler for several interrupts, the interrupt number is passed to the interr
handler. If an interrupt occurs and there is no installed interrupt handler, the unexpe
interrupt handler is called (seeuHALir_UnexpectedIRQ()on page 3-38).

Syntax

void uHALir_DispatchIRQ(unsigned int irqflags)

where:

irqflags is the pending interrupt or interrupts.

NoteNote
This function is intended as an IRQ handler and not a user-called function.

3.10.6 uHALir_UnexpectedIRQ()

This function prints a debug message and some status information when an interru
received for which no handler has been installed.

The function can be adapted to disable the interrupt by adding a call to
uHALr_DisableIRQ() .

Syntax

void uHALir_UnexpectedIRQ(unsigned int irq)

where:

irq is the number of the interrupt that triggered unexpectedly.
3-38 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

µHAL Application Programming Interfaces

r
nly

or is
er
ived

14),
not
3.11 Extended API software interrupt (SWI) function

A Software Interrupt Instruction(SWI) provides a means for a program running in Use
mode to request privileged operations that must be run in Supervisor mode. The o
SWI currently handled by µHAL isSWI_EnterOS . This SWI switches into Supervisor
mode. All other SWIs, and the behavior of µHAL with these SWIs, are undefined.

NoteNote
When running µHAL under a debug agent, such as Angel, the SWI exception vect
not overwritten. It is the debug agent that executes the SWI handler. Also, charact
input/output is handled by the debug agent rather than being directly sent to or rece
from the serial port.

3.11.1 uHALir_TrapSWI()

This function handles SWI exceptions. The only SWI currently decoded is
SWI_EnterOS . This SWI returns back to the initial context in Supervisor mode.

NoteNote
Because the SWI call writes the return address into the link register (written as lr or r
the link register must be protected. This is part of the µHAL support code, and it is
intended to be called by user programs.

Syntax

void uHALir_TrapSWI(void)
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 3-39

µHAL Application Programming Interfaces

che,

t a
the
3.12 Extended API MMU and cache functions

Memory management is a complex issue. Refer to theARM Architecture Reference
Manual for more details.

µHAL provides two basic routines to reset the MMU to its power-on state (that is,
disabled) and to initialize a one-to-one mapping, as described inSimple API MMU and
cache functionson page 3-11.

Safe, finer control of the MMU is also provided by the processor-specific functions
described below. The common shell of these functions is contained in themmu.s or
cache.c modules (for example,Processors\mmu.s). The unique features of each
processor are implemented using macros (for example,
Processors\ARM720T\mmu720T.s). The functions are designed to operate safely,
stay in SVC mode, and maintain cache coherency. In order to correctly clean a ca
the code might require board-specific information on which addresses it can use.

The cache management functions are:

• uHALir_EnableICache()

• uHALir_DisableICache()on page 3-41

• uHALir_EnableDCache()on page 3-41

• uHALir_DisableDCache()on page 3-41

• uHALir_CleanDCache()on page 3-41

• uHALir_CleanDCacheEntry()on page 3-42

• uHALir_EnableWriteBuffer()on page 3-42

• uHALir_DisableWriteBuffer()on page 3-42

• uHALir_ReadCacheMode()on page 3-42

• uHALir_WriteCacheMode()on page 3-43.

3.12.1 uHALir_EnableICache()

This function enables the instruction cache only. If the processor does not suppor
separate instruction cache, the cache is enabled for both instructions and data. If
processor has no caches, no action is taken.

Syntax

void uHALir_EnableICache(void)
3-40 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

µHAL Application Programming Interfaces

data
n is

nd
aken.

nd
aken.

ction
3.12.2 uHALir_DisableICache()

This function disables the instruction cache only. If the processor has a combined
and instruction cache, then it is disabled. If the processor has no caches, no actio
taken.

Syntax

void uHALir_DisableICache(void)

3.12.3 uHALir_EnableDCache()

This function enables the data cache only. If the processor has a combined data a
instruction cache, then it is enabled. If the processor has no caches, no action is t

Syntax

void uHALir_EnableDCache(void)

3.12.4 uHALir_DisableDCache()

This function disables the data cache only. If the processor has a combined data a
instruction cache, then it is disabled. If the processor has no caches, no action is t

Syntax

void uHALir_DisableDCache(void)

3.12.5 uHALir_CleanDCache()

This function cleans the data cache. If the processor has a combined data and instru
cache, then it is cleaned. If the processor has no caches, no action is taken.

Syntax

void uHALir_CleanDCache(void)
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 3-41

µHAL Application Programming Interfaces

does
ned.

ffer,

ffer,
3.12.6 uHALir_CleanDCacheEntry()

This function cleans the data cache entry for the specified address. If the processor
not support cleaning of individual data cache entries, the whole data cache is clea
If the processor does not support a separate data cache, the combined data and
instruction cache is cleaned. If the processor has no caches, no action is taken.

Syntax

void uHALir_CleanDCacheEntry(void * address)

where:

address Is the location to be synchronized with memory.

3.12.7 uHALir_EnableWriteBuffer()

This function enables the write buffer. If the processor does not support a write bu
the operation is zero.

Syntax

void uHALir_EnableWriteBuffer(void)

3.12.8 uHALir_DisableWriteBuffer()

This function disables the write buffer. If the processor does not support a write bu
no action is taken.

Syntax

void uHALir_DisableWriteBuffer(void)

3.12.9 uHALir_ReadCacheMode()

This function reads the current MMU and cache modes.

Syntax

unsigned int uHALir_ReadCacheMode(void)

Return value

Returns the current mode of the cache and MMU.
3-42 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

µHAL Application Programming Interfaces
3.12.10 uHALir_WriteCacheMode()

This function updates the processor MMU and cache state.

Syntax

void uHALir_WriteCacheMode(unsigned int mode)

where:

mode is any combination of the MMU mode flags and cache bit flags:

EnableMMU

Enables the memory management unit.

IC_ON Turns the I cache on.

DC_ON Turns the D cache on.

WB_ON Turns the Write Buffer on.

Example

The following code enables all caching:

void uHALr_EnableCache(void)
{

intmode = uHALir_ReadCacheMode() ;
uHALir_WriteCacheMode(mode | (IC_ON + DC_ON + WB_ON)) ;

}

ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 3-43

µHAL Application Programming Interfaces

ed in
y

and
the
R.

ust

ode.
3.13 Extended API processor execution mode functions

The ARM architecture (version 4 and later) has seven processor modes (as describ
theARM Architecture Reference Manual). Supervisor, System, and User modes appl
to normal program execution.

These modes differ in priority, access to registers, memory, and peripherals. System
User modes use the same stack and registers. Application code often executes in
non-privileged User mode and cannot directly change the interrupt bits in the CPS

The processor execution mode functions (inSources\cpumode.s) allow the current
mode to be read and changed. When switching processor mode, the application m
protect the originalSaved Program Status Register(SPSR), especially when in an
interrupt, so that functionality can be fully unwound.

The processor execution mode functions are:

• uHALir_EnterSvcMode()

• uHALir_ExitSvcMode()on page 3-45

• uHALir_EnterLockedSvcMode()on page 3-45

• uHALir_ReadMode()on page 3-45

• uHALir_WriteMode()on page 3-46.

3.13.1 uHALir_EnterSvcMode()

This function switches the mode to Supervisor mode, irrespective of the current m
It masks some considerations regardingSWI_EnterOS . The calling routine must save
the returned value to be passed touHALir_ExitSVCMode() .

NoteNote
You must take care to balance stacks according to processor mode.

Syntax

unsigned int uHALir_EnterSvcMode(void)

Return value

Returns SPSR, the initial saved processor mode (used to restore the mode by
uHALir_ExitSVCMode()).
3-44 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

µHAL Application Programming Interfaces
3.13.2 uHALir_ExitSvcMode()

This function restores the mode back to the original mode. It switches back to the
original processor mode before the call touHALir_EnterSVCMode() , and restores the
original SPSR, as saved by the calling routine.

Syntax

void uHALir_ExitSvcMode(unsigned int spsr)

where:

spsr is the original SPSR.

3.13.3 uHALir_EnterLockedSvcMode()

This function switches into Supervisor mode and disables IRQ interrupts. It masks
some of the considerations regardingSWI_EnterOS ,

NoteNote
You must take care to balance stacks according to processor mode.

Syntax

unsigned int uHALir_EnterLockedSvcMode(void)

Return value

Returns the original SPSR.

3.13.4 uHALir_ReadMode()

This function reads the current execution mode.

Syntax

unsigned int uHALir_ReadMode(void)

Return value

Returns theCurrent Program Status Register(CPSR).
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 3-45

µHAL Application Programming Interfaces
3.13.5 uHALir_WriteMode()

This function changes the current execution mode.

NoteNote
The processor must already be in a privileged mode (not in User mode).

Syntax

void uHALir_WriteMode(unsigned int cpsr)

where:

cpsr is the new CPSR.
3-46 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

µHAL Application Programming Interfaces

lter
3.14 Extended API timer functions

The timer code is held in the moduleSources\timer.c . It stores information about
the timers in the system in theuHALiv_TimerStatus vector. This is an array of
uHALis_Timer data structures that must have the following format:

/* Enum to describe timer: free, one-shot, on-going interval */
/* or locked-out */
enum uHALe_TimerState

{ T_FREE, T_ONESHOT, T_INTERVAL, T_LOCKED } ;

struct uHALis_Timer {
unsigned int irq ; /* IRQ number */
enum uHALe_TimerState state ;
unsigned int period ; /* Period between triggers */

PrHandler handler; /* User Routine */
const unsigned char *name; /* Debug, owner id */
PrHandler ClearInterruptRtn; /* User Routine */
int hw_interval:1;
struct uHALis_Timer *next;

} ;

µHAL also maintains a second vector,uHALiv_TimerVectors . This contains the
interrupt number for each timer.uHALiv_TimerVectors is initialized to the value of
TIMER_VECTORS. This, along withMAX_TIMER, HOST_TIMERandOS_TIMER, is
defined in the board-specificplatform.h andplatform.s files.

MAX_TIMERis the number of timers in the system.HOST_TIMERis the timer being used
by the debug agent (for example, Angel), andOS_TIMERis the timer that supports the
system timer.

When the timer subsystem is initialized byuHALr_InitTimers() , it sets up the
contents of theuHALiv_TimerStatus vector. If there is aHOST_TIMERdefined, that
timer state becomesT_LOCKED. Otherwise, it is set toT_FREE. By default, the timer
length is set to one millisecond. This value is also defined inplatform.h and
platform.s (as the literalmSEC_1). At initialization time, a free timer is disabled by
calling the board-specificuHALir_PlatformDisableTimer() function inboard.c .

After the application uses auHALr_RequestTimer() call to assign a particular timer,
it can read and alter the timer state and interval. However, the application cannot a
the maximum length of time that a timer can run for. This is defined byMAX_PERIOD.
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 3-47

µHAL Application Programming Interfaces

er

e by

ine

r

µHAL timers depend on the µHAL interrupt handling system to operate. When a tim
is initialized by the application callinguHALr_InstallTimer() , the µHAL timer
subsystem assigns the IRQ to the timer interrupt handler (uHALir_TimeHandler())
and enables the timer so that it can start running. The enabling of the timer is don
the board-specificuHALir_PlatformEnableTimer() function inboard.c .

The timer handler is responsible for handling the timer interrupts as they occur:

1. The handler is passed the IRQ of the interrupting timer, and uses this to determ
the timer that has expired.

2. After the handler has discovered which timer has expired, it calls the handle
function for that timer.

3. If the timer was a single-shot timer (its state isT_ONESHOT), the timer is
automatically freed by callinguHALr_FreeTimer() . Otherwise, the timer is left
to run.

The timer functions are:

• uHALir_TimeHandler()

• uHALir_DisableTimer()on page 3-49

• uHALir_GetTimerInterrupt()on page 3-49.

3.14.1 uHALir_TimeHandler()

This is a high-level function that:

1. determines which timer caused the interrupt

2. calls its handler

3. determines if the timer should be cancelled or re-enabled.

Syntax

void uHALir_TimeHandler(unsigned int irqflags)

where:

irqflags is the currently pending interrupt.

NoteNote
This is not a user-callable function.
3-48 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

µHAL Application Programming Interfaces

s
fic

ied
3.14.2 uHALir_DisableTimer()

This function disables the specified timer.

An application typically frees the timer when it has finished with it. µHAL also allow
the timer to be disabled. In this case, the timer subsystem calls the platform-speci
uHALir_PlatformDisableTimer() function (found inboard.c) to do the work.

Syntax

void uHALir_DisableTimer(unsigned int timer)

where:

timer is the timer to be disabled.

3.14.3 uHALir_GetTimerInterrupt()

This function allows the application to determine the correct interrupt for the specif
timer. Different target systems may assign different interrupts to the timer.

Syntax

int uHALir_GetTimerInterrupt(unsigned int timer)

where:

timer is the timer number for which the interval is requested.

Return value

Returns one of the following:

interrupt If the timer is found, the interrupt number is returned.

-1 If the timer is not found.
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 3-49

µHAL Application Programming Interfaces
3.14.4 uHALir_GetSystemTimer()

This function returns the timer number defined as the system timer.

Syntax

unsigned int uHALir_GetSystemTimer(void)

Return value

Returns the number of the IRQ for the system timer.
3-50 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

µHAL Application Programming Interfaces

is
nd

and
U,

tate
ns
3.15 Extended API coprocessor access functions

These routines allow access to some of the registers in the MMU coprocessor. Th
allows the processor ID to be read, and the MMU/cache configuration to be read a
modified.

The coprocessor access functions are:

• uHALir_CpuIdRead()

• uHALir_CpuControlRead()

• uHALir_CpuControlWrite()on page 3-52.

3.15.1 uHALir_CpuIdRead()

This function reads the processor ID. Reading from CP15, r0 returns an architecture
implementation-defined identification from the processor. If there is no cache, MM
or write buffer, this routine returns a value equivalent to ARM7.

Syntax

unsigned int uHALir_CpuIdRead(void)

Return value

Returns the CPU type as read from the register.

3.15.2 uHALir_CpuControlRead()

This function reads from the appropriate coprocessor register to read the current s
of the MMU and caches. If there is no cache, MMU, or write buffer, this routine retur
0 (all disabled).

Syntax

unsigned int uHALir_CpuControlRead(void)

Return value

Returns the MMU/cache control state as read from the register.
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 3-51

µHAL Application Programming Interfaces

MU
3.15.3 uHALir_CpuControlWrite()

This function writes to the appropriate coprocessor register to set the state of the M
and caches. If there is no cache, MMU, or write buffer, this routine has no effect.

Syntax

void uHALir_CpuControlWrite(unsigned int controlState)

where:

controlState

is the desired implementation-specific value for this register.
3-52 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

µHAL Application Programming Interfaces

e
to

s

3.16 Library support functions

You can write µHAL applications that run on multiple platforms when linked with th
appropriate libraries. These routines allow the application to initialize the library and
determine whether the system supports:

• PCI

• MMU or MPU

• cache

• unified or separate data and instruction caches.

The library functions are:

• uHALr_LibraryInit()

• uHALir_MMUSupported()on page 3-54

• uHALir_MPUSupported()on page 3-54

• uHALir_CacheSupported()on page 3-54

• uHALir_CheckUnifiedCache()on page 3-55.

NoteNote
For information about the PCI library query functionuHALr_PCIHost () , seeµHAL
PCI function descriptionson page 9-16.

3.16.1 uHALr_LibraryInit()

This function performs system-specific initialization of µHAL when an application i
linked to another library, such as the ADS C runtime library.

Syntax

void uHALr_LibraryInit(void)
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 3-53

µHAL Application Programming Interfaces
3.16.2 uHALir_MMUSupported()

This function tests the µHAL library for MMU support.

Syntax

int uHALir_MMUSupported(void)

Return value

Returns one of the following:

1 If the library has been built for MMU access.

0 If the library has no MMU support.

3.16.3 uHALir_MPUSupported()

This function tests the µHAL library for MPU support.

Syntax

int uHALir_MPUSupported(void)

Return value

Returns one of the following:

1 If the library has been built for MPU access.

0 If the library has no MPU support.

3.16.4 uHALir_CacheSupported()

This function tests the µHAL library for cache support

Syntax

int uHALir_CacheSupported(void)

Return value

Returns one of the following:

1 If the library has been built for cache access.

0 If the library has no cache support.
3-54 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

µHAL Application Programming Interfaces
3.16.5 uHALir_CheckUnifiedCache()

This function tests the µHAL library for unified cache support.

Syntax

int uHALir_CheckUnifiedCache(void)

Return value

Returns one of the following:

1 If the library has been built for unified cache access.

0 If the library has separate data and instruction cache support.
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 3-55

µHAL Application Programming Interfaces
3-56 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

g

Chapter 4-
ARM Boot Monitor

This chapter describes the boot monitor supplied with AFS. It contains the followin
sections:

• About the boot monitoron page 4-2

• Common commands for the boot monitoron page 4-4

• Integrator-specific commands for boot monitoron page 4-12

• Prospector-specific commands for boot monitoron page 4-22

• Using the boot monitor on Integratoron page 4-25

• Using boot monitor on Prospectoron page 4-30

• Rebuilding the boot monitoron page 4-34.

See Chapter 7Flash Library Specificationand Chapter 8Using the ARM Flash Utilites
for additional information about images in flash memory.
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 4-1

ARM Boot Monitor

er

t

r to

re.

r

t
al to
the
4.1 About the boot monitor

The boot monitor is a ROM-based monitor that communicates with a host comput
using simple commands over a serial port. The boot monitor conforms to theMicrosoft
Standard Development Board Requirements for Windows CE Specification. The
requirements of theMicrosoft Harp Specificationhave been extended by the ARM boo
monitor to aid development of new hardware. In particular, new system-specific
commands have been added.

The boot monitor is a µHAL application. It uses the µHAL library to initialize the
system when it runs.

This chapter describes how the boot monitor works and how to port the boot monito
another hardware platform.

4.1.1 Hardware accesses

The boot monitor accesses hardware using library calls to µHAL and other firmwa
This makes it generic and easily portable to platforms that support µHAL.

The boot monitor uses the following firmware libraries:

µHAL For memory initialization, heap, serial interface, timers and LEDs.

PCI For systems that support PCI, such as the Integrator, the boot monito
makes use of the PCI library.

Flash For programming images into flash and when usingSystem Information
Blocks(SIB).

4.1.2 Setting up a serial connection

To communicate with the boot monitor on the development board, you require a
terminal emulator that can send raw ASCII data files (for example, Windows
HyperTerminal). Connect a null modem cable to the serial port on the developmen
board. (If your development board has two serial ports, refer to the hardware manu
identify the one used with boot monitor.) The terminal emulator must be set up with
following settings:

Baud rate 38400

Data bits 8

Parity none

Stop bits 1

Flow control Xon/Xoff
4-2 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

ARM Boot Monitor

or an
oard

rds.

o the
The ARM development boards have switches that select whether the boot monitor
image in flash memory is started on reset. Refer to the hardware manuals for your b
to identify the switch settings that enable the boot monitor.

4.1.3 Boot monitor functions

The boot monitor supplies a base set of functions that are common across all boa
These functions:

• download images using the serial line into system memory or flash memory

• read and display words in memory

• erase system flash memory

• use the µHAL library to test all of the features available

• identify the board (including hardware and software revisions).

Board-specific extensions to the boot monitor

The boot monitor allows this functionality to be extended with board-specific
commands and self-tests. For information on the boot monitor commands specific t
Integrator board, seeIntegrator-specific commands for boot monitoron page 4-12. For
information on the boot monitor commands specific to the Prospector board, see
Prospector-specific commands for boot monitoron page 4-22.
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 4-3

ARM Boot Monitor

plete
ands

ctor
n
oot

a

4.2 Common commands for the boot monitor

The command interpreter accepts user commands and carries out actions to com
the commands. Table 4-1 lists the basic commands for the boot monitor. The comm
required as part of the Microsoft HARP/SDB specification are markedYes.

NoteNote
Commands are accepted in upper or lower case.

There are additional, or modified, commands specific for the Integrator and Prospe
boards. Table 4-2 on page 4-12 lists the commands for Integrator and Table 4-4 o
page 4-22 lists the commands for Prospector. For more information on using the b
monitor with Integrator, seeUsing the boot monitor on Integratoron page 4-25.

Table 4-1 Boot monitor commands

Command Required Action

B number Yes Set the baud rate for the serial line tonumber .

BI number No Make imagenumber the image to boot when S1 is OFF.

D address Yes Read and display eight 32-bit words starting from
address . (Specifyaddress in hex format.)

E Yes Erase all of the application flash and return the prompt
when complete.

Hor ? No Display help.

I Yes Print out board information, including identifying the
board, its hardware, and software revision.

L Yes Run the Motorola S-record loader. Subsequent serial dat
is interpreted in the standard S-record format and written
to flash.

M No Download an image into RAM. Subsequent data is
interpreted as S-record format.

T Yes Run system self tests.

V No Validate flash, including the system information blocks.

X command No Enter board-specific command mode and execute
command.
4-4 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

ARM Boot Monitor

itor.

our

the
data

his

er is
4.2.1 B: Set baud rate

This command is used to set the baud rate for the serial line used by the boot mon
For example:

boot Monitor > b 115400

The baud rate changes immediately after the reply is sent. You must reconfigure y
terminal emulator to use the new baud rate in order to send new commands.

The flow control and stop bits are not reconfigurable. SeeSetting up a serial connection
on page 4-2 for other serial port settings.

NoteNote
If the boot monitor is used on a system that requires the MMU to be active, such as
Prospector P1100, any attempt to read from or write to an invalid address causes a
exception and the boot monitor resets.

4.2.2 BI: Set default flash boot image number

This command sets the default flash boot image to the image number specified. T
modifies the boot monitor SIB. Entering the command without specifying an image
number returns the number of the currently selected boot image. The image numb
the logical image number, and is not based on the order of the images in flash.

Use the ARM Flash Utility to load multiple images into flash. SeeAFU commandson
page 8-4.

Examples of this command are shown in Example 4-1.

Example 4-1 Set default boot image

boot Monitor > bi
Current Boot Image = 0
boot Monitor > bi 1
Current Boot Image = 0
New Boot Image = 1
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 4-5

ARM Boot Monitor

. An

sh
ed to
4.2.3 D: Display system memory

This command displays eight 32-bit words of system memory at the address given
example of this command is shown in Example 4-2.

Example 4-2 Display system memory

boot Monito r > d 0 x24000000
Displaying memory at 0x24000000
0x24000000: 0xE59FF018
0x24000004: 0xE59FF018
0x24000008: 0xE59FF018
0x2400000C: 0xE59FF018
0x24000010: 0xE59FF018
0x24000014: 0xE59FF018
0x24000018: 0xE59FF018
0x2400001C: 0xE59FF018

4.2.4 E: Erase application flash

This command erases all of the application flash, including all of the SIBs. You are
prompted to confirm that you want to proceed or cancel the command. After the fla
has been erased, the boot monitor SIB is recreated. The boot monitor SIB is chang
run image number zero on reset. An example is shown in Example 4-3.

Example 4-3 Erase system flash

boot Monitor > e
Erase all of the system flash
Are you sure that you want to do this[Ny]? y
Erasing all flash

................................

................................

................................

................................

................................

................................

................................

................................

Initializing Boot Monitor System Information Block
4-6 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

ARM Boot Monitor

n

s a

As

ords
the
that

e

and.
4.2.5 H or ?: Display help

This command lists the full set of commands for this mode, as listed in Table 4-1 o
page 4-4.

4.2.6 I: Identify the system

This command identifies the system on which the boot monitor is installed. It print
message similar to that shown in Example 4-4.

Example 4-4 Identify the system

boot Monitor > i
ARM bootPROM [Version 1.0] Rebuilt on May 20 1999 at 12:24:07
Running on a Integrator (Board revision v1.0, ARM720T Processor)
Memory Size is 0x2000000 bytes, Flash size is 0x2000000 bytes
Copyright (C) ARM Limited 1999. All rights reserved.
Board designed by ARM Limited
Hardware support provided by http://www.arm.com/
For help on the available commands type ? or h

4.2.7 L: Load S-records into flash

This command downloads an image into memory and then programs it into flash.
part of the programming process it builds an appropriate flash image footer.

By default, the image is written to the location specified by the address in the S-rec
and labeled as image number 0. This might overwrite one or more images. When
image has been successfully written into flash, the boot monitor SIB is updated so
the default image to boot from flash is image 0.

The downloaded image is given the nameBMON Loaded. The original image number
0 and any images wholly or partially overwritten are deleted.

To load a file:

1. Typel at the prompt.

2. Use theTransmit File command of your terminal emulator to send the file. If th
emulator has two file transfer options, use theSend ASCII File option.

Example 4-5 on page 4-8 shows an example of the load S-records into flash comm
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 4-7

ARM Boot Monitor

tion
r the

.

If
k
, but
The boot monitor gives an approximate progress indication by displaying a dot for
every 64 received records. If your terminal emulator does not give progress indica
as the file downloads, use the displayed dots as a guide and wait a sufficient time fo
file to download. PressCtrl+C after the file has finished loading to prompt the boot
monitor to terminate the download and display the number of records downloaded

The nameBMON Loadedis given to any image that is loaded by the boot monitor.

As with all serial commands, the terminal emulator must use Xon/Xoff flow control.
you do not have Xon/Xoff flow control enabled, the boot monitor may seem to wor
correctly for commands that do not require a large number of bytes to be exchanged
then might not work reliably when large files are loaded.

Example 4-5 Load S-records into flash

boot Monitor > l
Load Motorola S-Records into flash
Deleting Image 0

Type Ctrl/C to exit loader.

...

...........................

Downloaded 697 records in 10 seconds.
Overwritten block/s

0
boot Monitor >
4-8 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

ARM Boot Monitor

been
n in

e

k that
n to
T).

t self
4.2.8 M: Download an image into RAM

Use this command to download an image into RAM at addresses specified in the
S-records (the addresses must be valid memory addresses). Once the image has
downloaded, control of the system is transferred to that image. An example is show
Example 4-6.

To load a file:

1. Typemat the prompt.

2. Use theTransmit File command of your terminal emulator to send the file. If th
emulator has two file transfer options, use theSend ASCII File option.

3. EnterCtrl+C to indicate to the boot monitor that the image has been loaded.

Example 4-6 Download image

Load Motorola S-Record image into memory and execute it
Record addresses must be between 0x00008000 and 0x01FD9DFF.
Type Ctrl/C to exit loader.

4.2.9 T: System self tests

This command starts the system self tests. The system self tests are used to chec
the system is functioning correctly. They make use of the resources that are know
function reliably (these resources vary between platforms but must include one UAR

The tests include:

• counter/timer checks

• LED checks.

You can extend these tests by board specific tests. shows an example of a defaul
test.
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 4-9

ARM Boot Monitor
System self tests

boot Monitor > t
Generic Tests
Type any character to abort the tests
Initializing self test environment
Timer tests

Running Timer tests
++++++++++
Timer tests successful

LED flashing test
Lighting all 4 LEDs in sequence

Did you see the LEDs flash in sequence[Yn]? y
...performed 2 tests, 0 failures
Board Specific Tests
Type any character to abort the tests
Keyboard/mouse tests

Initializing KMI interface
==========================

kmi_handler(3)
kmi_handler(3)
KMI: wrote FF
kmi_handler(4)
kmi_handler(4)
KMI: wrote FF

Port 0: Device unsupported or absent
Port 1: Device unsupported or absent

...performed 1 tests, 0 failures
4-10 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

ARM Boot Monitor

IBs.

r a

d

same
4.2.10 V: Validate flash

This command validates and displays the contents of the application flash and the S
It flags any errors that it finds. An example is shown in Example 4-7. The nameBMON

Loaded is given to any image that is loaded by the boot monitor.

Example 4-7 Validate flash

boot Monitor > v
There are 256 128Kbyte blocks of flash:

Images found in flash
==========================
Block Size ImageNo Name
----- ---- ------- ----

0 1 0 BMON Loaded

System Information Blocks
==========================
Owner Size
----- ----
ARM Boot Monitor 260
boot Monitor >

4.2.11 X: Enter board-specific command mode

This mode is used to process board-specific (or extended) commands. If you ente
singleX, the prompt changes to show that you are in the extended mode. The
board-specific menu provides a command that returns you to the normal comman
processing mode. To exit board-specific mode, enter anX in extended mode.

You can execute a single board-specific command by entering a command on the
line as X (with a space in between).
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 4-11

ARM Boot Monitor

re
4.3 Integrator-specific commands for boot monitor

The Integrator provides a set of system specific boot monitor commands. These a
listed in Table 4-2. Examples are provided inI: Initialize or re-initialize the PCI
sub-systemon page 4-13 toH or ?: Display helpon page 4-21.

Table 4-2 Integrator system-specific commands

Command Action

I Initialize or re-initialize the PCI subsystem

V Display V3 chip setup

P Display PCI topology

DPI hex Display PCI IO space (32 bit reads)

DPM hex Display PCI Memory space (32 bit reads)

DPChex Display PCI Configuration space (32 bit reads)

CC Set clocks from SIB

DC Display clock frequencies

SCCnumber Set core clock frequency in SIB (MHz)

SMC number Set memory bus clock frequency in SIB (MHz)

SSCnumber Set system bus clock frequency in SIB (MHz)

SPCnumber Set PCI clock frequency in SIB (MHz)

DH Display hardware

G hex Go to address

X Exit board specific command mode

X command Execute single non board-specific command

? Display help

H: Display help
4-12 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

ARM Boot Monitor

.

4.3.1 I: Initialize or re-initialize the PCI sub-system

This command causes the PCI subsystem to be re-initialized. You are prompted to
confirm the command before re-initialization is carried out. See Example 4-8.

Example 4-8 Initialize result

[Integrator] boot Monitor > i
About to re-initialise PCI
Are you sure that you want to do this[Yn]? y
Initialising PCI...done

4.3.2 V: Display V3 chip setup

This command displays the current set up of the V3 host bridge. See Example 4-9

Example 4-9 Display V3 result

[Integrator] boot Monitor > v
V3 PCI Host Bridge (@ 0x62000000)

[0x00000078] SYSTEM : 0xC000(Locked, Reset output de-asserted)
[0x0000007C] PCI_CFG : 0x1166
[0x0000007A] LB_CFG : 0x00C0
[0x00000004] PCI_CMD : 0x0006

Local --> PCI windows:
[0x00000054] LB_BASE0 : 0x40000081
[0x0000005E] LB_MAP0 : 0x4006
[0x00000058] LB_BASE1 : 0x50000081
[0x00000062] LB_MAP1 : 0x5006
[0x00000064] LB_BASE2 : 0x6001
[0x00000066] LB_MAP2 : 0x0000

PCI --> Local windows:
[0x00000010] PCI_IO_BASE : 0x00000000
[0x00000014] PCI_BASE0 : 0x20000000
[0x00000040] PCI_MAP0 : 0x20000093
[0x00000018] PCI_BASE1 : 0x80000000
[0x00000044] PCI_MAP1 : 0x800000A3

FIFOs:
[0x00000070] FIFO_CFG : 0x0000
[0x00000072] FIFO_PRIORITY: 0x0000
[0x00000074] FIFO_STAT : 0x0505
[0x0000002C] SUB_VENDOR : 0x0000
[0x0000002E] SUB_ID : 0x0000
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 4-13

ARM Boot Monitor

nd
4.3.3 P: Display PCI topology

This command displays the topology of the PCI subsystem. It lists the devices fou
and their locations in PCI address space. See Example 4-10.

Example 4-10 PCI topology result

[Integrator] boot Monitor > p
Bus Slot Func Vendor Device Rev Class Cmd
=== ==== ==== ====== ====== ==== ================ ====

00 12 00 0x10EE 0x3FC2 0x00 Multimedia Audio 0x02

Reg Address Type
==== ========== ======
0x10 0x40000000 Memory
0x14 0x00000000 Memory
0x18 0x00000000 Memory
0x1C 0x00000000 Memory
0x20 0x00000000 Memory
0x24 0x00000000 Memory
0x30 0x00000000 ROM
0x3D 0x00000001 Interrupt Pin
0x3C 0x00000010 Interrupt Line

Bus Slot Func Vendor Device Rev Class Cmd
=== ==== ==== ====== ====== ==== ================ ====

00 11 00 0x1011 0x0019 0x30 Ethernet 0x07

Reg Address Type
==== ========== ======
0x10 0x00004000 IO
0x14 0x41000000 Memory
0x18 0x00000000 Memory
0x1C 0x00000000 Memory
0x20 0x00000000 Memory
0x24 0x00000000 Memory
0x30 0x41040000 ROM
0x3D 0x00000001 Interrupt Pin
0x3C 0x0000000F Interrupt Line
4-14 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

ARM Boot Monitor
Bus Slot Func Vendor Device Rev Class Cmd
=== ==== ==== ====== ====== ==== ================ ====

00 10 00 0x5333 0x88D0 0x00 VGA Device 0x02

Reg Address Type
==== ========== ======
0x10 0x41800000 Memory
0x14 0x00000000 Memory
0x18 0x00000000 Memory
0x1C 0x00000000 Memory
0x20 0x00000000 Memory
0x24 0x00000000 Memory
0x30 0x42000000 ROM
0x3D 0x00000000 Interrupt Pin
0x3C 0x00000000 Interrupt Line

Bus Slot Func Vendor Device Rev Class Cmd
=== ==== ==== ====== ====== ==== ================ ====

00 09 00 0x1011 0x0024 0x03 PCI->PCI Bridge 0x07

Reg Address Type
==== ========== ======
0x10 0x00000000 Memory
0x14 0x00000000 Memory
0x18 0x00010100 Memory
0x1C 0x02804150 IO
0x20 0x42004210 Memory
0x24 0x00010000 IO
0x30 0x00000000 ROM
0x3D 0x00000000 Interrupt Pin
0x3C 0x00000000 Interrupt Line

[Integrator] boot Monitor >
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 4-15

ARM Boot Monitor

ex

se
4.3.4 DPI: Display PCI I/O space

This command displays contents of PCI I/O space at the address specified. Use h
notation for the address. See Example 4-11.

Example 4-11 Display result

[Integrator] boot Monitor > dpi 0x100
Displaying PCI IO memory at 0x100
0x00000100: 0xFFFFFFFF
0x00000104: 0xFFFFFFFF
0x00000108: 0xFFFFFFFF
0x0000010C: 0xFFFFFFFF
0x00000110: 0xFFFFFFFF
0x00000114: 0xFFFFFFFF
0x00000118: 0xFFFFFFFF
0x0000011C: 0xFFFFFFFF

4.3.5 DPM: Display PCI memory space

This command displays contents of PCI Memory space at the address specified. U
hex notation for the address. See Example 4-12.

Example 4-12 Display PCI memory result

[Integrator] boot Monitor > dpm 0x100
Displaying PCI Memory at 0x100
0x00000100: 0x00002378
0x00000104: 0x20000D5C
0x00000108: 0x20000D60
0x0000010C: 0x200016D0
0x00000110: 0x20000D70
0x00000114: 0x20000D74
0x00000118: 0x200016D0
0x0000011C: 0x20000D84
4-16 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

ARM Boot Monitor

fied.

s
-14.

nsure

t

4.3.6 DPC: Display PCI configuration space

This command displays contents of PCI Configuration space at the address speci
Use hex notation for the address. See Example 4-13.

Example 4-13 Display PCI configuration result

[Integrator] boot Monitor > dpc 0x100
Displaying PCI Configuration memory at 0x100
0x00000100: 0xFFFFFFFF
0x00000104: 0xFFFFFFFF
0x00000108: 0xFFFFFFFF
0x0000010C: 0xFFFFFFFF
0x00000110: 0xFFFFFFFF
0x00000114: 0xFFFFFFFF
0x00000118: 0xFFFFFFFF
0x0000011C: 0xFFFFFFFF

4.3.7 CC: Set clocks from SIB

Enter the commandCCto activate the settings from the boot monitor SIB. This copie
the clock settings from the SIB into the relevant hardware registers. See Example 4
See alsoDC: Display clock frequencieson page 4-18.

Example 4-14 Set clocks

[Integrator] boot Monitor > dc
SIB Current
=== =======

Core 80MHz 50MHz
Memory Bus 40MHz 20MHz
System Bus 20MHz 20MHz
PCI Bus 33MHz 33MHz
[Integrator] boot Monitor > cc
[Integrator] boot Monitor > dc

SIB Current
=== =======

Core 80MHz 80MHz
Memory Bus 40MHz 40MHz
System Bus 20MHz 20MHz
PCI Bus 33MHz 33MHz

It is recommended that this command is used after changing the clock settings to e
that they work correctly on the hardware in use. Using theCCcommand to increase the
clock settings also improves the performance of the S-record loader, particularly a
higher line speeds.
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 4-17

ARM Boot Monitor
4.3.8 DC: Display clock frequencies

Displays the current clock settings as stored in the boot monitor SIB.

Integrator has four programmable clocks. These are as follows:

• core clock

• memory bus clock

• system bus clock

• PCI clock.

These clocks are defaulted by the hardware to the values shown in Table 4-3 on
page 4-18.

Table 4-3 Default clock frequencies

Clock Default value

Core 50MHz

Memory 20MHz

System 20MHz

PCI 33MHz
4-18 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

ARM Boot Monitor

o

ead
r

re
tains
The boot monitor stores settings for the clocks in the SIB. Use the DC command t
display the current settings. See Example 4-15.

Example 4-15 Display settings

[Integrator] boot Monitor > dc
SIB Current
=== =======

Core 50MHz 50MHz
Memory Bus 20MHz 20MHz
System Bus 20MHz 20MHz
PCI Bus 33MHz 33MHz

[Integrator] boot Monitor > scc 80
[Integrator] boot Monitor > smc 40
[Integrator] boot Monitor > dc

SIB Current
=== =======

Core 80MHz 50MHz
Memory Bus 40MHz 20MHz
System Bus 20MHz 20MHz
PCI Bus 33MHz 33MHz

When the boot switcher transfers control to an image in flash, these settings are r
from the SIB and written into the relevant hardware register in the system controlle
FPGA. For more information on the SIB, seeSIB functionson page 7-34.

When the system is reset, the boot monitor always starts running with the hardwa
defaults. This ensures that the command interpreter operates, even if the SIB con
incorrect values.

Enter the commandCCto activate the settings from the SIB. This copies the clock
settings from the SIB into the relevant hardware registers. SeeCC: Set clocks from SIB
on page 4-17.
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 4-19

ARM Boot Monitor

are

also

are

t

are

or

are
4.3.9 SCC: Set core clock frequency in SIB

This command sets the core clock frequency in the boot monitor SIB. See alsoCC: Set
clocks from SIBon page 4-17.

[Integrator] boot Monitor > scc 80

Enter the commandCCto activate the settings from the SIB. This copies the clock
settings from the SIB into the relevant hardware registers. The settings in the SIB
also activated when the boot switcher transfers control to an image.

4.3.10 SMC: Set memory bus clock frequency in SIB

This command sets the memory bus clock frequency in the boot monitor SIB. See
CC: Set clocks from SIBon page 4-17.

[Integrator] boot Monitor > smc 40

Enter the commandCCto activate the settings from the SIB. This copies the clock
settings from the SIB into the relevant hardware registers. The settings in the SIB
also activated when the boot switcher transfers control to an image.

4.3.11 SSC: Set system bus clock frequency in SIB

This command sets the system bus clock frequency. The value is stored in the boo
monitor SIB. See alsoCC: Set clocks from SIBon page 4-17.

[Integrator] boot Monitor > ssc 20

Enter the commandCCto activate the settings from the SIB. This copies the clock
settings from the SIB into the relevant hardware registers. The settings in the SIB
also activated when the boot switcher transfers control to an image.

4.3.12 SPC: Set PCI clock frequency in SIB

This command sets the PCI clock frequency. The value is stored in the boot monit
SIB. See alsoCC: Set clocks from SIBon page 4-17.

[Integrator] boot Monitor > spc 33

Enter the commandCCto activate the settings from the SIB. This copies the clock
settings from the SIB into the relevant hardware registers. The settings in the SIB
also activated when the boot switcher transfers control to an image.
4-20 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

ARM Boot Monitor

n
n in
4.3.13 DH: Display hardware

This command displays information about the hardware. Currently only the versio
numbers of the system controller and core module FPGAs are displayed as show
Example 4-16.

Example 4-16 Display Hardware result

[Integrator] boot Monitor > dh
System Controller FPGA : V46, Rev A
Core Module FPGA : V48, Rev A

[Integrator] boot Monitor > dh

4.3.14 G: Go to address

This command transfers control to the address supplied. Use hex notation for the
address.

4.3.15 X: Exit board-specific command mode

Enter a singlex to exit the board-specific command mode. Enterx followed by a
command to execute a single command and then return to board-specific mode.

4.3.16 H or ?: Display help

This lists the full set of board-specific commands for this mode.
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 4-21

ARM Boot Monitor

hese
4.4 Prospector-specific commands for boot monitor

The Prospector P1100 provides a set of system-specific boot monitor commands. T
are listed in Table 4-4. Examples are provided inH or ?: Display helpon page 4-23 to
X: Exit board-specific command modeon page 4-24.

Table 4-4 Prospector system-specific commands

Command Action

H or ? Display help

V View images in flash

R number Run imagenumberfrom flash

D address Display memory ataddress(use hex format)

P address data Pokedataat address(use hex format for both values)

G address Go toaddress(use hex format)

X command Exit board specific command mode
4-22 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

ARM Boot Monitor

lash
4.4.1 H or ?: Display help

This lists the full set of board-specific commands for this mode.

4.4.2 V: View images in flash

This command displays information on the images stored in boot and application f
memory (see Example 4-17).

Example 4-17 View output

[Prospector P-1100] boot Monitor > v

There are 2 256KByte blocks of Boot Flash:
Images found
============
Block Size ImageNo Name
----- ---- ------- ----

0 1 4,280,910 bootPROM (0x04000000-0x0403FFEC)
1 1 911 Angel (0x04040000-0x0407FFEC)

There are 126 256KByte blocks of Application Flash:
Images found
============
Block Size ImageNo Name
----- ---- ------- ----

0 1 1 Bubble (0x04080000-0x040BFFEC)
62 5 62 Pics (0x05000000-0x0513FFEC)

110 4 110 TopCat (0x05C00000-0x05CFFFEC)

System Information Blocks
=========================
Block Owner Index Size
----- ----- ----- ----

125 ARM Boot Monitor 0 260 (0x5FC0000)
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 4-23

ARM Boot Monitor

.

4.4.3 D: Display memory at address

This command displays memory at hexaddress. See Example 4-18.

Example 4-18 Display memory

[Prospector P-1100] boot Monitor > d 0x01000000
Displaying memory at 0x1000000
0x01000000: C8000000
0x01000004: 001800C1
0x01000008: 00180101
0x0100000C: 00200000
0x01000010: 008100C0
0x01000014: 2C030500
0x01000018: 00882A90
0x0100001C: 00040D78

4.4.4 P: Poke memory at address

This command inserts the hex worddataat hexaddressin memory. See Example 4-19

Example 4-19 Poke

Prospector P-1100] boot Monitor > p 0x01000010 0x12345678
Poking memory at 0x1000010 with value 0x12345678

4.4.5 R: Run image from flash

This command transfers control to imagenumberin flash. The image number is the
logical image number, and is not based on the order of the images in flash.

4.4.6 G: Go to address

This command transfers control to the hexaddresssupplied.

4.4.7 X: Exit board-specific command mode

Enter a singlex to exit the board-specific command mode. Enterx followed by a
command to execute a single command and then return to board-specific mode.
4-24 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

ARM Boot Monitor

on
are
get

flash.

es or
nts
boot
ash

brary
.

4.5 Using the boot monitor on Integrator

This section describes how to use the system-specific aspects of the boot monitor
Integrator. This includes specific boot monitor commands, boot switcher, and hardw
features as they affect components of the AFS. If you are using Multi-ICE, you can
most of the functionality of the boot monitor from theBoot Flash Utility(bootFU) .

See alsoIntegrator-specific commands for boot monitoron page 4-12.

4.5.1 Flash on Integrator

Integrator has two separate areas of flash designated as boot flash and application
Table 4-5 provides a summary of these flash areas.

Application flash

The application flash is a general purpose area that can be used to store any imag
data that require to be held in nonvolatile memory. The ARM Flash Library impleme
a simple mechanism for storing multiple images in flash. This structure enables the
switcher to select and run the correct boot image. The ARM Flash Utility uses the fl
library to program and delete images in application flash. In Table 4-5, a block is
defined as the smallest area of flash that can be independently deleted. The flash li
supports storing an image in either a single block or in contiguous multiple blocks

Table 4-5 Flash device usage on Integrator

Device Size Organization Flash Parts Usage

Boot flash 512K 1x512K Block Atmel AT49LV040 Boot monitor
System Controller FPGA image

Application flash 32M 256x128K Blocks Intel 28F320S3 Angel, applications and data
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 4-25

ARM Boot Monitor

e

t
you

an

no
ry.

of
se
oot
Boot flash

The boot flash contains the default application (usually the boot monitor), boot
switcher, and the FPGA image for the system controller.

Caution
This device can be reprogrammed using BootFU. However, you must take care as
incorrect programming can corrupt the FPGA image and prevent the system from
booting. If the system controller FPGA image is corrupted, you must reprogram th
boot flash using JTAG.

In theBuild/Integrator.b subdirectory of theboardUtils directory is a file
calledbootPROM.mcs . This is an Intel hex format image that includes both the boo
monitor and the system controller FPGA image. If the FPGA becomes corrupted,
can use this to reprogram the boot flash over the JTAG connector.

Location of images in flash

The normal location for Angel is block 0 in the application flash. This is so that it c
be run without any intervention from the boot switcher by using the boot-from-flash
switch (switch S1-1). However, because Angel relocates itself to SDRAM there is
restriction on its location in flash. You can program it into another block if necessa

The standalone variants of the µHAL demo program are built to run from block 64
application flash (0x24800000). This can be changed by changing the read-only ba
address when linking the image. If the read-only base is an address in RAM the b
switcher copies the image into RAM before transferring control to it.
4-26 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

ARM Boot Monitor

t is
FF

lay

(for
es

th a
boot
uns
st be
4.5.2 Boot switcher

The boot switcher is run if the switch S1-1 is ON. If this switch is OFF then the
hardware boots directly from the first location in flash.

The boot switcher routine is embedded in the boot monitor and is the first thing tha
run. It reads switch S1-4 and if it is ON passes control to the boot monitor. If it is O
the boot switcher attempts to find and run an image in flash. This is summarized in
Table 4-6.

4.5.3 Integrator clocks

The boot monitor stores settings for the clocks in the SIB. You can modify and disp
them using the boot monitor command interpreter (seeCC: Set clocks from SIBon
page 4-17).

4.5.4 LEDs

If the boot switcher is unable to find or run an image in flash, the red LED on the
motherboard is illuminated.

If an attempt is made to run a µHAL image that is not compatible with the hardware
example, an image built for an ARM720T is run on an ARM920T) the red LED flash
at a one second interval.

4.5.5 Multiple core modules

The Integrator can be fitted with up to four core modules. Each one is equipped wi
processor. If more than one core module is fitted to the Integrator motherboard, the
monitor only runs on the primary processor (on core module 0). The boot switcher r
on all processors, and all processors run the same image from flash. This image mu
multiprocessor aware.

Table 4-6 Boot switch settings

S1-1 S1-4 Action

OFF OFF System restarts at the first address in flash

OFF ON System restarts at the first address in flash

ON OFF boot switcher runs and searches for the boot image in flash

ON ON The boot monitor command interpreter runs.
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 4-27

ARM Boot Monitor

that

d

he

tion.

2

nal

load

age.

o.
.

4.5.6 Loading images using the boot monitor

To load images using Motorola 32 S-record loader, you need a terminal emulator
can send raw ASCII data files. In the ARM Firmware Suite, Motorola 32 S-record
images are built with the.M32 file extension. There are prebuilt Motorola 32 S-recor
Angel images.

Motorola 32 S-record files can be built for other images such as, for example, the
standalone µHAL demo programs, using theFromELF utility. Use the-nodebug and
-nozeropad with FromELF as this produces a significantly smaller file and reduces t
time required to load it.

Use the Motorola 32 S-record loader as follows:

1. Set your terminal emulator to enable XON/XOFF flow control.

2. Reset the Integrator system with both switches S1-1 and S1-4 in the ON posi
This causes the boot monitor command interpreter to run.

3. At the command prompt typeL to start the Motorola 32 S-record loader. The
following dialog is displayed:

boot Monitor > l
Load Motorola S Records into flash
Deleting Image 0
Type Ctrl/C to exit loader.

Any image the boot monitor loads is numbered image zero. If an image zero
already exists, it is deleted first.

4. Use thesend fileoption on your terminal emulator to download the Motorola 3
S-record image.

The boot monitor transmits a dot for every 64 records received from the termi
emulator.

5. When the terminal emulator has finished sending the file, typeCtrl+C to exit the
loader. On exit the loader displays the number of records loaded, the time the
took. It also lists any blocks it has overwritten.

6. Now move switch S1-4 to the OFF position and reset the system to run the im

After the boot monitor has loaded the image, it sets the boot image number to zer
When the system restarts, the boot switcher finds and boots the last image loaded
4-28 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

ARM Boot Monitor

4-7.
4.5.7 Build variants

Currently there are several different build variants for Integrator, as shown in Table

Trying to run an incompatible image, for example an Integrator720T image on an
ARM940T, causes the red LED on the motherboard to flash.

Table 4-7 Core module images

Core module Image type

Integrator Runs on all supported processors

IntegratorT Runs on all supported processors that can execute Thumb
instructions

Integrator720T ARM720T specific image

Integrator740T ARM740T specific image

Integrator920T ARM920T specific image

Integrator940T ARM940T specific image
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 4-29

ARM Boot Monitor

is
and
t

tem.
n a

tor

s

es.

l

d

4.6 Using boot monitor on Prospector

This section describes the power-on sequence for Prospector. The boot switcher
embedded in the boot monitor and is the first thing that is run. It reads switch U25-5
if it is on, passes control to the default application (boot monitor). If it is off, the boo
switcher attempts to find and run an image in flash.

4.6.1 The Prospector board

This section provides an overview of the ARM Prospector P-1100 development sys
The ARM Prospector provides a flexible system for evaluation and development o
platform with a high degree of integration of:

• memory

• LCD screen controller

• timers

• interrupt controller

• power management

• removable storage.

By including all of these features, along with a reusable pool of software, Prospec
allows rapid porting, evaluation, and development of derivative products.

The Prospector P-1100 includes a 190MHz SA-1100 StrongARM ASSP which ha
built-in controllers for DRAM, flash, and color LCD. It also includes 2 serial ports,
IrDA port, power management, and separate Instruction and Data (Harvard) Cach

The board has 32MBytes EDO DRAM and can be extended to a maximum of
64MBytes of flash. The power circuitry allows operation from 3V battery or externa
supply with a voltage of between 6V and 12V (9V/1.5A is recommended).

4.6.2 Flash on Prospector

Prospector has one physical area of flash that is logically divided into boot flash an
application flash. Table 4-8 provides a summary of the flash areas.

Table 4-8 Flash usage on Prospector

Device Size Organization Part Usage

Boot flash 512K 2x256K blocks Intel G28F640J5 Boot monitor and Angel images

Application flash 31.5M 126x256K blocks Intel G28F640J5 Applications and data
4-30 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

ARM Boot Monitor

tor

re as
d
flash

ges or
nts
boot
RM
ock
sh
cks.

l

f
e

oot
Boot flash

The boot flash contains the boot monitor and switcher, and the Angel debug moni
image.

Caution
This area can be reprogrammed using BootFU. However, you must take greater ca
incorrect programming can corrupt the image that runs when the system starts an
might prevent the system from booting. If the boot image does become corrupt, the
must be reprogrammed via JTAG.

Application flash

The application flash is a general-purpose area that can be used to store any ima
data that require to be held in nonvolatile memory. The ARM Flash Library impleme
a simple mechanism for storing multiple images in flash. This structure enables the
switcher to select and run the correct boot image. The ARM Flash Utility uses the A
Flash Library to program and delete images in application flash. In Table B-1, a bl
is defined as the smallest area of flash that can be independently deleted. The fla
library supports storing an image in either a single block or contiguous multiple blo

Location of images in flash

The normal location for Angel is block 1 in the boot flash. However, because Ange
relocates itself to SDRAM, there is no restriction on its location in flash. It can be
programmed into another block if necessary.

The standalone variants of the µHAL demo program are built to run from block 0 o
application flash (0x04080000). You can change this by changing the read-only bas
address when linking the image. If the read-only base is an address in RAM the b
switcher copies the image into RAM before transferring control to it.
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 4-31

ARM Boot Monitor

d
the

ine
d be

ins
the

boot
the

sh
for
4.6.3 Start-up sequence

The boot switcher allows you to program multiple executable images into flash an
provides a simple mechanism to run them. When power is applied to Prospector,
following steps occur:

1. The boot switcher code is executed. This code looks at the switch to determ
whether the default application (boot monitor) or a user-selected image shoul
run.

2. If it is the user-selected image, the boot switcher looks for a SIB which conta
the image number. Then flash is scanned for a matching image number and
image checksum is calculated and validated.

3. If the image footer indicates that it should run from RAM, then memory is
initialized before the image is copied into place.

4. Control is passed to the selected image.

If the image cannot be found, or the checksum fails, control is passed back to the
monitor, which sends an appropriate message out of the serial port before printing
banner.

4.6.4 Prospector system-specific boot monitor

The Prospector boot monitor is programmed into the boot flash as image 4280910
(0x41524E or ’ARM’+1). This allows the boot switcher code to copy the image to RAM
before executing it.

The boot monitor has to run from RAM in order to program data into flash, as the fla
does not allow read access when programming. The top 32KB of RAM is reserved
the MMU Lookup Tables.

The Prospector provides a set of system-specific boot monitor commands. See
Prospector-specific commands for boot monitoron page 4-22.

4.6.5 LEDs

If the boot switcher is unable to find or run an image in flash, the red LED on the
motherboard is illuminated.
4-32 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

ARM Boot Monitor

32
uilt
h
Use

ses

y

the

e.

ero.
aded.
4.6.6 Loading images

Use a terminal emulator that is able to send raw ASCII data files to load Motorola
S-record images. In the ARM Firmware Suite, Motorola 32 S-record images are b
with the .M32 file extension. Motorola 32 S-record files can be built for images suc
as, for example, the standalone µHAL demo programs, using the FromELF utility.
the-nodebug and-nozeropad with FromELF as this produces a significantly
smaller file and reduces the time required to load it.

Use the Motorola 32 S-record loader as follows:

1. Set your terminal emulator to enable XON/XOFF flow control.

2. Reset the Prospector system with switch U25-5 in the ON position. This cau
the boot monitor command interpreter to run.

3. At the command prompt type L to start the Motorola 32 S-record loader. The
following text is displayed:

boot Monitor > l
Load Motorola S Records into flash
Deleting Image 0
Type Ctrl/C to exit loader.

Any image the boot monitor loads is numbered image 0. If an image 0 alread
exists it is deleted first. SeeL: Load S-records into flashon page 4-7 for more
information on the load command.

4. Use thesend text fileoption to download the Motorola 32 S-record image.

The boot monitor will transmit a dot for every 64 records received from the
terminal emulator.

5. When the terminal emulator has finished sending the file, typeCtrl+C to exit the
loader. On exit the loader displays the number of records loaded and the time
load took. It also lists any blocks it has overwritten.

6. Move switch U25-5 to the OFF position and reset the system to run the imag

7. After the boot monitor has loaded the image it sets the boot image number to z
When the system restarts, the boot switcher finds and boots the last image lo
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 4-33

ARM Boot Monitor
4.7 Rebuilding the boot monitor

Use the project files, or makefile, in thebootMonitor subdirectory of the source
directory for your board to rebuild the boot monitor library.

For example, if you copiedwindows\ contents toC:\AFS use
C:\AFS\source\Integrator940T\bootMonitor\Build\makefile to rebuild
the library for the Integrator board with an ARM940T processor.

For general information on makefiles and directory structure, seeAFS source structure
on page 11-4. For more detailed information on building AFS components see
Chapter 11Building AFS Components.
4-34 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

oard
Chapter 5-
Operating Systems and µHAL

This chapter describes porting an operating system to an ARM-based evaluation b
that has previously had µHAL ported to it. It contains the following sections:

• About porting operating systemson page 5-2

• Simple operating systemson page 5-3

• Complex operating systemon page 5-12.
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 5-1

Operating Systems and µHAL

(or
k
ns

this
n

nd
s

ng
5.1 About porting operating systems

µHAL provides a basic API that enables simple applications to run on a variety of
ARM-based development systems. You can also use it as the basis of a port of an
operating system.

There are two types of operating system that can use µHAL:

• Simple threaded operating systems that run directly out of physical memory
out of virtual memory mapped directly to physical memory). You can often lin
simple operating systems directly to µHAL. The operating system then functio
as a µHAL application. The example of this type of operating system used in
chapter is µC/OS-II. It runs without further porting effort on any ARM evaluatio
board that has had µHAL ported to it. This why µC/OS-II is often the first
operating system to run on a new ARM-based platform.

• Complex operating systems that utilize virtual memory (possibly using dema
paging mechanisms). You cannot link these more complex operating system
directly with µHAL but they can reuse parts of µHAL. Reusing µHAL makes
porting simpler than it otherwise might be. An example of this type of operati
system is Linux.Simple operating systemson page 5-3 andComplex operating
systemon page 5-12 discuss these two types of operating system.
5-2 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

Operating Systems and µHAL

II

ust

l
map

rupt

t

r,
een

an
ially
RM
5.2 Simple operating systems

This section describes how ARM-specific porting code is used to initialize µC/OS-
and to allow µC/OS-II to carry out context switching.

For a simple operating system to run directly over µHAL, the following conditions m
be met:

• The OS must have a fixed memory map of either physical memory or a virtua
constant memory map. The memory map must be consistent with the default
defined by µHAL.

• The OS must use context switching of tasks or threads at the end of an inter
(usually a periodic timer) or when it exits from a system call.

• The OS must be capable of being built using the ARM software developmen
tools.

This type of operating system is isolated from the specific hardware details of the
development platform because it utilizes µHAL code for system initialization, time
and interrupt handling. It is the ARM-specific porting code that bridges the gap betw
the operating system and µHAL.

5.2.1 About µC/OS-II

µC/OS-II is a portable, ROM-able, preemptive, real-time, multitasking kernel that c
manage up to 63 tasks. µC/OS-II is comparable in performance to many commerc
available kernels. The ARM Firmware Suite includes a port of µC/OS made to the A
architecture using the uHAL interfaces. µC/OS-II provides the following features:

• creating and managing up to 63 tasks

• creating and managing semaphores

• delaying tasks for a specified number of ticks or amount of time

• locking and unlocking the scheduler

• servicing interrupts

• changing the priority of tasks

• deleting tasks

• suspending and resuming other tasks from within a task

• managing message mailboxes and queues for intertask communications

• managing fixed-sized memory blocks

• managing a 32-bit system clock.
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 5-3

Operating Systems and µHAL

st

s)
NoteNote
If you wish to use µC/OS-II within a product or wish to redistribute µC/OS-II you mu
seek a license arrangement with Micrium Inc., the owners of µC/OS-II.

You do not have to understand µC/OS-II completely in order to understand the
principles involved. If you want more information on the OS, readMicro-C/OS-II, The
Real-Time Kernel.

5.2.2 Initializing the operating system

The entry point to a simple operating system (as it is for all other µHAL application
is themain() routine. Example 5-1 shows this using theping.c example program in
µC/OS-II.

Example 5-1 Operating system initialization - main()

/*
* Main function.
*/

int
main(int argc, char **argv)

{
char Id1 = '1';
char Id2 = '2';

OSInit(); /* needed by uC/OS */

OSTimeSet(0);
/* create the semaphores */
Sem1 = OSSemCreate(1);
Sem2 = OSSemCreate(1);

/* create the tasks in uC/OS and assign decreasing priority to them */
OSTaskCreate(Task1, (void *)&Id1, (void *)&Stack1[STACKSIZE - 1], 1);
OSTaskCreate(Task2, (void *)&Id2, (void *)&Stack2[STACKSIZE - 1], 2);

OSStart(); /* start the game */

/* never reached */
} /* main */
5-4 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

Operating Systems and µHAL

alize

at

lized
e

5-7.

text

1)
When themain() routine is called, µHAL has already initialized the system. For
example, address mapping is turned on. The operating system requires only to initi
itself and start running:

1. The first call from main() is to OSInit() that, in the case of µC/OS-II,
initializes the operating system state (for example its priority map).

Rather than clutterOSInit() with µHAL-specific code,OSInit() calls the
µHAL-specific routineARMTargetInit() (in uhal.c) to set things up. See the
listing in Example 5-2 on page 5-6 for details of howARMTargetInit()

performs the following actions:

a. Prints a series of messages usinguHALr_printf() .

b. Resets the MMU to a clean state using a call touHALr_ResetMMU() .

c. Initializes interrupt handling and timers.

d. Defines the pre- and post-interrupt handling routines (IrqStart() and
IrqFinish() respectively), that are used by µC/OS-II to context switch
the end of an interrupt.

2. main() creates several threads. Each thread has an area of stack that is initia
with an initial register set. The initial PC for a task contains the address of th
thread routine (in this caseTask1() andTask2() respectively).

3. Finally, main() starts the operating system with a call toOSStart() . As with
OSInit() , OSStart() contains no µHAL-specific code but calls
ARMTargetStart() to start the operating system, see Example 5-3 on page

ARMTargetStart() starts the system timer. The system timer functions as a
periodic timer and issues an interrupt request every millisecond. When the
interrupts occur, the operating system controls whether or not it requires a con
switch.

OSStart() selects the highest priority task that is runnable (in this case Task
and runs it by loading its registers from its stack.
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 5-5

Operating Systems and µHAL
Example 5-2 Operating system initialization - ARMTargetInit()

#define BUILD_DATE "Date: " __DATE__ "\n"

/* Initialize an ARM Target board */
void

ARMTargetInit(void)
{

/* ---- Tell the world who we are ----------------- */
uHALr_printf("uCOS-II Running on a") ;

#if defined(EBSA285)
uHALr_printf("n EBSA-285 (21285 evaluation board)\n") ;

#elif defined(BRUTUS)
uHALr_printf(" Brutus (SA-1100 verification platform)\n") ;

#elif defined(INTEGRATOR)
uHALr_printf("n Integrator board\n") ;

#elif defined(PROSPECTOR)
uHALr_printf(" Prospector board\n") ;

#else
uHALr_printf("n unknown ARM board\n") ;

#endif
uHALr_printf(uHAL_VERSION_STRING);
uHALr_printf("\n") ;
uHALr_printf(BUILD_DATE);
uHALr_printf("\n") ;

#ifdef DEBUG
uHALr_printf("Initialising target\n");

#endif
uHALr_ResetMMU(); /* ---- disable the MMU -- */
ARMDisableInt(); /* ---- disable interrupts (IRQs------ */
/* ---- soft vectors ------------------------- */

#ifdef DEBUG
uHALr_printf("Setting up soft vectors\n");

#endif
/* Define pre & post-process routines for Interrupt */
uHALir_DefineIRQ(IrqStart, IrqFinish, (PrVoid) 0);
uHALr_InitInterrupts();

#ifdef DEBUG
uHALr_printf("Timer init\n");

#endif
uHALr_InitTimers();

#ifdef DEBUG
uHALr_printf("targetInit() complete\n");

#endif
} /* targetInit */
5-6 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

Operating Systems and µHAL

r.

s

all
hest
Example 5-3 Operating system start up

/* start the ARM target running */
void

ARMTargetStart(void)
{
#ifdef DEBUG

uHALr_printf("Starting target\n") ;
#endif

/* request the system timer */
if (uHALr_RequestSystemTimer(

PrHandler) OSTimeTick,
(const unsigned char *)"uCOS-II") <= 0)

uHALr_printf("Timer/IRQ busy\n");

/* Start system timer & enable the interrupt. */
uHALr_InstallSystemTimer();

}

5.2.3 Context Switching

µC/OS-II switches context and causes another thread to run under the following
conditions:

• when a thread makes a system call that causes it to stop running

• if an interrupt is received.

A thread might be caused to stop running when it waits on a semaphore or a time

A sequence of context switches forTask1() (listed in Example 5-8 on page 5-10) and
Task2() (listed in Example 5-9 on page 5-10) is:

1. The call toOSSemPend() does not cause a context switch, and soTask1() prints
1+ before callingOSTimeDly() .

2. OSTimeDly() causes theTask1() thread to be suspended and µC/OS-II start
to runTask2() .

This form of context switch involves saving the context of the current thread (
of its registers and the CPSR) on its stack and restoring the context of the hig
priority task, in this caseTask2() .

3. Task2() does not wait on the first call toOSSemPend() either. It goes on to print
[and then callsOSTimeDly() that suspendsTask2() pending the timer
expiring.
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 5-7

Operating Systems and µHAL

he

r a

t
pires.
4. At this point, Task1 still cannot run as its (shorter) timer has not yet expired. T
output is shown in Example 5-4. (Output is done over the serial port if it is a
standalone image or using the debug console if it is a semihosted image.)

Example 5-4 Initial output

uCOS-II Running on an Integrator board
uHAL v1.1:
Date: Aug 12 1999

1+[

5. Each time an interrupt occurs, the µHAL interrupt handling code
uHALir_TrapIRQ() saves the current register set on the stack and checks fo
start-of-interrupts handling routine. For µC/OS-II, this isIrqStart() as shown
in Example 5-5.

Example 5-5 IrqStart()

extern int OSIntNesting;
/* This is what uCOS does at the start of an IRQ */
void IrqStart(void)
{

/* increment nesting counter */
OSIntNesting++;

}

6. IrqStart() increments the global countOSIntNesting that is used in the
µC/OS-II scheduler. The µHAL interrupt handling code dispatches the timer
interrupt handling code and, eventually, the µC/OS-II timer routine
OSTimeTick() is called.

OSTimeTick() decrements the delay timer of any delayed thread. This migh
make a task runnable. Task1 becomes runnable as soon as its delay timer ex
At the end of the µHAL interrupt handler, µC/OS-II checks for an end of
interrupts handling routine. For µC/OS-II, the end of interrupt handler is
IrqFinish() as shown in Example 5-6 on page 5-9.
5-8 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

Operating Systems and µHAL

.

om
Example 5-6 IrqFinish()

/* This is what uCOS does at the end of an IRQ */
extern int OSIntExit(void);
extern void IRQContext(void); /* post DispatchIRQ processing */
PrVoid IrqFinish(void)
{

/* call exit routine -
return TRUE if a context switch is needed */

if (OSIntExit() == TRUE)
return (IRQContext);

return ((PrVoid) 0);
}

7. IrqFinish() callsOSIntExit() to determine if a context switch is necessary
If a context switch is necessary,IrqFinish() returns the address of
IRQContext() (the µC/OS-II interrupt-specific context switching routine).

Normally, the µHAL interrupt handling routine restores the saved registers fr
the stack and returns from the interrupt. Because the end-of-interrupt routine
returned an address,IrqFinish() calls the µC/OS-II interrupt context
switching routine with the saved registers still on the stack.

NoteNote
The usage of registers on the stack must be the same for both µC/OS-II and
µHAL.

8. WhenTask1() runs it prints1- , posts to theTask2() semaphore (incrementing
it) and waits on its own semaphore.

9. WhenTask2() is selected to run (after its delay timer expires), it prints2] and
posts to theTask1() semaphore. This allowsTask1() to run, causing the whole
cycle to repeat as shown in Example 5-7:

Example 5-7 Later output

uHAL v1.1:
Date: Aug 12 1999

1+[1-2]1+[1-2]1+[1-2]1+[1-2]1+[1-2]1+[1-2]1+[1-
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 5-9

Operating Systems and µHAL
Example 5-8 shows the code for Task1.

Example 5-8 Context switching Task1()

void
Task1(void *i)

{
uint Reply;
for (;;)
{

OSSemPend(Sem2, 0, &Reply); /* wait for the semaphore */
uHALr_printf("1+");
OSTimeDly(100); /* wait a short while */
uHALr_printf("1-");
OSSemPost(Sem1); /* signal the semaphore */

}
}

Example 5-9 shows the code for Task2.

Example 5-9 Context switching Task2()

void
Task2(void *i)

{
uint Reply;
for (;;)
{

OSSemPend(Sem1, 0, &Reply); /* wait for the semaphore */
uHALr_printf("[");
OSTimeDly(1000); /* wait a short while */
uHALr_printf("2]");
OSSemPost(Sem2); /* signal the semaphore */

}
}

5-10 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

Operating Systems and µHAL

use

pt

r

rd
een

nd
e
ng.

e
use
5.2.4 Efficiency considerations

The method of switching context during an interrupt is not particularly efficient beca
it involves several calls into C code. It does, however, have the advantage of being
highly portable.

If efficiency is a constraint, the port of an operating system can use its own interru
handling code instead of the µHAL routines:

• An initial step to improving efficiency is to replace the µHAL interrupt handle
uHALir_TrapIRQ() but still call the C-based interrupt and timer handling
routines provided by µHAL. If the replacement interrupt handler uses the
READ_INTmacro, it is not dependent on the version of the ARM evaluation boa
that is used. This also has the advantage that the stack usage can differ betw
the operating system and µHAL.

• You can make additional improvement if, once a timer is started, it is periodic a
does not require any further intervention. The operating system can reuse th
interrupt and no additional calls to µHAL are required once the timer is runni

• The final option is to reuse parts of µHAL in a board-specific port and tailor th
code to the operating system. This approach is not very portable, but you can
it to improve efficiency.
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 5-11

Operating Systems and µHAL

e of

e

n.
he

e

here
5.3 Complex operating system

Complex operating systems cannot directly use µHAL but they can do one or mor
the following:

• reuse its definitions and some of its board-specific code

• use a µHAL-based image as a loader or initializer.

5.3.1 Reusing definitions

Reusing definitions usually means using the definitions fromplatform.h . This gives
the operating system definitions of where in the physical memory map registers ar
located, as well as bit settings for those registers. For example,platform.h for the
Integrator platform defines the physical address of the debug register set as:

#define INTEGRATOR_DBG_BASE 0x1A000000

This definition can be directly used if the address map remains physical.

If the operating system runs out of virtual memory, there must be a further definitio
Using Linux as the example, the port of Linux to the Integrator platform maps all of t
Integrator registers to virtual address0xF0000000 and places them closer together
using the following definition:

#define IO_BASE 0xF0000000
#define IO_ADDRESS(x) ((x>>4) + IO_ BASE)

This means that the virtual address of Integrator debug registers becomes
((0x1A000000 >> 4) + 0xF0000000) or 0xF1A00000 . In the port of Linux to the
Integrator platform, each bank of registers is mapped to its own virtual address. Th
LED offset of from the debug base is defined inplatform.h as
INTEGRATOR_DBG_LEDS_OFFSETand has a value of 4 bytes. This means that the
LEDs can be found using this address:

IO_ADDRESS(INTEGRATOR_DBG_BASE) + INTEGRATOR_DBG_LEDS_OFFSET

The bit settings can then be used as normal. For example, bit 0 is the green LED. T
are also defines for the LEDs,GREEN_LEDfor example.
5-12 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

Operating Systems and µHAL

ting
ng

n
es

ring

the

ure
5.3.2 µHAL-based loader application

A pure µHAL application is used to initialize the system and then to load the opera
system. The binary image of the Linux kernel, for example, is loaded into flash usi
the ARM Flash Utility.

A µHAL-based loader application initializes the Integrator PCI subsystem and the
copies the kernel into memory before transferring control to it. The Linux kernel do
not itself contain any PCI setup code, instead it scans the PCI subsystem discove
how the µHAL application set it up. This removes the need for the Linux kernel to
understand the details of setting up the V3 PCI chip and how to route interrupts on
Integrator platform.

You can also modify the µHAL loader/initialization application to pass a data struct
to the operating system kernel that describes the system.
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 5-13

Operating Systems and µHAL
5-14 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

AL
a
ing

ided
Chapter 6-
Angel

This chapter describes the function of Angel on development boards, and how µH
and Angel debug monitor sources are related. The code required to port Angel to
system that already has µHAL is covered in detail. The chapter contains the follow
sections:

• About Angelon page 6-2

• Angel on Integratoron page 6-4

• Angel on Prospectoron page 6-7

• µHAL-based Angelon page 6-8

• Building a µHAL-based Angelon page 6-10

• Source file descriptionson page 6-13

• Device driverson page 6-21.

For more information on using Angel with a debugger, see the documentation prov
with SDT 2.5 or ADS 1.0.
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 6-1

Angel

d. It
ly
run

, such
el

ll

rd is

ere
ing
ent

ed. If
l.
6.1 About Angel

This section describes how µHAL and the Angel debug monitor sources are relate
recommends a number of coding practices that allow Angel and µHAL to be quick
and easily ported to ARM-based systems, and for semihosted µHAL applications to
with Angel.

The Angel debug monitor uses a serial line or Ethernet to communicate with a
development host running an ARM debugger. The debugger uses theAngel Debug
Protocol(ADP) to send requests to Angel to, for example:

• download images

• set breakpoints

• examine registers and variables.

These functions are described in detail in the documentation supplied with your
debugger. To carry out these functions, Angel uses the physical system resources
as interrupts, serial ports, and memory (for stack and context storage). When Ang
changes between ARM and Thumb state, it saves and restores context.

Building a fully functional µHAL-based Angel is simplified if you take a series of sma
steps. This is where µHAL is used. Port µHAL to your platform first and verify that:

• memory management is functioning correctly

• LEDs are functioning

• the serial port is operating

• interrupts are being generated.

These steps can be performed one at a time. When you have verified that the boa
functioning correctly at this level, re-use the code within Angel.

It is usually better to build on an example of an existing port, than to start again. Th
are currently two ports of Angel in ARM Firmware Suite v1.0 that are based on reus
µHAL sources. These are targeted at the Integrator and the Prospector developm
systems. This chapter uses both of these sources as examples.

6.1.1 Angel and cache memory

On some development boards, Angel does not work when cache memory is enabl
this is the case for your development board, disable the cache when running Ange
Your applications will run several times slower than with cache. However, the
debugging process will not otherwise be affected.

If you want your applications to run at full speed with cache memory, use Multi-ICE
instead of Angel.
6-2 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

Angel

mory

l

lly

itch

:

ud,
el

lator
6.1.2 Angel and RAM memory

Depending on the development board you are using, you may have to add more me
if you are using Angel to debug applications.

Integrator boards

The prebuilt Angel as supplied on the ARM Firmware Suite CD runs on the interna
SRAM on the Integrator/AP and /SP.

Prospector boards

The standard RAM is sufficient to run Angel. The RAM on Prospector cannot norma
be upgraded.

6.1.3 Thumb support

The prebuilt Angel image and the default Angel build support Thumb programs. Sw
Thumb support on using theTHUMB_SUPPORT=1define.

6.1.4 Using Angel with a debugger

Once you have installed Angel into the flash memory, you can use it with your
debugger. The way you connect to Angel depends on the debugger you are using

ADW/ADU for SDT 2.50

See the SDT 2.50User Guidefor ADW/ADU.

armsd The command line must be of the form:

armsd -adp -port s=1 -linespeed 38400 image.axf

ADW/AXD for ADS 1.0

See theDebuggers Guidesupplied with ADS.

You can test whether Angel has installed by setting a terminal emulator to 9600 ba
setting the Integrator switch to boot the Angel image, and resetting the board. Ang
attempts to communicate with the debugger over the serial port. The terminal emu
displays some symbols and then the Angel banner.

6.1.5 Downloading Angel to a development board

Some development boards come with Angel installed. If your board does not have
Angel already installed, you must download the Angel image for your board and
processor.
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 6-3

Angel

ce
also

lock
orted
t

ors.
6.2 Angel on Integrator

This section provides an overview of Angel on the ARM Integrator development
system.

6.2.1 Location in memory

The actual address it is linked at is0x028000000 which is the motherboard SSRAM.

6.2.2 Caches

Angel for Integrator runs without enabling caches. To get the maximum performan
from the system, you must enable caches. This requirement on the application is
true for Multi-ICE. SeeuHALr_EnableCache()on page 3-12 for details on enabling
caches.

Applications built against µHAL can use µHAL functions to control the cache. See
Simple API MMU and cache functionson page 3-11 andExtended API MMU and cache
functionson page 3-40.

6.2.3 Line speed

The maximum line speed that Angel will support depends on factors such as the c
settings for the processor and buses. A maximum line speed of 57,600Kbps is supp
for a system with the optimum clock settings and caches disabled (Angel does no
support cached code).

6.2.4 Downloading Angel

Use the boot monitor and Angel to load and debug programs over a serial port.

Preparing the board

Follow these steps to prepare you board for loading:

1. Assemble, if necessary, your board and identify the power and data connect
Refer to the hardware manuals provided with your board.

NoteNote
Do not apply power to the development board yet.
6-4 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

Angel

r:

the
t

nd

pt,

e

2. Connect and configure a terminal emulator to communicate with boot monito

a. Locate and install a terminal emulator program that is able to send raw
ASCII data files. HyperTerminal is supplied with Windows, but there are
also commercial and public-domain emulators available.

b. Set up the terminal emulator with the settings as shown in Table 6-1.

c. Connect the supplied null-modem cable between the workstation and
first serial port on the development board. On the Integrator/AP, the firs
port is the port nearest to the Switch box S1.

d. Set the configuration switches to use boot monitor. Set switches S1-1 a
S1-4 to the ON position and S1-2 and S1-3 to the OFF position.

e. Apply power to the development board and establish that you can
communicate with the board. You should now see the boot monitor prom
similar to that shown in Example 6-1:

Example 6-1

ARM bootPROM [Version 1.0] Rebuilt on Aug 6 1999 at 14:18:53
Running on a Integrator (Board revision v1.0, ARM740T Processor)
Memory Size is 32Mbytes, Flash size is 32Mbytes
Copyright (C) ARM Limited 1999. All rights reserved.
Board designed by ARM Limited
Hardware support provided by http://www.arm.com/
For help on the available commands type ? or h
boot Monitor >

f. If you do not see theboot Monitor > prompt, press return on the
workstation. If a prompt still does not appear, there is a problem with th
terminal emulator software or the hardware.

Table 6-1 Serial port settings

Property Value

Bits per second 38400

Data bits 8

Parity None

Stop bits 1

Flow control Xon/Xoff
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 6-5

Angel

D

the

he
3. Use the boot monitor to download one of the prebuilt Angel images from the C
to the development board. See Chapter 4ARM Boot Monitorfor details on the
boot monitor commands and an example of downloading an image.

a. At the command prompt typeL to start the Motorola 32 S-record loader.

b. Use the terminal emulator to download the image. The Angel image for
Integrator isangIntegrator.m32 and is located in:

\common\images\Integrator\angel\Integrator.b\gccsunos\little_rel\

c. The boot monitor displays a dot for every 64 records loaded. When the
terminal emulator has finished sending the file, typeCtrl+C to exit the
loader.

d. On exit, the loader will display the number of records loaded, the time t
load took, and any blocks it has overwritten.

4. Configure your debugger to use the Angel debug agent.

The way you connect to Angel depends on the debugger you are using:

ADW/ADU for SDT 2.50
See theSDT User Guide.

armsd The command line should be of the form:
armsd -adp -port s=1 -linespeed 38400 image.axf

ADW/AXD for ADS 1.0
See theDebuggers Guidesupplied with ADS.
6-6 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

Angel

d
at.

s to
the

lock
MHz
.

cility
ber
6.3 Angel on Prospector

This section provides an overview of Angel on the ARM Prospector P-1100
development system.

6.3.1 Location in memory

Angel is linked to run from DRAM. The actual address it is linked at is0x01FE8000

which is near the top of the 32MB DRAM region. The top 32KB of DRAM is reserve
for the MMU Lookup Tables and the Angel executable occupies the 64KB below th

6.3.2 Caches

Angel for Prospector runs with caches and MMU enabled. This allows application
get the maximum performance from the system. Use the µHAL functions to control
cache, seeSimple API MMU and cache functionson page 3-11 andExtended API MMU
and cache functionson page 3-40.

6.3.3 Line speed

The maximum line speed that Angel will support depends on factors such as the c
settings for the processor, and on whether caches are enabled. Running on a 190
system with caches enabled, a maximum line speed of 115,200Kbps is supported

6.3.4 Initial loading of Angel into flash

Angel is supplied in the boot area of flash as image 911. Because Angel has the fa
to relocate itself to DRAM, the BootFU and AFU utilities can assign any image num
to it and relocate it in flash.
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 6-7

Angel

L)
ode
and
L

d

y of
y

t,

or
s

or
are
6.4 µHAL-based Angel

Most of the Angel code is the same for µHAL-based Angels as any other (non-µHA
Angel. The only difference is that µHAL-based Angels utilize system-dependent c
that is held within µHAL. Angel still requires the same set of macros, source code,
definitions that it did before, but now it imports some of these definitions from µHA
source files.

You can download one of the prebuilt Angel images or rebuild Angel and downloa
your modified version.

If you rebuild Angel, the version string isUnreleased . This indicates that the copy of
Angel was built outside of ARM. You can edit the version string information in the
source files inbanner.c andbanner.h to display your own version code.

6.4.1 Source directory for Angel

A particular board is supported by code held in the relevant board-specific director
µHAL. For example, the sources that relate to Integrator are all held in the director
uHAL\Boards\INTEGRATOR . This set of sources consists of:

platform.h and platform.s

These files contain definitions of the board, including its memory layou
and devices.

driver.s This file contains low-level assembly code needed for the board to
function.

target.s This file contains ARM assembly macros that are used within µHAL. F
example, to switch the memory map or light a particular LED. Routine
in driver.s often use these macros too.

memmap.s This file describes (in tabular form) the memory map for a particular
system. This includes where in virtual memory, the various areas of
physical memory are mapped.

board.c This file contains C routines that support the operation of the board. F
example, the PCI Configuration space access routines for Integrator
stored here.
6-8 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

Angel

.

r
et

e

6.4.2 Angel sources and definitions

A µHAL-based Angel requires extra sources and definitions. For example, the
angel\Integrator directory contains:

banner.h This file provides the startup banner displayed by this Angel.

devices.c This file describes the set of devices available to Angel for this board

makelo.c This file allows variables to be shared between both the.c and the.s

assembler files. It produces an assembler header file calledlolevel.s .

timerdev.c

This file implements Angel timers for the Integrator platform. This time
is used for profiling and for polled device drivers (for example, Ethern
devices).

integrator.h

This file contains Integrator-specific Angel definitions, including
platform.h .

devconf.h This file is the main configuration file of the target image. It describes th
uses that Angel makes of the system resources (for example stack
memory).

serial.c This file implements the serial driver for Angel on this system.

ambauart.h This file contains definitions for the serial interface hardware.

Theangel\Propector contains similar files. The use of these files by Angel is
described in the Angel documentation supplied with SDT 2.5 or ADS 1.0.
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 6-9

Angel

lude

2

used
the
6.5 Building a µHAL-based Angel

If you are building a µHAL-based Angel, not all of the code is in the Angel board
directory (such asangel/Integrator). Part of the code is located in the
board-specific or processor-specific area of µHAL (for example,
AFS/source/all/uHAL/Boards/INTEGRATOR or
AFS/source/all/uHAL/Processors/ARM720T). This means that your project file
or makefile must point to these directories in order to obtain those sources and inc
files. SeeBuilding the µHAL libraryon page 2-8 and Chapter 11Building AFS
Componentsfor an overview of the build process.

The following examples are from the makefile for the Integrator Angel. Example 6-
defines where the various parts of code that Angel is dependent on are located.

Example 6-2 Defining code locations

ADS_BUILD=0
TARGET = Integrator
IMAGE = angIntegrator
ROOTDIR = ../..
UHAL_BASE = $(ROOTDIR)/../uHAL/
UHAL_BOARD_DIR = $(UHAL_BASE)/Boards/INTEGRATOR
TARGDIR = $(ROOTDIR)/Integrator
ETHDIR = $(ROOTDIR)/ethernet
PROCESSOR = ARM7T

The part of the makefile shown in Example 6-3 on page 6-11 sets up the flags to be
with the assembler (a similar definition is needed for the compiler). It ensures that
appropriate µHAL directories are searched for include files.
6-10 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

Angel

ies.
Example 6-3 Setting the assembler flags

AFLAGS= -g -apcs $(APCS) $(ASENDIAN) -arch 4 \
-I$(OBJDIR) \
-I$(ROOTDIR) -I$(TARGDIR) -I$(UHAL_BOARD_DIR) -I$(CLIB)\
-I$(UHAL_BASE)/h \
-I$(UHAL_BASE)/Processors/$(PROCESSOR) \
-PD "LOGTERM_DEBUGGING SETA $(LOGTERM_DEBUGGING)" \
-PD "ANGELVSN SETA $(ANGELVSN)" \
-PD "DEBUG SETA $(DEBUG)" \
-PD "LATE_STARTUP SETA $(LATE_STARTUP)" \
-PD "ROADDR SETA $(ROADDR)" \
-PD "THUMB_SUPPORT SETA $(THUMB_SUPPORT)" \
-PD "ASSERT_ENABLED SETA $(ASSERT_ENABLED)" \
-PD "MINIMAL_ANGEL SETA $(MINIMAL_ANGEL)" \
-PD "ETHERNET_SUPPORTED SETA $(ETHERNET_SUPPORTED)" \
-PD "DEBUG_BASE SETA $(TASKLOG_BASE)" \
-PD "DEBUG_SIZE SETA $(TASKLOG_SIZE)" \
-PD "$(PROCESSOR) SETL {TRUE}" \
-PD "ADS_BUILD SETA $(ADS_BUILD)"

6.5.1 Angel project and makefiles

There are SDT and ADS project files and Unix makefiles in the Angel build director

PC project files

You can build Angel with SDT 2.5 project manager files (.apj) or ADS 1.0
CodeWarrior project files (.mcp).

Unix makefile

The CD has a makefile for use on a Unix workstation
(unix/source/all/angel/makefile) that rebuilds versions of Angel for all target
boards.

There are also makefiles that rebuild Angel for a single development board. The
makefile for Integrator isunix/source/Integrator/angel/makefile .
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 6-11

Angel

in
uild

ind
If you copy the files from the CD directory onto your workstation, you must mainta
the hierarchy of the CD directories. The makefile defines ROOT as the root of the b
tree and is needed bymk. TOOLS is the tools directory that contains build tools of
various kinds. The definitions in makefile are:

ROOT=..
TOOLS=../tools
MK= $(TOOLS)/mk

For general information on makefiles and directory structure, seeAFS source structure
on page 11-4.

Output formats

The Angel build creates both BIN and M32 format images. For Integrator, you can f
these images in theIntegrator.b\gccsunos\little_rel subdirectory of the
angel directory. The names of these files areangIntegrator.bin and
angIntegrator.m32 respectively.
6-12 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

Angel

ples

or
6.6 Source file descriptions

This section describes the source files used by the µHAL Angel and provides exam
of their use.

6.6.1 banner.h

This file displays the banner when Angel boots. The display is output to serial port
the console window of the ARM debugger. It is good practice to use the banner to
convey useful information about the system. In Example 6-4,banner.c displays:

• the version of Angel

• the board it is running on

• whether or not the MMU, caches, and write buffer are enabled

• the interrupt source this Angel is built to use.

Example 6-4 Using banner.h

#if CACHE_SUPPORTED
define MMU_STRING " MMU on, Caches enabled, "
#else
define MMU_STRING "MMU on, Caches disabled, "
#endif

#if ENABLE_CLOCK_SWITCHING
define CSW_STRING " Clock Switching on "
#else
define CSW_STRING "Clock Switching off "
#endif

#if HANDLE_INTERRUPTS_ON_IRQ
#define INTERRUPTS_STRING "(IRQ), "
#else
#define INTERRUPTS_STRING "(FIQ), "
#endif

#define ANGEL_BANNER \
"Angel Debug Monitor for Prospector " INTERRUPTS_STRING
MMU_STRING CSW_STRING "(serial)\n" \
TOOLVER_ANGEL " rebuilt on " __DATE__ " at " __TIME__ "\n"
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 6-13

Angel

ernet
6.6.2 devices.c

This file describes the set of devices that Angel has access to on this system.
Example 6-5 describes the system as having a serial device and, optionally, an eth
and debug communications channel.

Example 6-5 Using device.c (1)

const struct angel_DeviceEntry *const
angel_Device[DI_NUM_DEVICES] =
{

&angel_AMBAUARTSerial[0],
#if (AMBAUART_NUM_PORTS > 1)

&angel_AMBAUARTSerial[1],
#elif DEBUG && LOGTERM_DEBUGGING

&angel_NullDevice,
#endif

#if ETHERNET_SUPPORTED
&angel_EthernetDevice,

#endif

#if DCC_SUPPORTED
&angel_DccDevice,

#endif
};

Example 6-6 describes the set of interrupt handlers that this Angel uses.
Angel_TimerIntHandler is a timer interrupt for example.

Example 6-6 Using device.c (2)

/*
* The interrupt handler table - one entry per handler.
* DE_NUM_INT_HANDLERS must be set in devconf.h to the number of
* entries in this table.
*/

#if (DE_NUM_INT_HANDLERS > 0)
const struct angel_IntHandlerEntry
angel_IntHandler[DE_NUM_INT_HANDLERS] =
{

{ angel_AMBAUARTIntHandler, DI_AMBAUART_A }
6-14 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

Angel

bol
#if (AMBAUART_NUM_PORTS > 1)
,{ angel_AMBAUARTIntHandler, DI_AMBAUART_B }

#elif DEBUG && LOGTERM_DEBUGGING
,{ angel_LogtermIntHandler, DI_AMBAUART_B }

#else
,{ angel_NodevIntHandler, 0}

#endif

#if TIMER_SUPPORTED
,{ Angel_TimerIntHandler, 0 }

#endif
};
#endif

/*
* The poll handler table - one entry per handler
*
* DE_NUM_POLL_HANDLERS must be set in devconf.h to the number
* of entries in this table.
*/
#if (POLLING_SUPPORTED && DE_NUM_POLL_HANDLERS > 0)

const struct angel_PollHandlerEntry
angel_PollHandler[DE_NUM_POLL_HANDLERS] =
{
#if DCC_SUPPORTED

{ (angel_PollHandlerFn)dcc_PollRead, DI_DCC,
(angel_PollHandlerFn)dcc_PollWrite, DI_DCC },

#endif
};

6.6.3 makelo.c

This file provides a translation between C#defines and assembler constants. There
must be a line in themakelo.c for every definition that the board (or Angel) code
requires to be available to assembly code. The line in Example 6-7 makes the sym
Angel_FIQStackOffset available in assembler sources.

Example 6-7

fprintf(outfile, "Angel_FIQStackOffset\t\tEQU\t0x%08X\n",
Angel_FIQStackOffset);
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 6-15

Angel

t

ed
he
e

age
led

d

6.6.4 timerdev.c

This file makes a timer available to Angel by providing a set of plug-in routines tha
manage a timer. This allows Angel to:

• initialize the timer

• start the timer

• stop the timer

• get and set the timer interval.

NoteNote
The Integrator Angel uses timer number 2.

6.6.5 serial.c

This file contains the serial device driver for this particular platform. For µHAL-bas
Angel, this usually reuses the board-specific definitions from µHAL (for example, t
bits in the individual UART registers) to implement the serial device functions of th
Angel.

6.6.6 target.s

Angel must have various macros defined withintarget.s . These are used at system
startup bystartrom.s . These macros are:

UNMAPROM This macro is called by thestartrom.s ROM initialization code. It is
called in systems that use ROM remapping to ensure that the ROM im
is at 0 at reset. After the system has been initialized, this macro is cal
to switch the ROM to its physical address and RAM at 0. The actual
mechanism for performing the remap varies from board to board. For
more details, refer to the documentation for your hardware.

STARTUPCODE

This macro is called fromstartrom.s for target-specific startup. It is
likely to include memory sizing, initialization of memory controllers, an
interrupt controller reset.
6-16 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

Angel

n as
up

n.

unt
r
ed
p

a

e

INITMMU This macro initializes the MMU (or MPU).

NoteNote
Take care with this macro because the location of the page table is
important to the operation of the macro and must be given correctly.
There is also a setup issue if the operation of the system is big-endia
the MMU is responsible for the byte order of the core and must be set
early to allow the correct operation of the code.

INITTIMER This macro allows initialization of any timers required by the applicatio
It is called after the interrupts are disabled and the system is set in
Supervisor mode.

GETSOURCEThis macro is called bysuppasm.s routines (the general Angel support
routines). It defines the Angel interrupts used and offers a small amo
of prioritization to ensure that the debug comms source has priority fo
Angel operation. The routine places the C-defined source value (defin
in devconf.h). These values are used by the interrupt handler for a jum
table holding the individual Angel Interrupt source handler function
pointers.

CACHE_IBR This macro is called fromsuppasm.s support code to set an Instruction
Barrier Range. This is required on systems with processors that have
Harvard cache.

None of these macros are used within µHAL and so must be written for Angel.
However, existing µHAL macros can be reused. For example, the Integrator
STARTUPCODEmacro reuses the µHALINIT_RAM andDISABLE_INTS macros.

6.6.7 devconf.h

This file is the main configuration file for the target image. It sets up the Angel
resources for the specific target and shows the hardware available for Angel usag
including:

• available memory map

• interrupt operation

• peripherals

• devices.
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 6-17

Angel

e

in

the
to

hown

tes
em
Caution
DCC and CACHE support are processor-dependent. Declaration of either of these
support calls enable routines that will only work for specific processor options. If th
processor options do not match your board, Angel halts.

The DEBUG_METHOD is only applicable when the DEBUG compiler option is set
the makefile. It defines the channel to be used to pass the debug messages. The
definitions from the Integrator version are shown in Example 6-8:

Example 6-8

/* Choose the method for debug output here. Options supported
for PID are:
* panicblk panic string written to RAM
* logserial via Serial port at 115200 baud
* logterm as logserial, but interactive. */
#if DEBUG
#if MINIMAL_ANGEL
#define DEBUG_METHOD panicblk
#else
#define DEBUG_METHOD logterm
#endif
#endif

Interrupt operation is selectable for Angel allowing the use of IRQ, FIQ or both
interrupts as sources for the ADP channel communications. µHAL-based Angel
currently only supports FIQ. If the FIQ is chosen as the source for Angel
communications channel, the FIQ safety-level descriptor defines the operation of
FIQ with regard to use of the Angel serializer. The recommended default setting is
ensure that FIQs use the serializer and lock mechanisms. The other options are s
in serlock.h in the generic code section.

The memory map must be defined to allow the debugger to control illegal read/wri
using thePERMITTEDchecks. These should reflect the permitted access to the syst
memory architecture. For Integrator, thePERMITTEDmacros are:

/* These macros are used by debugger-originated memory
reads/writes to check if the write is valid. */
#define READ_PERMITTED(__addr__) (1)
#define WRITE_PERMITTED(__addr__) (1)
6-18 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

Angel

he

pped

lt
d into

ore
s a

e
rupt
once
ory
to sit

is to
:

NoteNote
You must take care with systems that have access to the full 4GB of memory, as t
highest section of memory should equate to0xFFFFFFFF when the base and size are
defined as a sum, and it may wrap around to 0. For example, if there is memory-ma
input/output at0xFFD00000 the definition should be:

#define IOBase (0xFFD00000)
#define IOSize (0x002FFFFF)
#define IOTop (IOBase + IOSize)

and not:

#define IOBase (0xFFD00000)
#define IOSize (0x00300000)
#define IOTop (IOBase + IOSize)

By default, Angel checks for the highest available memory location from the defau
location. This is useful for systems, such as Integrator, where memory can be adde
the DRAM slots but still must be accessed by Angel. It allows the stacks and heap m
space by relocating to the top of memory. It allows a single Angel to be used acros
common product range with similar memory maps but different memory sizes.

The stacks must be defined for all processor modes that are used by Angel. Thes
always include User, SVC, UNDEF, and the appropriate mode for the chosen Inter
source. The location of the stacks can be fixed, or can be set to the top of memory
this has been defined by the memory sizing function. All other Angel-defined mem
spaces (fusion stack heaps, profile work area, application stacks) can be defined
relative to the stacks, or they can be given fixed locations. The default for the
application heap space is above the run-time Angel code and the available space
the lowest limit of the stacks. The definition for Integrator is shown in Example 6-9

Example 6-9

/* The following are the sizes of the various Angel stacks */
#define Angel_UNDStackSize 0x0100

#define Angel_ABTStackSize 0x0100

#define Angel_AngelStackSize (POOLSIZE *Angel_AngelStackFreeSpace)

#define Angel_SVCStackSize 0x0800
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 6-19

Angel

bug

ting.
f over
sed

rray
e
he
NoteNote
Angel stack space is different from the application stack space to allow Angel to de
code that has corrupt or missing stacks.

The download agent area should be a spare area of RAM that can be used for tes
The download agent usually executes from the load agent address and copies itsel
the resident RAM Angel image (that is, it executes in the same way as the ROM-ba
image).

The available devices must be defined in the structureDeviceIdent . The definition
for Integrator is shown in Example 6-10:

Example 6-10

typedef enum DeviceIdent
{

DI_AMBAUART_A,
#if (AMBAUART_NUM_PORTS > 1) || (DEBUG && LOGTERM_DEBUGGING)

DI_AMBAUART_B,
#endif
#if ETHERNET_SUPPORTED

DI_ETHER,
#endif
#if DCC_SUPPORTED

DI_DCC,
#endif

DI_NUM_DEVICES
}
DeviceIdent;

You must ensure that the order in this structure is the same as that defined in the a
in devices.c , as this allows access to the register base of the specified ports in th
defined order. This is also true for the interrupt handler structure. Because this is t
basis for the jump table insuppasm.s , the order and number must be the same as
defined indevices.s . The labels must also be placed inmakelo.c to ensure that they
are available forsuppasm.s .
6-20 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

Angel

ined
6.7 Device drivers

These files are the main area of the porting operation. The files are
application-dependent. The control of the device is carried out through function
pointers defined indevclnt.h , devdriv.h andserring.h .

The main controlling functions are:

• angel_DeviceControlFn()

• Transmit control (ControlTx)on page 6-22

• Receive control (ControlRx)on page 6-22

• Transmit kickstart (KickStart)on page 6-22

• Interrupt handleron page 6-23.

6.7.1 angel_DeviceControlFn()

This controls the device by passing in a set of standard control values that are def
in devices.h in the main directory.

Syntax

DevError angel_DeviceControl(DeviceId devID , DeviceControl op,
void * arg)

where:

devID is the index of the device to control.

op is the operation to perform.

arg is a parameter depending on the operation.

Examples of the values fordevIDare:

DC_INIT Specific device initialization at the start of a session.

DC_RESET Device reinitialization to set the device into a known operational state
ready to accept input from the host at the default setup.

DC_RECEIVE_MODE

Receive Mode Select. Sets the device into and out of receive mode.

DC_SET_PARAMS

Set device operational parameters. Sets the device parameters at
initialization. This is also used if the host must renegotiate the
parameters, for example in the instance of a change of baud rate.
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 6-21

Angel

river,

.

d by

nd
pt
Return value

Returns one of the following:

DE_OKAY Control request is underway.

DE_NO_DEV No such device.

DE_BAD_OP Device does not support operation.

6.7.2 Transmit control (ControlTx)

When in operation, Angel defaults to the receive active state. This allows quick
response to host messages. This function controls the transmit path of the serial d
switching it on or off depending on the flag status set up in the calling routine.

6.7.3 Receive control (ControlRx)

This function is similar toTransmit control (ControlTx). It controls the receive channel

6.7.4 Transmit kickstart (KickStart)

As Angel generally operates in receive active mode, transmission must be initiate
this function. The ADP construction code sets up the bytes to be transmitted for a
message to the host in a transmit buffer. It then calls thekick_start() function to
initiate the transfer. This routine takes the first character from the transmit buffer a
passes it to the serial Tx register. This causes a Tx interrupt from which the interru
handler passes the remainder of the buffer as each character is transmitted.
6-22 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

Angel

r Tx

dy

pted
ler

ion
6.7.5 Interrupt handler

The interrupt handlers are generic for each peripheral. In the case of the ARM
development boards, the interrupt handler controls interrupts from each serial drive
and Rx as well as the parallel reads.

The interrupt handler determines the source of the interrupt and performs the
appropriate action depending on the source:

Tx Pass bytes from the internal Tx buffer to the serial Tx FIFO, if there is
space in the FIFO.

Rx Pass the byte received at the Rx FIFO into the internal Rx buffer, rea
for Angel to unpack the message when the transfer is complete.

Parallel The parallel port is polled to pass the data received into the memory
location requested.

All the above operations are serialized by Angel to ensure that they are not interru
by any other operations. Interrupts are disabled from the start of the interrupt hand
routine until the serializer function is called.

Other system drivers (Ethernet/DCC for example) might not require the full operat
functions and instead require only a pure Rx/Tx control.
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 6-23

Angel
6-24 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

y

Chapter 7-
Flash Library Specification

This chapter provides the complete functional specification of the ARM flash librar
and the various ways it can be used.

This chapter contains the following sections:

• About the flash libraryon page 7-2

• About flash managementon page 7-4

• ARM flash library specificationson page 7-5

• Functions listed by typeon page 7-11

• Flash library functionson page 7-16

• File processing functionson page 7-29

• SIB functionson page 7-34

• Using the libraryon page 7-41

• Rebuilding the flash libraryon page 7-44.

See also Chapter 4ARM Boot Monitorand Chapter 8Using the ARM Flash Utilitesfor
additional information about images in flash memory.
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 7-1

Flash Library Specification

arge
ata in

e
mber

e

7.1 About the flash library

Current ARM development boards (such as Integrator and Prospector) contain a l
area of flash memory. This space is used to store many programs and associated d
a block structure, as defined inFooter structureon page 7-8.

The flash library divides the large flash memory structure into discrete blocks. In th
case of the Integrator board, these are 128KB blocks. An image can contain any nu
of blocks, but it must conform to the flash library definition. Figure 7-1 shows the
standard flash library image storage layout.

Figure 7-1 Flash library image storage layout

The following list describes the areas contained in Figure 7-1:

Image area

All of the code and read-only data segments of the image.

Header information

Any file header information from the downloaded file is placed after th
image. (Not all images have header information.)

Image information

Added by the flash library code for image identification and code
operations.

Image area Logical block boundary

Logical block boundary
(high memory)Unused flash

Header information

Image information

Footer information

(low memory)
7-2 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

Flash Library Specification

ry
f

g of
Unused flash

The footer must be at the end of the block of flash memory. The memo
between the end of the image information and the footer is unused. I
there is not room in the block containing the image for the footer, the
footer will be placed at the end of the next block.

Footer information

A five-word information block containing:

• the address of the information block for this image

• the base address of the data (the start might be at the beginnin
a previous block rather than at the start of this block)

• a unique 32-bit value to aid in fast searching

• the image type (that is a block an image, an SIB, or data)

• a checksum for the footer information (over the first four words
only).
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 7-3

Flash Library Specification

ages

atic

and

e

ata
it

ily
n

rst
lso

ge

all
7.2 About flash management

Many modern embedded systems incorporate large areas of static programmable
memory and they require a mechanism to allocate, program, and pass control to im
of varying size. This section describes the mechanism for programming flash, how
multiple images are programmed into flash, and how images are selected for autom
execution.

The main characteristics of theARM Flash Utility(AFU) and ARM flash library
structure are:

• The library images use a footer rather than a header. For executable images
structured data, the existence of a header complicates using the image.

• The library is managed in standard, small block sizes that hide detail from th
normal user. A size of 16K provides flexibility.

• The AFU supports the following multiple-image formats:

— ELF

— AIF

— binary

— Motorola S-record.

Binary images require additional information to be defined in addition to the d
contained in the file. AFU automatically identifies the file type from the image
receives.

• The AFU application is able to read an image into memory without necessar
copying it into flash. If, for example, an invalid address is given, the image ca
be programmed to the correct address without having to download it again.

• The AFU removes AIF headers from binary AIF files. This ensures that the fi
word of the image is real image data, as it would be in a final product. This a
applies to other format headers where possible.

• Images occupy sequential flash locations in order to avoid problems with ima
bitmasks.

NoteNote
Scatter loading can only be implemented using the flash library if you ensure that
load regions specified in the scatter description file map to sequential blocks.
7-4 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

Flash Library Specification

e
,

ng

AFU,
).

quire
7.3 ARM flash library specifications

This section discusses the general uses for the flash library and the flash types it
supports. It also describes how image management is performed in the following
sections:

• Code portability

• Accessing flash

• flashType structureon page 7-6

• Flash typeson page 7-7

• Image managementon page 7-8.

The boot monitor also uses flash memory to store information about images. Thes
System Information Blocks(SIBs) are application-specific. For information on the SIBs
see Chapter 4ARM Boot Monitor.

7.3.1 Code portability

The flash programming library provides a standard access mechanism. The buildi
blocks for common flash types simplify porting by:

• declaring where the flash memory is located

• identifying the type of flash

• declaring the size of the flash

• linking with the library.

The library guarantees a common access mechanism between the boot switcher,
and any other programming mechanism (such as the flash downloader in the SDT

7.3.2 Accessing flash

Primary routines are supplied that allow access to on-board flash and allow an
application to:

• check that there is actually flash at a given location

• write a word

• read a word

• erase a block of flash

• program a block of flash.

NoteNote
Caches must be disabled for the flash being programmed. Also, some systems re
that the entire flash part is inactive during programming. In these cases, the flash
management code (and the debug agent) must not be executing from flash.
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 7-5

Flash Library Specification

the
7.3.3 flashType structure

At the lowest level, the flash memory is accessed in a uniform manner using the
flashType device structure. Table 7-1 lists the contents of the device structure of
flash library.

Table 7-1 Device structure routines

Field
Size(in
(bytes)

Value/usage

Base 4 Base address of this flash device.

Size 4 Size of flash, in bytes.

Type 4 Atmel, Intel, other CFI manufacturers, or unknown type.

writeSize 4 Size of the physical flash block when writing data. Many devices can be
programmed much faster using a block-programming algorithm.

eraseSize 4 Size of the physical flash block when erasing data. Some devices support
different erase/write block sizes

write() 4 Pointer to a routine to write one 32-bit word to flash.

writeBlock() 4 Pointer to a routine to write a block ofwriteSize bytes to flash.

read() 4 Pointer to a routine to read one 32-bit word from flash.

readBlock() 4 Pointer to a routine to read a block ofwriteSize bytes from flash.

erase() 4 Pointer to a routine to delete a block oferaseSize from flash.

init() 4 Pointer to a routine to lock flash to prevent erasure or programming.

close() 4 Pointer to a routine to unlock flash to allow erasure and programming.

Info 64 An ASCII string, used to identify the device (NULL-terminated).

Next 4 Pointer to the next flash device structure.
7-6 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

Flash Library Specification

hat

at
tel
The library defines a C structure, shown in Example 7-1, for the flash definition so t
all offsets from the first word are abstracted.

Example 7-1 flashType structure

typedef int32 flFlash_WriteProc(char *address, unsigned32 data, char *flash);
typedef int32 flFlash_WriteBlockProc(char *address, unsigned32 *data,

unsigned32 size, char *flash);
typedef int32 flFlash_ReadProc(char *address, unsigned32 *value);
typedef int32 flFlash_ReadBlockProc(char *address, unsigned32 *data,

unsigned32 size);
typedef int32 flFlash_EraseProc(char *address, unsigned32 size, char *flash);
typedef int32 flFlash_InitProc(char *address, int32 *flash);
typedef int32 flFlash_CloseProc(char *address, int32 *flash);

typedef struct flashType
{

char *base; /* Base Address of flash */
char *physicalBase;
unsigned32 size; /* Size of flash, in bytes */
unsigned32 type; /* Atmel / Intel (CFI) / Unknown */
unsigned32 writeSize; /* Size of physical block */
unsigned32 eraseSize; /* Size of block erase */
unsigned32 logicalSize; /* Size of logical block */
flFlash_WriteProc *write; /* Write one word */
flFlash_WriteBlockProc *writeBlock; /* Write a block of writeSize bytes */
flFlash_ReadProc *read; /* Read one word */
flFlash_ReadBlockProc *readBlock; /* Read a block of writeSize bytes */
flFlash_EraseProc *erase; /* Erase a block of eraseSize bytes */
flFlash_InitProc *init; /* Lock a flash device */
flFlash_CloseProc *close; /* Unlock a flash device */
char info[64]; /* Null terminated Info string */
struct flashType *next; /* Pointer to next flash device */

}
tFlash;

7.3.4 Flash types

The library supports the following flash types:

Intel For specifications and general information on the Intel 28Fxxx parts th
use the common flash interface, you should contact Intel or visit the In
web site.
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 7-7

Flash Library Specification

he

ata

ust

e. If
t of

are

.

Atmel For specifications and general information on the ATMEL AT29 flash
devices that use a different protocol, you should contact Atmel or visit t
Atmel web site.

7.3.5 Image management

At the end of the last block of an image, the flash management program writes a d
record, orfooter, that contains information about the image, such as name, start
location, and checksum. If the footer cannot fit into the last block of the image, it m
be written at the end of the next block (the block fields update accordingly). If this
footer is not written, the image is not visible to the boot switcher, and it will not be
visible when the flash management program is next run.

Footer structure

The footer structure is a five-word device that contains a pointer to a more detailed
structure that, if required, defines the image.

Table 7-2 shows the format for the footer.

The image base address is the start of the first block containing data for this imag
the image is less than one logical block in length, this pointer will be set to the star
the current block.

The library defines a C structure for the footer so that all offsets from the first word
abstracted. Example 7-2 on page 7-9 shows this structure.

Table 7-2 Footer format

Field
Size (in
bytes)

Value/usage

Image information base 4 Pointer to the full image descriptor structure.

Image base address 4 Location in flash memory where the image starts

Signature 4 0xA0FFFF9F is an illegal instruction in the ARM
instruction set. It can never be produced by
compilers so it is a safe value for a unique
signature.

Image type 4 Indicates an ARM executable image, SIB, or
custom code.

Checksum 4 Checksum for this footer. The checksum is the
word sum and is stored as the inverse of the sum.
7-8 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

Flash Library Specification

that

g.
Example 7-2 FooterType structure

typedef struct FooterType {
void *infoBase ; /* Flash Address of any stripped header */
char *blockBase ; /* Flash Address of any stripped header */
unsigned int signature /* 'Magic' number to prove it's a footer */
unsigned int type ; /* Specific Image type ARM,SIB etc */
unsigned int checksum ; /* Checksum of this structure only */

} tFooter ;

ImageInfo structure

Because the library supports different program image formats, the actual flash
programming is separate from image loading. Table 7-3 describes the C structure
holds information about the image.

Table 7-3 ImageInfo structure

Field
Size
(bytes)

Value/usage

Image boot flags 4 The boot requirements for the image:
Bit 0: NOBOOT. If set, this image is not bootable. The
boot switcher ignores it when selecting an image to run.
Bit 1: COMPRESSED. If set, this image must be
decompressed before being copied into memory.
Bit 2: Initialize memory (and MMU) before executing
the image.
Bit 3: Copy the image into memory before executing it.
Bit 4: File system image.

Unique image number 4 Number defined to allow fast searches for the image
and easy execution. This is a logical image number and
is not related to the order of the images in flash.

Image load address 4 Location in memory where the image must be loaded
for execution, if relevant.

Image length 4 Length of image in memory, in bytes, excluding any file
header.

Image execute address 4 Execution address of the image in memory.

Image name 16 Name of the image as a 16-byte, null-terminated strin
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 7-9

Flash Library Specification

ats

age

e

.

e

This structure replicates much of the information contained in the header of file form
such as AIF orExecutable and Linkable Format(ELF) in a form that is accessible to
the file-independent routines.

The image data structure contains information about any file header stored in the im
space to allow reconstruction of the file, if required.

The image information block is situated immediately after the full image, and any
header information is stripped from the input file and stored with the image. The
checksum is calculated from the full image, any header information, and the imag
information block. Example 7-3 shows theImageInfoType structure.

Example 7-3 ImageInfoType structure

typedef struct ImageInfoType
{

unsigned32 bootFlags ; /* Boot flags, compression etc. */
unsigned32 imageNumber ; /* Unique number, selects for boot etc. */
char *loadAddress ; /* Address program should be loaded to */
unsigned32 length ; /* Actual size of image */
PFN address ; /* Image is executed from here */
char name[16] ; /* Null terminated */
char *headerBase ; /* Flash Address of any stripped header */
unsigned32 header_length; /* Length of header in memory */
unsigned32 headerType ; /* AIF, ELF, S-record etc. */
unsigned32 checksum ; /* Image checksum (inc. this struct) */

} tImageInfo ;

Header length 4 Length of any separated header stored with the image

Header type 4 Type of file: ELF, AIF, binary, or S-record.

Image checksum 4 Checksum to include full image, header, and this imag
information block.The checksum is the word sum and is
stored as the inverse of the sum.

Table 7-3 ImageInfo structure (continued)

Field
Size
(bytes)

Value/usage
7-10 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

Flash Library Specification

ain

bed

lash
rary

k on
e

, it is

s

orm
and
7.4 Functions listed by type

This section lists the library functions by type. The functions are grouped into four m
categories:

• Functions that directly access flash memory are described inFlash library
functions, listed by typeon page 7-11.

• Functions related to low-level file structures are described inFile processing
functions, listed by typeon page 7-13.

• Functions related to high-level file access are described inExternal interfaceon
page 7-14.

• Functions related to application-defined nonvolatile storage areas are descri
in SIB functionson page 7-15.

7.4.1 Flash library functions, listed by type

This section list the functions that directly access flash memory, and shows where
further information can be found on each function.

Locating flash

It is difficult to locate the flash simply by examining a board because accessing the f
area on one target platform might cause an exception on another platform. The lib
is linked with code that defines the base of flash memory. This allows common
applications, such as the download to flash feature of the ARM debuggers, to wor
all supported platforms. If this type of application is linked with the µHAL routines, th
platform ID routine allows a lookup table of flash base and flash size to be used.

The flash device structure allows you to handle multiple flash parts in a common
manner by the library or an application. If a device has an area that can be locked
presented as two logical devices, partitioned into lockable and non-lockable. The
library does not provide functions to unlock and lock flash, because this memory i
reserved for special functionality. The functions for locating flash are:

• fLib_FindFlash()on page 7-16

• fLib_OpenFlash()on page 7-16.

Single word access

The smallest unit of access is a single word of 32 bits. If flash parts on a given platf
are only on 8-bit or 16-bit data paths, these functions mask all issues of byte order
multiple access. The functions are:

• fLib_ReadFlash32()on page 7-17
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 7-11

Flash Library Specification

ling
the
rite

and
nd
ply

fter

ion to
r

• fLib_WriteFlash32()on page 7-17.

Block access

The library uses the concept of logical blocks to improve access times when hand
multiple images in flash. These logical blocks hide any physical block mechanism
actual hardware might use to provide a library of high-level routines. The read and w
routines are generic so you do not require knowledge of logical blocks, but these
routines must synchronize internally to use logical blocks where possible. Each
program image occupies one or more blocks of flash. The functions are:

• fLib_ReadArea()on page 7-18

• fLib_WriteArea()on page 7-18

• fLib_DeleteArea()on page 7-19

• fLib_GetBlockSize()on page 7-19.

Images in flash

An application must be able to find an image already programmed in flash memory,
find room for a new image. Also, much of the complexity of footers, checksums, a
image numbers can be hidden by wrapper routines that allow an application to sim
read, write, or verify an image. These functions use the footer list produced by
fLib_FindFooter() . The functions are:

• fLib_ReadImage()on page 7-20

• fLib_WriteImage()on page 7-20

• fLib_VerifyImage()on page 7-21

• fLib_FindImage()on page 7-21

• fLib_ExecuteImage()on page 7-22

• fLib_DeleteImage()on page 7-22

• fLib_ChecksumImage()on page 7-23

• fLib_ChecksumFooter()on page 7-23

• fLib_GetEmptyFlash()on page 7-24

• fLib_GetEmptyArea()on page 7-24.

Image footers

The flash library provides functions to locate, read, build, and write these footers. A
flash is scanned for footers withfLib_FindFooter() , reading any footer is not
merely a case of accessing the returned list, because this would open the applicat
the actual physical organization and layout of the flash hardware. The image foote
functions are:

• fLib_initFooter()on page 7-25
7-12 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

Flash Library Specification

y,

here

n

e

ened
using
• fLib_ReadFooter()on page 7-25

• fLib_WriteFooter()on page 7-26

• fLib_VerifyFooter()on page 7-27

• fLib_FindFooter()on page 7-27

• fLib_BuildFooter()on page 7-28.

7.4.2 File processing functions, listed by type

The flash library separates file read/write from flash programming. This allows the
library to support multiple file formats simply and easily. File formats ELF, AIF, binar
and Motorola S-record are supported.

This section lists, and describes, the file processing functions by type, and shows w
further information can be found on each function.

The choice of basic file access or formatted file access depends on the informatio
extracted from the header. When the file header is parsed,fLib_ReadFileHead()

setsimage->readFile() , image->writeFile() and
image->footer.fileType appropriately.

If the file does not require any conversion,image->readFile() points at
flib_ReadFileRaw() , andimage->writeFile() points at
flib_WriteFileRaw() . Otherwise, such as for an S-record file, the appropriate
routine addresses are set inimage->readFile() andimage->writeFile() . If a
file format has no header,readFile() must parse the size bytes of data read from th
file from image->head first.

Simple file access

The interface to access files on the host is as simple as possible. The file must be op
before access is possible, and must be closed when done. Data is read and written
functions that access the image structure to determine if any format conversion is
required (the raw functions are also available).

The simple file access functions are:

• fLib_ReadFileRaw()on page 7-29

• fLib_WriteFileRaw()on page 7-29

• fLib_OpenFile()on page 7-30

• fLib_CloseFile()on page 7-30.
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 7-13

Flash Library Specification

he
ely

and

mat

ry,

put
mall
File headers and formats

The flash library can maintain an original file format header as part of the image. T
data is stored in flash using the following layout, with the original header immediat
following the executable image, as shown in Figure 7-1 on page 7-2.

The file inputs must be checked for file type, and stored with respect to the header
code image information. There are two functions to handle parsing of the header
information to and from the flash image space:

• fLib_ReadFileHead()on page 7-31

• fLib_WriteFileHead()on page 7-32.

Formatted file access

Data is accessed using functions that use the image structure for any required for
conversion. These functions are:

• fLib_ReadFile()on page 7-32

• fLib_WriteFile()on page 7-33.

7.4.3 External interface

The flash library separates file read/write from flash programming. This allows the
library to support multiple file formats. The supported file formats are ELF, AIF, bina
and Motorola S-record.

This section lists the file processing functions by type, and shows where further
information can be found on each function.

External file translation interface

Some external file types, including Motorola S-record and Intel hex, require each in
element to be converted. To allow easy access for filter and conversion routines, a s
interface has been included.The interface is defined in a C structure, as shown in
Example 7-4.

Example 7-4 External file translation interface structure

typedef struct
{

char in_buff[80]; /* Buffer for the ASCII input processing */
char out_buff[80]; /* Buffer for the processed binary image */
char * address; /* Address Image buffer should go to */
7-14 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

Flash Library Specification

he

itor,
all

.

f

int rec_length; /* Actual size of image buffer */
int records; /* Internal counter for block passage */

} tProcess_type ;

Parameters are in the format shown in Table 7-4.

The external processing function can be called on a line-by-line basis, and gives t
correct data and storage address back to the input function.

There are no individual external file translation interface routines.

7.4.4 SIB functions

Applications sometimes need small amounts of nonvolatile storage. The boot mon
for example, requires a small block of data to identify which image to run. These sm
blocks of application-specific information are provided asSystem Information Blocks
(SIB).

The following functions are available to create and access SIBs:

• SIB_Open()on page 7-36

• SIB_Close()on page 7-37

• SIB_GetPointer()on page 7-37

• SIB_Copy()on page 7-38

• SIB_Program()on page 7-38

• SIB_GetSize()on page 7-39

• SIB_Verify()on page 7-39

• SIB_Erase()on page 7-40.

Table 7-4 Parameters

Field
Size (in
bytes)

Value/usage

in_buff 80 Input line buffer for the ASCII element read in from an
external file.

out_buff 80 Storage space for conversion output.

address 4 Address for storage, taken from the element header.

rec_length 4 True element size taken from the element being processed

records 4 Internal counter for the process type to show the number o
elements processed.
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 7-15

Flash Library Specification

the

an

ght

nal

ed.
7.5 Flash library functions

This section documents the functions in the flash library. The functions are listed in
order as documented inFlash library functions, listed by typeon page 7-11. All
functions and type definitions are contained inflash_lib.h .

7.5.1 fLib_FindFlash()

This function locates the flash memory devices on this platform. If there is more th
one device in the system, the application must build a linked list of devices before
calling fLib_OpenFlash() .

NoteNote
This routine is board-dependent. It might simply return a predefined value, or it mi
actually scan the memory address space looking for valid flash.

Syntax

unsigned int fLib_FindFlash(tFlash ** tf)

where:

tf is a pointer to an integer variable that will be set to the address of the
flashType device structure in the system. The routine uses the exter
arrayflash_setup[] .

Return value

Returns one of the following:

count If one or more flash devices is found, the number of devices is return

*tf is set to the address of the first element of the array of device
structures.

0 If no flash is found.

7.5.2 fLib_OpenFlash()

This function initializes the flash device structures for this platform. Theflashmem

arrayDefault_Flash_Setup in FL_flash_proc.c holds default flash functions for
Atmel and Intel flash devices. The values in the appropriate structure are used to
initialize the device structure.
7-16 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

Flash Library Specification

.

Syntax

int fLib_OpenFlash(tFlash * flashmem)

where:

flashmem is a pointer to the first flash memory information structure.

Return value

Returns one of the following:

0 If successful.

-1 If not successful.

7.5.3 fLib_ReadFlash32()

This function calls theread() function from theflashmem structure and reads one
32-bit word from the flash at the given address.

Syntax

int fLib_ReadFlash32(unsigned int * address , unsigned int * value ,
tFlash * flashmem)

where:

address is a pointer to the address of the flash memory to be read.

value is a pointer to the memory address where the flash should be copied

flashmem is a pointer to the flash device structure to allow access to the flash
read/write routines.

Return value

Returns one of the following:

0 If successful. The memory atvalue now holds the results.

-1 If not successful.

7.5.4 fLib_WriteFlash32()

This function writes one 32-bit word to the flash at the given address.

Syntax

int fLib_WriteFlash32(unsigned int * address , unsigned int value ,
tFlash * flashmem)
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 7-17

Flash Library Specification
where:

address is a pointer to the address of the flash memory to be written to.

value is the data to be written to the specified flash address.

flashmem is a pointer to the flash device structure to allow access to the flash
read/write routines.

Return value

Returns one of the following:

0 If successful.

-1 If not successful.

7.5.5 fLib_ReadArea()

This function reads an area ofsize bytes from flash memory.

Syntax

int fLib_ReadArea(unsigned int * address , unsigned int * data ,
unsigned int size , tFlash * flashmem)

where:

address is a pointer to the address of the flash memory to be read.

data is a pointer to the location the data is to be copied to.

size is the size, in bytes, of the data area.

flashmem is a pointer to the flash device structure to allow access to the flash
read/write routines.

Return value

Returns one of the following:

0 If successful.

-1 If not successful.

7.5.6 fLib_WriteArea()

This function writes an area ofsize bytes to flash memory.

Syntax

int fLib_WriteArea(unsigned int * address , unsigned int * data ,
unsigned int size , tFlash * flashmem)
7-18 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

Flash Library Specification

This
where:

address is a pointer to the address of the flash memory to be written.

data is a pointer to the data to be written.

size is the size, in bytes, of the data area.

flashmem is a pointer to the flash device structure to allow access to the flash
read/write routines.

Return value

Returns one of the following:

0 If successful.

-1 If not successful.

7.5.7 fLib_DeleteArea()

This function deletes (erases) an area of flash memory.

Syntax

int fLib_DeleteArea(unsigned int * address , unsigned int size ,
tFlash * flashmem)

where:

address is a pointer to the address of the flash memory to be deleted.

size is the size, in bytes, of the data area to be erased.

flashmem is a pointer to the flash device structure to allow access to the flash
read/write routines.

Return value

Returns one of the following:

0 If successful.

-1 If not successful.

7.5.8 fLib_GetBlockSize()

This function returns the size, in bytes, of the logical block for this platform.

NoteNote
These logical blocks cannot be smaller than the largest device physical block size.
block size will be a multiple of the erase block size.
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 7-19

Flash Library Specification

ed.

e

Syntax

unsigned int fLib_GetBlockSize(tFlash * flashmem)

where:

flashmem is a pointer to the flash device structure to return the size.

Return value

Returns one of the following:

size If the flash block size can be determined, the size of the block is return

0 If the size cannot be determined.

7.5.9 fLib_ReadImage()

This function reads the image from flash memory as defined inimage ->footer . The
specifiedimage ->ramBase pointer cannot be NULL.

Syntax

int fLib_ReadImage(tFooter * foot , tFlash * flashmem)

where:

foot is a pointer to the footer structure defining the image pointer for the
image to be read.

flashmem is a pointer to the flash device structure to allow access to the flash
read/write routines.

Return value

Returns one of the following:

0 If successful.

-1 If not successful.

7.5.10 fLib_WriteImage()

This function writes the image selected by the specified image structure. The imag
structure must be fully defined.

Syntax

int fLib_WriteImage(tFooter * foot , tFlash * flashmem)
7-20 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

Flash Library Specification

ches

er
where:

foot is a pointer to the footer structure defining the image pointer for the
image to be copied.

flashmem is a pointer to the flash device structure to allow access to the flash
read/write routines.

Return value

Returns one of the following:

0 If successful.

-1 If not successful.

7.5.11 fLib_VerifyImage()

This function verifies that the image, selected by the specified image structure, mat
the image as programmed. The image structure must be fully defined.

Syntax

int fLib_VerifyImage(tFooter * foot)

where:

foot is a pointer to the footer structure defining the image pointer for the
image to be verified.

Return value

Returns one of the following:

0 If successful.

-1 If not successful.

7.5.12 fLib_FindImage()

This function scans the list of flash footers looking for a footer with an image numb
that matches the specified number. If the specified footer pointer is not NULL, the
footer is copied from flash.

Syntax

int fLib_FindImage(tFooter ** list , unsigned int imageNo ,
tFooter * foot)
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 7-21

Flash Library Specification
where:

list is a pointer to a list of pointers to footers.

imageNo is the unique number of the image to be located.

foot is a pointer to the location where the found footer should be copied.

Return value

Returns one of the following:

0 If successful.

-1 If not successful.

7.5.13 fLib_ExecuteImage()

This function executes the image selected by the specified image footer.

Syntax

int fLib_ExecuteImage(tFooter * foot)

where:

foot is a pointer to the footer that defines the image to be executed.

Return value

Returns one of the following:

No return If successful, the function does not return.

-1 If not successful.

7.5.14 fLib_DeleteImage()

This function deletes the image in flash selected by the specified image footer.

Syntax

int fLib_DeleteImage(tFooter * foot)

where:

foot is a pointer to the footer that defines the image to be deleted.
7-22 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

Flash Library Specification

and
not

and
not
Return value

Returns one of the following:

0 If successful.

-1 If not successful.

7.5.15 fLib_ChecksumImage()

This function calculates the checksum for the specified image. The image structure
associated footer must be fully defined, but the contents of the image structure are
summed. The checksum is a word sum, and is inverted before being stored.

Syntax

int fLib_ChecksumImage(tFooter * foot , unsigned int * sum)

where:

foot is a pointer to the footer structure defining the image pointer for the
image to be check-summed.

sum is a pointer to location where the image checksum is to be stored.

Return value

Returns one of the following:

0 If successful.

-1 If not successful.

7.5.16 fLib_ChecksumFooter()

This function calculates the checksum for the specified image. The image structure
associated footer must be fully defined, but the contents of the image structure are
summed. If the image sum value is -1, only the footer value will be calculated. The
checksums are word sums, and are inverted before being stored.

Syntax

int fLib_ChecksumFooter(tFooter * foot , unsigned int * foot_sum ,
unsigned int * image_sum)

where:

foot is a pointer to the footer structure for the footer and image to be
check-summed.
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 7-23

Flash Library Specification

.

.

.

d.
foot_sum is a pointer to the location where the footer checksum is to be stored

image_sum is a pointer to the location where the image checksum is to be stored

Return value

Returns one of the following:

0 If successful.

-1 If not successful.

7.5.17 fLib_GetEmptyFlash()

This function scans the list of flash footers, looking for an empty area fromstart , of
at leastunused size.

Syntax

int fLib_GetEmptyFlash(tFooter ** list , unsigned int * start ,
unsigned int * location ,
unsigned int empty , Flash * flash)

where:

list is a pointer to a list of pointers to footers.

start is a pointer to the start location required in flash memory.

location is a pointer to the start of the flash area capable of housing the image

empty is the size of the empty area required in flash memory.

flash is a pointer to the location from where the footer image is to be copie

Return value

Returns one of the following:

0 If successful.

-1 If not successful.

7.5.18 fLib_GetEmptyArea()

This function scans flash footers, looking for any empty area of at leastempty size.

Syntax

int fLib_GetEmptyArea(tFooter ** list , unsigned int empty ,
tFlash * flash)
7-24 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

Flash Library Specification

d.

ed
where:

list is a pointer to a list of pointers to footers.

empty is the size of the empty area required in flash memory.

flash is a pointer to the location from where the footer image is to be copie

Return value

Returns one of the following:

0 If successful.

-1 If not successful.

7.5.19 fLib_initFooter()

This function initializes the footer atfoot with known values (-1, or0xFFFFFFFF).
This sets up the footer to a known state. The value -1 is the general value of
unprogrammed flash.

Syntax

int fLib_initFooter(tFooter * foot , int ImageSize , int type)

where:

foot is a pointer to the footer structure for initialization.

ImageSize is the size of the image, if known.

type is a footer type such as an ARM executable or SIB (bit patterns defin
in flash_lib.h).

Return value

Returns one of the following:

0 If successful.

-1 If not successful.

7.5.20 fLib_ReadFooter()

This function reads the footer atstart in flash memory tofoot in memory.

Syntax

int fLib_ReadFooter(unsigned int * start , tFooter * foot ,
tFlash * flash)
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 7-25

Flash Library Specification

ere
where:

start is a pointer to the location of the footer image in flash memory.

foot is a pointer to the location the footer image is to be copied to.

flash is a flash device structure for access to flash access routines.

Return value

Returns one of the following:

0 If successful.

-1 If not successful.

7.5.21 fLib_WriteFooter()

This function writes a footer to flash memory.image_data contains the complete
image footer to be written, including the checksum. Because the footer contains a
pointer to the end of the flash block, this function uses the pointer to determine wh
the footer should be written.

Syntax

int fLib_WriteFooter(tFooter * foot , tFlash * flash ,
unsigned int * foot_data ,
unsigned int * image_data)
7-26 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

Flash Library Specification

sh.

s

ch
where:

foot is a pointer to the location where the footer image is to be copied.

flash is a structure with pointers to flash access routines.

foot_data is the location of footer data in RAM to be copied to a flash location.

image_data is a pointer to the location of the image information to be copied to fla

Return value

Returns one of the following:

0 If successful.

-1 If not successful.

7.5.22 fLib_VerifyFooter()

This function verifies the footer atfoot . It checks the signature word, and also check
that the checksum is correct.

Syntax

int fLib_VerifyFooter(tFooter * foot , tFlash * flash)

where:

foot is a pointer to the footer image to be verified.

flash is a structure with pointers to flash access routines.

Return value

Returns one of the following:

0 If successful.

-1 If not successful.

7.5.23 fLib_FindFooter()

This function scans the flash memory fromstart for size bytes, returning a list of
pointers to the image footers. The pointerlist should point to an area of RAM
supplied by the application, and should be large enough to contain a pointer to ea
logical block of flash in the specified area.

If the size is defined as zero, only the address of the next footer found is returned.
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 7-27

Flash Library Specification
Syntax

unsigned int fLib_FindFooter(unsigned int * start ,
unsigned int size , tFooter * list [],
tFlash * flash)

where:

start is a pointer to the address of the flash memory to be scanned.

size is the size, in bytes, of the flash memory.

list is a pointer to a list of pointers to footers.

flash is a structure with pointers to flash access routines.

Return value

Returns the number of flash footers found.

7.5.24 fLib_BuildFooter()

This function builds a footer for the specified image. The image structure already
contains all information about the program image in memory. This function must
convert these pointers to their final values in flash.

Syntax

int fLib_BuildFooter(tFooter * foot , tFlash * flash)

where:

foot is a pointer to the footer to be built.

flash is a structure with pointers to flash access routines.

Return value

Returns one of the following:

0 If successful.

-1 If not successful.
7-28 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

Flash Library Specification

sted

ied.

by
7.6 File processing functions

This section documents the set of file processing function calls. The functions are li
in the order as documented inFile processing functions, listed by typeon page 7-13. All
functions and type definitions are contained inflash_lib.h .

7.6.1 fLib_ReadFileRaw()

This function reads up tosize bytes from the open filefp .

Syntax

unsigned int fLib_ReadFileRaw(unsigned int * value ,
unsigned int size ,
tFile_IO * file_IO , tFILE * fp)

where:

value is a pointer to the memory address where the contents of the file is cop

size is the number of bytes to be read.

file_IO is a pointer to a structure that accesses the external file input/output
way of simple input/output routines.

fp is a pointer to an open file stream from which to read file data.

Return value

Returns one of the following:

count If successful, the number of bytes read is returned.

0 If not successful.

7.6.2 fLib_WriteFileRaw()

This function writes up tosize bytes to the open filefp .

Syntax

unsigned int fLib_WriteFileRaw(unsigned int * value ,
unsigned int size ,
tFile_IO * file_IO , tFILE * fp)
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 7-29

Flash Library Specification

is

ple

by
where:

value is a pointer to the memory address from where the contents of the file
copied.

size is the number of bytes to be written.

file_IO is a pointer to a structure that accesses the external file by way of sim
input/output routines.

fp is a pointer to an open file stream to which file data will be written.

Return value

Returns one of the following:

count If successful, the number of bytes written is returned.

0 If not successful.

7.6.3 fLib_OpenFile()

This function opens a file of the givenfilename in the givenmode.

Syntax

File *fLib_OpenFile(char * filename , char * mode,

tFile_IO * file_IO)

where:

filename is a pointer to the name of the file on the host.

mode is the mode in which the file should be opened, such asrb for read-only.

file_IO is a pointer to a structure that accesses the external file input/output
way of simple input/output routines.

Return value

Returns one of the following:

pointer If successful, a pointer to the file on the host is returned.

0 If not successful.

7.6.4 fLib_CloseFile()

This function closes the specified file on the host.
7-30 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

Flash Library Specification

by

by
Syntax

int fLib_CloseFile(File * file , tFile_Io * file_IO)

where:

file is a pointer to the file on the host.

file_IO is a pointer to a structure that accesses the external file input/output
simple input/output routines.

Return value

Returns one of the following:

0 If successful.

-1 If not successful.

7.6.5 fLib_ReadFileHead()

This function reads the file header, determines the file type, and sets fields inimage
from the data. The number of bytes read is returned in the field pointed to bysize . The
header is copied to the buffer already defined inimage ->head .

Syntax

unsigned int fLib_ReadFileHead(File * file , tImageInfo * image ,
unsigned int * size , tFile_IO * file_IO)

where:

file is a pointer to the file on the host.

image is a pointer to the image structure.

size is a pointer to size of the data read from the host.

file_IO is a pointer to a structure that accesses the external file input/output
simple input/output routines.
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 7-31

Flash Library Specification

by
Return value

Returns one of the following:

filetype If the file type is known, the file type is returned as anunsigned int

fileType (ENUM_FILETYPE).

0 If the file type is unknown.

7.6.6 fLib_WriteFileHead()

This function writes the header pointed to by theimage ->footer to the specified file.
The header is parsed and thewriteFile routine pointer is updated.

Syntax

unsigned int fLib_WriteFileHead(File * file , tImageInfo * image ,
tFile_IO * file_IO)

where:

file is a pointer to the file on the host.

image is a pointer to the image structure.

file_IO is a pointer to a structure that accesses the external file input/output
way of simple input/output routines.

Return value

Returns one of the following:

count If successful, the number of bytes written is returned.

0 If there is no header.

7.6.7 fLib_ReadFile()

This function reads (and converts), from the open file, words of up to 32 bits.

Syntax

unsigned int fLib_ReadFile(unsigned int * value ,
unsigned int size , tImageInfo * image ,
tFile_IO * file_IO)
7-32 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

Flash Library Specification

by

by
where:

value is a pointer to the memory address where the file data is copied.

size is the number of bytes to be read.

image is a pointer to the image structure.

file_IO is a pointer to a structure that accesses the external file input/output
way of simple input/output routines.

Return value

Returns one of the following:

count If successful, the number of bytes read is returned.

0 If not successful.

7.6.8 fLib_WriteFile()

This function converts and writes, from the open file, words of up to 32 bits.

Syntax

unsigned int fLib_WriteFile(unsigned int * value ,
unsigned int size , tImage * image ,
tFile_IO * file_IO)

where:

value is a pointer to the memory address.

size is the number of bytes to be written.

image is a pointer to the image structure.

file_IO is a pointer to a structure that accesses the external file input/output
way of simple input/output routines.

Return value

Returns one of the following:

count If successful, the number of bytes written is returned.

0 If not successful.
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 7-33

Flash Library Specification

itor,
all

an
rger

r
ntly

he
ary

e

7.7 SIB functions

Applications sometimes need small amounts of non-volatile storage. The boot mon
for example, requires a small block of data to identify which image to run. These sm
blocks of application-specific information are provided asSystem Information Blocks
(SIB).

The flash library can create a large block of memory called a SIB flash block that c
then be used by various applications to create or access individual SIBs within the la
block. It is also possible for an application to ask for an entire SIB flash block if, fo
example, the application requires very large SIBs or if the SIBs must not be accide
modified by another applications.

The following functions are available to create and access SIBs:

• SIB_Open()on page 7-36

• SIB_Close()on page 7-37

• SIB_GetPointer()on page 7-37

• SIB_Copy()on page 7-38

• SIB_Program()on page 7-38

• SIB_GetSize()on page 7-39

• SIB_Verify()on page 7-39

• SIB_Erase()on page 7-40.

7.7.1 The SIB flash block

The SIB flash block contains multiple SIBs as shown in Figure 7-2 on page 7-35. T
SIBs contained within the SIB flash block are application-dependent. The flash libr
defines how the SIB blocks are accessed but does not define the contents of the
individual SIBs.

The size limit for SIB blocks is 512 bytes and the index limit (number of SIBs with th
same name) is 64.
7-34 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

Flash Library Specification
Figure 7-2 SIB flash block

Start of
flash block

Footer

Unprogrammed

SIB 3

Unprogrammed

Unprogrammed

Unprogrammed

SIB 1

SIB 2

SIB 4

End of
flash block
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 7-35

Flash Library Specification

ins
es
the

ter
n

Flash blocks containing SIBs must be identifiable. The SIB flash block footer conta
a word that identifies the block as a SIB flash block. A SIB information block preced
the footer and contains additional information about the block. Table 7-5 describes
contents of the SIBInfo structure.

The SIB is defined as a C structure, as shown in Example 7-5.

Example 7-5 SIBInfoType structure

typedef struct SIBInfoType
{

unsigned32 SIB_number; /* Unique number of SIB Block */
unsigned32 SIB_Extension; /* Base of SIB flash block */
char Label[16]; /* String space for ownership string */
unsigned32 checksum; /* SIB Image checksum */

}tSIBInfo;

7.7.2 SIB_Open()

SIB_Open() scans flash for SIB blocks and indexes the SIBs in a linked list for fas
access (an application might have multiple SIBs in different blocks). The applicatio
can then access the SIBs by their index. This routine uses thefLib_FindFlash() ,
fLib_OpenFlash() , andfLib_FindFooter() functions.

Table 7-5 SIBInfo structure

Field
Size (in
bytes)

Value/usage

SIB unique number 4 Unique number for the SIB flash block (or blocks)
for system reference.

SIB block extension 4 Pointer to the start of this SIB flash block (some
SIBs require more than one flash block).

Label 16 Text label for identification of the SIB flash block.
This will generally be the initializing system name.

Checksum 4 Checksum for this footer. The checksum is the word
sum and is stored as the inverse of the sum.
7-36 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

Flash Library Specification

e

cess

e

Syntax

int SIB_Open(char * idString , int * sibCount , int privFlag)

where:

idString is provided by the application and is an identification string that will b
used to locate existing blocks and mark new ones.

sibCount is set to the number of SIBs found.

privFlag is zero for common access or non-zero for private access. Private ac
means that the entire flash block is private.

Return value

Returns one of the following:

-1 If idString is already set.

0 If successful.

7.7.3 SIB_Close()

SIB_Close() frees SIB access.

Syntax

int SIB_Close(char * idString)

where:

idString is provided by the application and is an identification string that will b
used to locate existing blocks and mark new ones.

Return value

Returns one of the following:

-1 If idString is already set.

0 If successful.

7.7.4 SIB_GetPointer()

SIB_GetPoiner() gets the start address of SIB user data.

Syntax

int SIB_GetPointer(int sibIndex , void ** dataBlock)
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 7-37

Flash Library Specification

.

where:

sibIndex is the index number of the SIB. The SIB indexes were identified by
SIB_Open() .

dataBlock is set to the address if the SIB user data.

Return value

Returns one of the following:

-1 If not successful.

0 If successful.dataBlock is set to the address.

7.7.5 SIB_Copy()

SIB_Copy() gets a local copy of the user data in a SIB.

Syntax

int SIB_Copy(int sibIndex , void * dataBlock , int dataSize)

where:

sibIndex is the index number of the SIB. The SIB indexes were identified by
SIB_Open() .

dataBlock is the base source address.

dataSize is the free space at the source address.

Return value

Returns one of the following:

-1 If not successful.

0 If successful.

7.7.6 SIB_Program()

SIB_Program() creates a new SIB or updates an existing SIB with new user data

Syntax

int SIB_Program(int sibIndex , void * dataBlock , int dataSize)
7-38 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

Flash Library Specification
where:

sibIndex is the new index number of the SIB. The existing SIB indexes were
identified bySIB_Open() .

dataBlock is the base source address.

dataSize is the free space at the source address.

Return value

Returns one of the following:

-1 If not successful.

0 If successful.

7.7.7 SIB_GetSize()

SIB_GetSize() gets the size of SIB data.

Syntax

int SIB_GetSize(int sibIndex , int * dataSize)

where:

sibIndex is the index number of the SIB. The SIB indexes were identified by
SIB_Open() .

dataSize is set to the size of the SIB.

Return value

Returns one of the following:

-1 If not successful.

0 If successful.

7.7.8 SIB_Verify()

SIB_Verify() verifies the SIB is intact by checking the signature and checksum.

Syntax

int SIB_Verify(int sibIndex)
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 7-39

Flash Library Specification
where:

sibIndex is the index number of the SIB. The SIB indexes were identified by
SIB_Open() .

Return value

Returns one of the following:

-1 If not successful.

0 If successful.

7.7.9 SIB_Erase()

SIB_Erase() erases the SIB.

Syntax

int SIB_Erase(int sibIndex)

where:

sibIndex is the index number of the SIB. The SIB indexes were identified by
SIB_Open() . The entry inactive_sibs[sibIndex] is set to NULL.

Return value

Returns one of the following:

-1 If not successful.

0 If successful.
7-40 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

Flash Library Specification

t give

nded
ad,
7.8 Using the library

The flash library provides a wide range of routines, so it is recommended that you
understand how they work together. The sequences described in this section do no
specific constructs, however they give a general indication of usage.

7.8.1 Starting up and finding flash

When the programming application starts on the target, the application must:

1. Locate the flash.

2. Verify that it is supported.

3. Scan for any images that have already been programmed.

Example 7-6 shows how these actions are performed.

Example 7-6 Starting up

unsigned int fLib_FindFlash(tFlash **tf);
int fLib_OpenFlash(tFlash *flashMem);
unsigned int fLib_FindFooter(unsigned int *start, unsigned int size,

tFooter **list[], tFlash *flash);

7.8.2 Reading a file into memory

It is only necessary to read an image from the host once. Therefore, it is recomme
that you do not integrate the file that is read into the programming command. Inste
perform a separate step to read the file first, such as by using a combined
read-and-program command. Example 7-7 shows these actions are performed.

Example 7-7 Reading into memory

File *fLib_OpenFile(char *filename, char *mode, tFile_IO *file_IO);
unsigned int fLib_ReadFileHead(File *file, tImage *image,

unsigned int *size, tFile_IO *file_IO);
unsigned int fLib_ReadFile(unsigned int *value, unsigned int size, tImage *image,

tFile_IO *file_IO);
int fLib_CloseFile(File *file, tFile_IO *file_IO);
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 7-41

Flash Library Specification

age
into
ere
.

were
te.

(The
in

s are
7.8.3 Preparing and programming an image

After the image is loaded into memory, space must be found for the image and the im
footer has to be built before the image can be programmed. If an image is relocated
memory when executed, it can be programmed into any available flash space. If th
is no room for the desired image in flash, an existing image will have to be deleted

The image number must be checked to ensure that it is unique. If image numbers
not unique, there would be problems selecting one of the multiple images to execu
After the image is written, the footer should be rescanned to update the image list.
image numbers are logical numbers and are not related to the order of the images
flash.) Example 7-8 shows how these actions are performed.

Example 7-8 Programming

int fLib_FindImageNum(tFooter **list, unsigned int imageNo, tFooter *foot);
int fLib_GetEmptyFlash(tFooter **list, unsigned int *search_start,

unsigned int &location, unsigned int empty, tFlash *flash);

or:

int fLib_GetEmptyArea(tFooter **list, unsigned int &location,
unsigned int empty, tFlash *flash);

int fLib_DeleteArea(unsigned int *address, unsigned int size, tFlash *flash);
int fLib_BuildFooter(tFooter *foot, tFlash *flash);
int fLib_ChecksumFooter(tFooter *footer, unsigned32 *foot_sum,

unsigned32 *image_sum);
int fLib_WriteImage(tImageInfo *image, tFlash *flash, unsigned32 *current,

tFooter *foot);

or:

int fLib_WriteArea(unsigned32 *address, unsigned32 *data,
unsigned32 size, tFlash *flashmem);

tFooter* fLib_WriteFooter(tFooter *foot, tFlash *flash,
unsigned32 *foot_data, unsigned32 *image_data);

unsigned int fLib_FindFooter(unsigned int *start,
unsigned int size, tFooter *list[], tFlash *flash);

7.8.4 Reading an image to a file

The process described inPreparing and programming an imagecan be reversed to
produce a file on the host from a flash image. Example 7-9 shows how these action
performed.
7-42 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

Flash Library Specification

nd

med.
Example 7-9 Reading

int fLib_FindImage(tFooter **list, unsigned32 imageNo,tFooter *foot);
int fLib_VerifyFooter(tFooter *foot, tFlash *flash);
int fLib_ReadImage(tFooter *foot, tFlash *flash);
int fLib_ChecksumImage(tFooter *footer, unsigned32 *image_sum);
tFILE *fLib_OpenFile(char *filename, char *mode, tFile_IO * file_IO);

unsigned int fLib_WriteFileHead(tFILE *file, tImageInfo *image,
tFile_IO * file_IO)

fLib_WriteFile(unsigned32 *value, unsigned32 size,
tImageInfo *image, tFile_IO * file_IO);
int fLib_CloseFile(tFILE *file, tFile_IO * file_IO);

7.8.5 Executing an image

This process is very similar to the image read, but instead of copying to memory a
then to a file, the image is copied to memory only if specified, and then processor
control is passed to the image. Example 7-10 shows how these actions are perfor

Example 7-10 Executing

int fLib_FindImage(tFooter **list, unsigned int imageNo, tFooter *foot);
int fLib_VerifyFooter(tFooter *foot, tFlash *flash);
int fLib_ReadImage(tFooter *foot, tFlash *flash);
int fLib_ChecksumImage(tFooter *footer, unsigned32 *image_sum);
int fLib_ExecuteImage(tFooter *foot);
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 7-43

Flash Library Specification

nd

the
d is
s.
7.9 Rebuilding the flash library

Use the project files or makefiles to rebuild the flash library.

7.9.1 PC project files

You can build the flash library with SDT 2.5 project manager files (.apj) or ADS 1.0
CodeWarrior project files (.mcp).

7.9.2 Unix makefile

The CD has a makefile for use on a Unix workstation.

There is a makefile for rebuilding the flash library for a single development board a
processor combination. For example, if you copiedunix/source contents to/AFS use
/AFS/source/Integrator/FlashLibrary/Build/Integrator.b/makefile

to rebuild the library for the Integrator board with an ARM940T processor.

You must maintain the hierarchy of the CD directories when you copy the files from
CD to your workstation. The makefile defines ROOT as the root of the build tree an
needed bymk. TOOLS is the tools directory that contains build tools of various kind

For general information on makefiles and directory structure, seeAFS source structure
on page 11-4.
7-44 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

Chapter 8-
Using the ARM Flash Utilities

This chapter discusses the operation of utilities for accessing flash memory.

TheARM Flash Utility(AFU) provides functions for accessing the flash library as
described in Chapter 7Flash Library Specification.

TheARM Boot Flash Utility(BootFU) provides functions for programming the boot
and FPGA areas of flash memory.

This chapter contains the following sections:

• About the AFUon page 8-2

• Starting the AFUon page 8-3

• AFU commandson page 8-4

• The Boot Flash Utilityon page 8-21

• BootFU commandson page 8-23.

See also Chapter 4ARM Boot Monitorand Chapter 7Flash Library Specificationfor
additional information about images in flash memory.
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 8-1

Using the ARM Flash Utilities

ses
ode
his

e.

sh
8.1 About the AFU

The AFU is an application for manipulating and storing data within a system that u
the flash library. It is a target-based application designed to allow you to download c
onto an ARM development system, maintaining the ARM Flash Library structure. T
enables you to use ARM boot systems to run the code on the board.

The AFU can handle the following formats:

• ELF

• relocatable AIF

• fixed AIF

• plain binary

• Motorola S-record format.

The AFU performs the following functions:

1. Reads the files from a host system.

2. Analyzes the required location (if applicable).

3. Writes the code image into the correct location in memory.

4. Strips the file header from the image and stores it immediately after the imag
This allows full reconstruction of the file where possible.

5. Adds an image information block after any file header information to allow fla
library-aware drivers to identify and run the code segments.

6. Stores the flash footer block at the subsequent block boundary to the image
information block. This allows for quick image search routines.
8-2 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

Using the ARM Flash Utilities

ss.
y

8.2 Starting the AFU

The AFU is designed to run within an ARM debug environment such as the ARM
Multi-ICE server and theARM Debugger for Windows(ADW) environment. The target
processor must be configured to run without caches. To set up and run the AFU:

1. Start up a debug session for the board requiring flash download and load the
imagearmfu.axf .

2. Ensure the console window is active. If it is not, selectConsolefrom theView
menu.

3. Run the code by pressing F5, or by typinggo in the command window, or by
clicking on theGO icon.

The console window appears in the foreground and becomes active, with the AFU
header similar to the following:

ARM Firmware Suite
Copyright (c) ARM Ltd 1999-2000. All rights reserved.

ARM Flash Utility
Program Version 1.0
Date: 29 Jan 2000

The AFU scans for flash components and default to the device at the lowest addre
After the flash device is selected, the AFU scans the flash for any images currentl
programmed.

User interface is signaled by the AFU promptAFU>. This indicates that you can operate
the AFU.
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 8-3

Using the ARM Flash Utilities

ted by

ing.
nd
8.3 AFU commands

This section describes each of the command-line entries the AFU can accept. It
describes the parameters required by the command, and shows the output genera
the AFU. Table 8-1 lists the AFU commands.

8.3.1 User command explanation

The AFU has a very basic command interpreter with parsing for fast command typ
There is no command-line buffering. You have to reenter in full any incorrect comma
input.

Table 8-1 AFU commands

Command
Short
form

Description

List on page 8-5 L Lists image footers

DiagnosticListon page 8-6 dia Examines flash blocks for possible
problems

TestBlockon page 8-11 t Tests the integrity of the block

Deleteon page 8-12 delete Deletes a full image from flash

DeleteBlockon page 8-12 delete Deletes a specified block

DeleteAllon page 8-13 deletea Erases all flash blocks

Programon page 8-13 p Takes an image from a host computer
and places it in flash

Readon page 8-17 r Takes an image from memory and
stores it on the host computer

Quit on page 8-17 q Quits the current AFU session

Help on page 8-17 h Displays the AFU command
summary

Identifyon page 8-18 i Identifies the current active flash
device

Swapon page 8-19 s Allows you to change between the
different FLS flash devices
8-4 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

Using the ARM Flash Utilities

t the

e

The syntax of the commands shown inAFU commandson page 8-4 shows both the full
command and the minimum character(s) required for the AFU parser to run the
command (denoted by the underscore symbol).

8.3.2 List

When the AFU scans the memory, it creates a list of recognized footers throughou
memory block. TheList command shows this list, and other information, from the
image footers and image information.

Syntax

List

Output

The list is formatted as shown in Table 8-2.

Table 8-2 Output format of list

Name Format Explanation

Image n The specific image number you must enter when uploading and programming the
image. This number will be unique in flash memory.

Block n The start block of the image.

End block n The final block of the image that contains, at least, the five word footer.

Address 0x hhhhhhhh The address of the start of the image in memory. This address corresponds with th
start of the start block.

Exec 0x hhhhhhhh The execution address of the image in memory. This might not be within the flash
memory boundaries if the image is to be copied to another memory location.

Name text The textual name given to the image when programming into memory.
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 8-5

Using the ARM Flash Utilities

ock

an
e

f

Example

In Example 8-1, the only image in the memory system is a single block image at bl
17 calledhello , where the entry point is at the start of the image.

Example 8-1 List command

AFU>List
Image 1 Block 17 End Block 17 address 0x24220000 exec 0x24220000 - name hello

8.3.3 DiagnosticList

This command has multiple functions to allow examination of the flash blocks to sc
for possible problems. This command will rarely be used in normal operation of th
AFU.

Syntax

dia gnosticlist {a ll |s ection b n |f ooter b n |d ump bn}

where:

all Scans through every block in the current device. Outputs the usage o
each block, as shown in Table 8-3.

If the image spans multiple blocks, each block is listed as used by the
same image number and image name.

Table 8-3 Output format of Diagnostic List All

Name Format Explanation

Block n The start block of the image.

Image number n The specific image number you must enter when uploading
and programming the image. This number will be unique in
flash memory.

Type n The image type value, taken from the footer information.

Image text The textual name given to the image when programming
into memory.
8-6 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

Using the ARM Flash Utilities

r.

e

The AFU can only recognize blocks that have been programmed to
conform to the flash library specification (seeImage managementon
page 7-8).

The list will only show images that have the correct flash image foote
Any images not conforming to this are not shown, and the blocks
occupied by these are marked as unused.

TheDiagnosticList all command (and the following
DiagnosticList section command) indents the used blocks to
ensure that they can be noticed. This is useful when the list is rapidly
scrolling down the console window.

section b n

Presents a list of identical format toDiagnosticList All , but only
lists the ten subsequent flash blocks after the user input start blockn,
wheren is a logical flash block number.

f ooter b n

Shows the footers of the subsequent five blocks after the input block
numbern, wheren is a logical flash block number, formatted to describ
the displayed information, as shown in Table 8-4.

Table 8-4 Output format of DiagnosticList footer

Name Format Explanation

Block n The start block of the image, wheren is a logical flash
block number.

Address 0x hhhhhhhh The address of the start of the image in memory. This
address will correspond with the start of the start block.

infoBase 0x hhhhhhhh The address of the image information block in memory,
that will be at the end of the image.

blockBase 0x hhhhhhhh The address of the start of the image in flash memory.

Signature 0x hhhhhhhh A unique word value to distinguish the footer from any
code to allow for faster search operations.

Type 0x hhhhhhhh The image type as defined in the fileflash_lib.h .

Checksum 0x hhhhhhhh The logical inverse of the word sum of the preceding four
words
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 8-7

Using the ARM Flash Utilities

ed
reas

s

rst
ck.
TheDiagnosticList Footer command does not only list valid footer
information, but it also lists any data found in the footer area of the list
blocks. You must analyze the data given to see the valid footers, the a
of code, and the unused blocks.

dump bn Produces a hexadecimal dump of the first four words of the ten block
following the input block numbern (wheren is a logical flash block
number), as shown in Table 8-5. TheDiagnosticList Dump command
makes block-based (not image-based) selections, and displays the fi
four words of each block in the selected area starting at the input blo

Examples

The following examples (Example 8-2 to Example 8-5 on page 8-11) demonstrate
usage of eachDiagnosticList command.

Example 8-2 DiagnosticList all command

AFU>DiagnosticList All
Block Number 0 unused

Block 1 Image Number 1 type 1 Used by image hello_world
Block 2 Image Number 2 type 1 Used by image dhrystone
Block 3 Image Number 2 type 1 Used by image dhrystone

Block Number 4 unused
Block Number 5 unused
Block Number 6 unused
Block Number 7 unused
.
.
.
Block Number 255 unused

Table 8-5 Output format of DiagnosticList dump

Name Format Explanation

Block n The block number for the data being listed.

Address 0x hhhhhhhh The address of the first word being listed, that will
correspond with the block number shown.
8-8 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

Using the ARM Flash Utilities

is
Example 8-3 DiagnosticList footer command

AFU>DiagnosticList Footer B1
Footer for Block 1 at Address 0x24020000
infoBase : 0x2402330c
blockBase : 0x24020000
signature : 0xa00fff9f
type : 0x00000001
checksum : 0x0beddde0

Footer for Block 2 at Address 0x24040000
infoBase : 0x0a0000f0
blockBase : 0xe3570078
signature : 0x0a0000ae
type : 0x00000001
checksum : 0xe5940000

Footer for Block 3 at Address 0x24060000
infoBase : 0x2404330c
blockBase : 0x2404f000
signature : 0xa00fff9f
type : 0x00000001
checksum : 0x0be5fde0

Footer for Block 4 at Address 0x24080000
infoBase : 0xffffffff
blockBase : 0xffffffff
signature : 0xffffffff
type : 0xffffffff
checksum : 0xffffffff

Footer for Block 5 at Address 0x240a0000
infoBase : 0xffffffff
blockBase : 0xffffffff
signature : 0xffffffff
type : 0xffffffff
checksum : 0xffffffff

where:

Block 1 Is a correct footer because the signature is valid, and theinfoBase and
BlockBase are within the bounds of the image address (similar to the
block address).

Block 2 Is either some random code of an image that spans two blocks (in th
case), or a block that does not conform to the library specification.
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 8-9

Using the ARM Flash Utilities
Block 3 Is the footer for block 2 and block 3 (blockBase shows the start of the
image).

Block 4 Is unused.

Block 5 Is unused.

Example 8-4 DiagnosticList dump command

AFU>DiagnosticList dump B1
Block 1
Address 0x24020000 : 0xe59f0034 0xe59f1034 0xe59f3034 0xe1500001

Block 2
Address 0x24040000 : 0xffffffff 0xffffffff 0xffffffff 0xffffffff

Block 3
Address 0x24060000 : 0xe59f0034 0xe59f1034 0xe59f3034 0xe1500001

Block 4
Address 0x24080000 : 0xffffffff 0xffffffff 0xffffffff 0xffffffff

Block 5
Address 0x240a0000 : 0xffffffff 0xffffffff 0xffffffff 0xffffffff

Block 6
Address 0x240c0000 : 0xffffffff 0xffffffff 0xffffffff 0xffffffff

Block 7
Address 0x240e0000 : 0xffffffff 0xffffffff 0xffffffff 0xffffffff

Block 8
Address 0x24100000 : 0xffffffff 0xffffffff 0xffffffff 0xffffffff

Block 9
Address 0x24120000 : 0xffffffff 0xffffffff 0xffffffff 0xffffffff

Block 10
Address 0x24140000 : 0xffffffff 0xffffffff 0xffffffff 0xffffffff
8-10 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

Using the ARM Flash Utilities

ing
ads

h
-6
Example 8-5 DiagnosticList section command

AFU>DiagnosticList Section B1
Block 1 Image Number 1 type 1 Used by image hello_world
Block 2 Image Number 2 type 1 Used by image dhrystone
Block 3 Image Number 2 type 1 Used by image dhrystone

Block Number 4 unused
Block Number 5 unused
Block Number 6 unused
Block Number 7 unused
Block Number 8 unused
Block Number 9 unused
Block Number 10 unused

8.3.4 TestBlock

This command tests the integrity of the block under test by writing a continually vary
stream of words to the block and then reading the block out, and comparing the re
with the original data, displaying eitherpass or fail for the block.

TheTestBlock command initially checks for data in the block conforming to the flas
library specification, and does not allow any testing over a valid image. Example 8
shows the response to the command.

The block number must be included in the command line.

Syntax

t estblock b n

where:

n is the logical block number to be tested.

Example 8-6

AFU> TestBlock B200
Do you really want to do this (Y/N)? y
deleting block 200
Writing test pattern to block 200
Reading test pattern from block 200
Flash test of block 200 worked
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 8-11

Using the ARM Flash Utilities

ed.
mber

of
is a

.

8.3.5 Delete

TheDelete command deleted the full image from flash memory as selected. Once
deleted, it cannot be retrieved. There is a final check to ensure the action is requir
Example 8-7 shows the response to the command. You must input a valid image nu
or no action will be taken.

Syntax

delete n

where:

n Is the image number of the full image to be deleted.

Example 8-7

AFU> Delete 4
Do you really want to do this (Y/N)? y
Scanning Flash blocks for usage

Deleting flash image 4
Scanning Flash blocks for usage

8.3.6 DeleteBlock

This command deletes the specified block input on the command line, irrespective
any FLS images in flash. Example 8-8 shows the response to the command.There
final user check to ensure the action was intended.

Caution
If used incorrectly, this command might damage images that span multiple blocks

Syntax

delete block B n

where:

n Is the number of the specific block to be deleted.
8-12 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

Using the ARM Flash Utilities

that
and.

T

ory

er.

age
age
the
Example 8-8

AFU> DeleteBlock B17
Do you really want to do this (Y/N)? y
Delete flash block 17
Scanning Flash blocks for usage

8.3.7 DeleteAll

This command erases all flash blocks, excluding block 255. This exclusion ensures
any SIBs being used remain intact. Example 8-9 shows the response to the comm

TheDeleteAll action takes two minutes to complete on an ARM Integrator/CM920
board.

Syntax

deletea ll

Example 8-9

AFU> deletea
Do you really want to do this (Y/N)? y
Deleting flash blocks:
This takes approximately 2 minutes

AFU>

8.3.8 Program

This command takes an image from a host computer and places it in the flash mem
location that conforms with the flash library specification (seeImage managementon
page 7-8). A footer and image information block appended to the image and head

The AFU analyzes the input file, and tries to ascertain the storage address and im
type from the file. If the image type is unrecognized, the AFU defaults to binary stor
and store the image either directly in the location defined in the command line, or in
lowest available space within the flash blocks.
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 8-13

Using the ARM Flash Utilities

ken

g
ere

d

e

e

al

ed.

ath
rect

sh
If the start location is omitted from the command input, the AFU uses the address ta
from the header, or, if this is not available, the AFU will search for the lowest space
large enough to house the image. The AFU always shows where the image is bein
stored (in block numbers). If the image executes from RAM, it can be placed anywh
in flash and the boot switcher will move it to RAM when it is run.

If the AFU discovers that the storage block is unavailable, it displays a warning an
return. The AFU will not destroy any data found at the required address.

There is no restriction to the programming address of the image. The image can b
programmed to start anywhere within a block.

The AFU will check for the image number input already in use, and will not allow th
programming to take place if there is a duplication.

If there is an error in the command line, the complete command must be retyped.

Syntax

program n name path \ filename [location] [noboot]

where:

n Is the unique number of the image to be programmed. This is a logic
number and in not related to the order of the images in flash.

name Is the name, up to 16 characters, to identify the image being programm
It does not need to be unique.

path \ filename

Is the path to the required file being programmed into the flash. The p
and filename are retrieved using semihosting, so they must be the cor
format for the host system.

[location]

Is the optional address, or block number, of the start of the image in fla
memory, using one of the following formats:

• decimal base address

• hexadecimal base address

• block number specified asBn, wheren is a logical flash block
number.

noboot Is an optional flag to indicate to a boot switcher not to boot from this
image.
8-14 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

Using the ARM Flash Utilities

ue

e

Examples

In Example 8-10, a large image is programmed into a clean flash device. The uniq
image number is entered as0, and is namedLarge_Image . The image is retrieved from
an MSDOS system (a backslash is used), and the file is namedlarge.bin .

In this case, the image start address is omitted. The input file is ELF (.axf), so the AFU
reads the start address from the image. The AFU shows that it has searched for th
space, and gives the address and block number for storage.

As the image spans the blocks, the progress is shown. Finally, the flash device is
scanned to update the image list, the new image is seen with theList command.

Example 8-10 Program Image command (large file)

AFU> Program 0 Large_Image d:\large.axf

Lowest available flash at location 0x24000000 block B0
The image load address is 0x24000000
Programming Block B0
Programming Block B1
Programming Block B2
Programming Block B3
Programming Block B4
Programming Block B5
Programming Block B6
Programming Block B7
Programming Block B8
Programming Block B9
Programming Block B10
Programming Block B11
Programming Block B12
Programming Block B13
Programming Block B14
Programming Block B15
Scanning Flash blocks for usage

AFU> list
Listing images in Flash
Image 0 Block 0 End Block 16 address 0x24000000 exec 0x24000000
- name Large_Image
AFU>
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 8-15

Using the ARM Flash Utilities

rch
ge is

nd
is

is

that
ith
,
elete
In Example 8-11, a small file is programmed into Block 18. The AFU does not sea
for available space because the location is specified in the command line. The ima
a binary file so there is no alternative storage address in the header.

Example 8-11 Program Image command (small file)

AFU> Program 2 small_file d:\small.bin B18
Programming Block B18
Scanning Flash blocks for usage

AFU>

In Example 8-12, the display shows there is a conflict between an existing image a
the execute address of a new image. The list shows that the lowest available block
Block 19, and that the user has tried to program thehello.axf file into this location.
The image is then compiled for a different location, and the file header conveys th
information.

The AFU prepares to insert the file at the correct execution address, but discovers
the block is being used (the block is part of Image 0). The AFU does not proceed w
the download, but shows the error with the first block number involved. In this case
you must investigate the clash and decide what to do (in this case, you must either d
Image 0 or recompilehello.axf).

Example 8-12 List the outcome of Program Image

AFU> List

Listing images in Flash

Image 0 Block 0 End Block 16 address 0x24000000 exec 0x24000000 - name Large_Image
Image 1 Block 17 End Block 17 address 0x24220000 exec 0x24220000 - name hello
Image 2 Block 18 End Block 18 address 0x24240000 exec 0x24240000 - name small_file
AFU> Program 3 AIF_Image d:\hello.axf B19
The image Load address is 0x24020000 from the header
There is not enough space for the image found at this location

As the image requires 0x00002f3c bytes
Please delete Block B1
AFU>
8-16 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

Using the ARM Flash Utilities

the
age

.

to
rrect

t

8.3.9 Read

This command takes an image from memory and stores it, in the original format, on
host computer. The original header is stored first, followed by the code body. The im
is stored directly intofilename on the host. The AFU does not alter the filename to
reflect the image type or add any extension.

The AFU halts the file storage if there are any problems detected by the host.

Syntax

r ead n filename

where:

n Is the unique number of the image to be stored on the host computer

filename Is the filename, with complete path, to the required file being written
the host computer. You must ensure that the path and filename are co
for the host system since they are stored using semihosting.

In Example 8-13, the imageHello is saved to the host system astest.tst . The file
is the exact copy of the original programmed file, inclusive of headers.

Example 8-13

AFU> r 1 d:\test.tst
Reading Block Number 17 of image hello

AFU>

8.3.10 Quit

This command quits the current AFU session. After you quit the session, you mus
restart the program.

Syntax

quit

8.3.11 Help

This command displays the AFU command summary.
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 8-17

Using the ARM Flash Utilities
Syntax

help

In addition toh, you can type? to display the command summary.

Example 8-14 shows the output from the Help command.

Example 8-14

AFU> Help
AFU command summary:

List - List images in flash
DiagnosticList <All> | <Section Bn> | <Footer Bn> | <Dump Bn> Bn = B<Block No.>

- Lists information stored in the Flash by block, footer or block start dump
TestBlock B<block-number>

- Write a test pattern to a particular flash block except block 255 (SIB Block)
Delete <image-number>

- Delete an image in flash
DeleteBlock B<block-number>

- Deletes a block that appears not to be in an image
DeleteAll

- Deletes all blocks except block 255 (SIB Block)
Program <image-number> <image-name> <file-name> [<address> |or| B<block_no>]
[noboot]

- Program the given image into flash at address, 0x<hex_addr> or block number
Read <image-number> <file-name>

- Read the given image from flash into a file
Quit

- Quit
Help

- Print this help text
Identify

- Identify Flash Type
Swap Device

- Change active flash device
AFU>

8.3.12 Identify

This command identifies the current active flash device. It displays the known
information (as shown at startup) for the currently selected (active) flash device.
8-18 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

Using the ARM Flash Utilities

e

ese

that
h. If
Syntax

i dentify

Example 8-15 shows the output from the Identify command.

Example 8-15

AFU> Identify
Current Active Flash device is :-
INTEL Flash device at 0x24000000 address : size 0x2000000
AFU>

8.3.13 Swap

This command allows you to change between the different FLS flash devices on th
system.

The AFU cannot operate with non-FLS storage devices such as a boot device. Th
might be listed, but they cannot be selected using theSwap Device command.

Syntax

swap

In Example 8-16 on page 8-20, the only two options available are a boot-type flash (
is not accessed by the AFU, and is therefore unavailable) and the INTEL type flas
1 is selected, an error message results, so2 is the only valid option.
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 8-19

Using the ARM Flash Utilities
Example 8-16

AFU> Swap
Searching for flash devices
Current flash devices found
1 . Boot type at address 0x00000000
2 . INTEL type at address 0x24000000
Please select active device by number....
2
Selected Flash Device
INTEL type at address 0x24000000
Scanning Flash blocks for usage

AFU>
8-20 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

Using the ARM Flash Utilities

a (the

oot
ta it

the

ecks
8.4 The Boot Flash Utility

TheARM Boot Flash Utility(BootFU) allows you to modify the specific boot flash
sector on the system.

Caution
The Boot Flash sector on the Integrator board contains important system setup dat
FPGA initialization data) as well as the boot monitor and switcher code.

Modification of the boot flash on the Integrator board always involves a complete b
flash chip erase prior to programming. If the flash is programmed with incorrect da
halts operation of the board. This is generally a catastrophic failure.

If a problem is found with the downloaded data, the BootFU options can halt
programming prior to erasing the flash device. This gives you a chance to backup
flash information.

In addition to diagnostic functions, BootFU can:

• update the whole boot area from an Intel hex file containing boot monitor and
FPGA data

• update only the boot monitor area

• update only the FPGA area.

8.4.1 File Types

BootFU accepts.aifbin , .elf , .bin , and.mcs files for the downloaded image,
although the filename and extension is not important because the BootFU code ch
the file type from the data records transferred.
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 8-21

Using the ARM Flash Utilities

e

8.4.2 Setup

BootFU must be loaded into the target system RAM to operate. This is usually don
using an ARM debugger, for example theARM Debugger for Windows(ADW):

1. Connect the debugger to the board requiring a boot update.

2. Use theLoad Image command to load thebootfu.axf into RAM at address
0x8000 .

3. Ensure the console window is active. If it is not, selectConsolefrom theView
menu.

4. Run the utility by pressingF5 or selectingExecute→Go.

The Console window shows a header message similar to:

ARM Firmware Suite
Copyright (c) ARM Ltd 1999-2000. All rights reserved.

Boot Flash Utility
Program Version 1.0
Date: 29 Jan 2000

The utility checks the available flash on the system and show the message:

Searching for flash devices
Flash device 1 found at 0x20000000 (4 blocks of size 0x20000)
Flash device 2 found at 0x24000000 (256 blocks of size 0x20000)
Device 1 found as Boot device
Scanning Flash blocks for usage

BootFU programs boot flash. Any flash not designated asBoot cannot be selected.

BootFU is ready for input when theBootFU> prompt is displayed. This is the input line
for any of the commands.
8-22 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

Using the ARM Flash Utilities
8.5 BootFU commands

You can enter the commands shown in Table 8-6 at theBootFU> prompt.

Table 8-6 Commands

Command
Short
form

Description

Help on page 8-24 h or ? Display commands

List on page 8-25 l Lists the images currently programmed into
flash

DiagnosticListon page 8-25 dia Lists the first four words of the selected
block or the selected block footer
information

Programon page 8-27 p Programs the boot flash

Readon page 8-29 r Upload an image to the host file system

Quit on page 8-29 q Quit the Boot Flash Utility

Identifyon page 8-30 i Identifies the current active flash device

Clear on page 8-30 c Deletes any backup images stored in the
system flash

Swapon page 8-30 s Reserved for future expansion
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 8-23

Using the ARM Flash Utilities
8.5.1 Help

You can see a summary of the commands by typinghelp , h or ?.

Syntax

help

Example 8-17 Help example

BootFU> ?
AFU command summary:

List - List images in flash
DiagnosticList <Footer Bn> | <Dump Bn> Bn = B<Block No.>

- Lists information stored in the Flash by footer
or block start dump

Program [i<image-number>] [*<image-name>] <file-name> [b<block_no>] [!]
- Program the given image into flash block number -

! means no boot backup
Read <image-number> <file-name>

- Read the given image from flash into a file
Quit - Quit
Help - Print this help text
Identify - Identify Flash Type
ClearBackup - Removes any Boot backup images from the main system flash
Swap Device - Change active flash device displayed as unformatted data.
8-24 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

Using the ARM Flash Utilities

a
t is
d.

he

on.

d
the
8.5.2 List

This command lists the images currently programmed into flash. If the image has
header, its information is displayed. If there is only unstructured data in the flash, i
displayed as unformatted data. Example 8-18 shows the response to the comman

Syntax

l ist

Example 8-18 List Example

BootFU> list
Block 0 Image Number 0 type 1 Used by image Boot_Monitor
Block 1 is unused
Block 2 Has unformatted data
Block 3 Has unformatted data

In Example 8-18, the boot monitor has footer information applied to it as Image1. T
FPGA setup data in the upper two blocks never has footer information applied.

If the entire boot area is programmed from Intel hex files, there is no footer informati
The listing only shows the programmed blocks as unformatted data.

8.5.3 DiagnosticList

The DiagnosticList command allows the listing of the first four words of the selecte
block or the selected block footer information. Example 8-19 shows the response to
command.

Syntax

dia gnosticList f b n |d b n

where:

n is the unique number of the block.

f lists the block footer of the selected block.

d dumps the first four words of the selected block.
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 8-25

Using the ARM Flash Utilities
Example 8-19 DiagnosticList Example

BootFU> dia f b0
Footer for Block 0 at Address 0x20000000
infoBase : 0xffffffff
blockBase : 0xffffffff
signature : 0xffffffff
type : 0xffffffff
checksum : 0xffffffff

Footer for Block 1 at Address 0x20020000
infoBase : 0xffffffff
blockBase : 0xffffffff
signature : 0xffffffff
type : 0xffffffff
checksum : 0xffffffff

Footer for Block 2 at Address 0x20040000
infoBase : 0xadffbfbf
blockBase : 0xff6fdff6
signature : 0x9ffeffdf
type : 0xfcffefef
checksum : 0xfffffffe

Footer for Block 3 at Address 0x20060000
infoBase : 0xb5deebb5
blockBase : 0xebb55feb
signature : 0x5bebb55e
type : 0xf8dafff5
checksum : 0xff847a08
8-26 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

Using the ARM Flash Utilities

oot
path

nly

d

x file.
8.5.4 Program

This is the most important command in the BootFU as it starts programming the b
flash. It is also potentially the most damaging. The command requires at least the
and filename parameters.

All of the options are position-independent but it is recommended that the binary-o
options are included for any binary downloaded files.

Syntax

program path filesep filename [b blnum] [i imnum] [* string] [!]

where:

path is the path to the file.

filesep is the file separator used on the host operating system.

filename is the name of the file.

blnum is the block number to be programmed.

imnum is the image number for the footer information (binary files only).

string is the name of the image for the footer information (binary files only).

! specifies not to backup the boot area.

Caution
The ! option speeds up the program time but does not allow downloa
problems or partial downloads to complete correctly. It should only be
used if you are sure about the file being downloaded.

Examples

Example 8-20 on page 8-28 shows a complete boot area program from an Intel he
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 8-27

Using the ARM Flash Utilities

ile.
em
Example 8-20 Program boot area

BootFU> program d:\test.mcs

* WARNING: re-programming the Boot Flash can cause the system *
* to cease operation - if the images are corrupted or *
* incorrect. Are you sure you wish to continue *

Do you really want to do this (y/N)? y
Image will be stored with no footer information
Backing up boot image
Boot Image backed up to board flash
Deleting Boot Flash area
Decoding and Writing .mcs type file
Scanning Flash blocks for usage
BootFU>

In Example 8-21 the boot monitor code in block 0 is being updated from a binary f
The system FPGA data is restored from the backup image stored in the main syst
flash.

Example 8-21 Program block 0

BootFU> program b0 i0 *Boot_Monitor d:\boot.bin

* WARNING: re-programming the Boot Flash can cause the system *
* to cease operation - if the images are corrupted or *
* incorrect. Are you sure you wish to continue *

Do you really want to do this (y/N)? y
Backing up boot image
Boot Image backed up to board flash
Deleting Boot Flash Area
Writing Binary type file
Programming Block B0
Restoring unprogrammed boot flash from Backup
Deleting Backup
Scanning Flash blocks for usage
BootFU>
8-28 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

Using the ARM Flash Utilities

te the

of

ot

d the
BootFU operation includes checks to ensure that the correct data is used to upda
image.

The standard operation of BootFU is usually either:

program path / filename .mcs

This is for the complete update of the boot flash.

program path / filename bni n* string

For updates, the identifier parameter is optional for image recognition
binary files.

Theno backupoption (!) is not recommended. It reduces the program time but it is n
as safe as backing up the data in the system flash.

8.5.5 Read

This command allows an image (specifying the image number asi number) or a block
(specifying the block number asbnumber) to be uploaded to the host file system. You
must add the path and filename parameters to the command. If block 0 is requeste
entire boot device is uploaded and saved. The output file is a pure binary file.

Syntax

r ead i n | b n

where:

n is the unique number of the image block.

i reads the selected image.

b reads the selected block.

8.5.6 Quit

This command quits the BootFU.

Syntax

quit
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 8-29

Using the ARM Flash Utilities

e

ed.
and

on
r

8.5.7 Identify

This command identifies the current active flash device. This displays the flash typ
(boot), device physical base address, and device size in bytes.

Syntax

i dentify

8.5.8 Clear

This command deletes any backup images stored in the system flash. The backup
images are automatically cleared by the utility when the boot flash is fully programm
Use this option if there has been a catastrophic (power) failure during programming
the backup file has not been removed. The clear command deletes all backup files
programmed into the system flash.

Syntax

clear

8.5.9 Swap

This command is reserved for future expansion where the BootFU might be used
systems with partitioned boot flash or multiple boot flash devices. For the Integrato
board this option is redundant as there is only one boot device to select.
8-30 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

Using the ARM Flash Utilities

lt.
ram:

ing
8.5.10 BootFU Warning messages

If a binary file is downloaded with no block number, it is placed at block 0 by defau
The warning message in Example 8-22 is displayed with the option to quit the prog

Example 8-22 Download warning message

* WARNING: A binary file has been input without specifying the *
* target block, if you wish to proceed the block number*
* will default to 0 - if not the boot sector flash will*
* be restored from the backup *

Do you really want to do this (y/N)?

If the downloaded file is a binary file and no backup has been requested, the warn
message in Example 8-23 will be displayed with an option to quit the program:

Example 8-23 Binary warning message

* WARNING: A binary file has been input without specifying the *
* target block, if you wish to proceed the block number*
* will default to 0 - if not the boot sector flash will*
* be restored from the backup *

Do you really want to do this (y/N)?
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 8-31

Using the ARM Flash Utilities
8-32 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

Chapter 9-
PCI Management Library

This chapter describes thePeripheral Component Interconnect(PCI) library and how
you can use it to configure PCI subsystems. Its contains the following sections:

• About PCIon page 9-2

• PCI configurationon page 9-4

• The PCI libraryon page 9-7

• PCI library functions and definitionson page 9-13

• About µHAL PCI extensionson page 9-15

• µHAL PCI function descriptionson page 9-16

• Example PCI device driveron page 9-23

• PCI initialization on Integratoron page 9-26

• Rebuilding the PCI libraryon page 9-37.
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 9-1

PCI Management Library

us.

and
s

9.1 About PCI

This section provides an introduction to the PCI terminology used in this chapter.
Figure 9-1 shows the major components of an example PCI system.

Figure 9-1 An example PCI system

The system features illustrated in Figure 9-1 are:

Host bus In this system, the CPU and host memory reside on the host b

Host bridge This is a device that allows transactions between the host bus
PCI bus to take place. These typically support a variety of read
and writes in both directions and might incorporate FIFOs to
support writes in both directions. The types of transactions
supported by the bridge are configurable.

Host
CPU

PCI
Host

Bridge
Video

PCI-PCI
Bridge

PCI-ISA
Bridge

Host
memory

Ethernet SCSI

Host bus

PCI bus 0

PCI bus 1
(e.g. CompactPCI)

Super I/O
controller

ISA bus

Upstream

Downstream

Upstream

Downstream
9-2 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

PCI Management Library

and

d

cted

rals)

ly,

us,

s

o

not
I

In the case of the ARM Integrator, there is an additional bridge
between the host bus and system bus to which the processors
memory connect. However, from the point of view of the PCI
functions, this bridge is transparent.

PCI-PCI bridge The electrical loading on a PCI bus is limited and there is a limite
number of devices that can be connected. To overcome this,
multiple PCI buses can be used. The different buses are conne
through PCI-PCI bridges. In this system, the PCI-PCI bridge
connects between bus 0 (used to access fast on-board periphe
and bus 1 (in this case is a CompactPCI backplane bus).

All devices connected to the PCI buses including bridges are
uniquely identified by the number of the bus to which they are
attached and the slot number they occupy on that bus. Typical
the CPU or host bridge is in slot 0.

In the case of a multi-function PCI device, such as a combined
sound and video device, each function is treated as a different
device. In order to uniquely address a PCI device, specify the b
slot, and function numbers for that device.

PCI-ISA bridge The PCI-ISA bridge provides support for legacy devices. In thi
example, a super input/output controller is used. The PCI-ISA
bridge translates PCI address cycles into ISA address cycles s
that the CPU can access the legacy devices on the ISA bus.

Primary bus In this system, PCI bus 0 is theprimary (or upstream)bus for the
PCI-PCI bus. The primary bus for a particular bridge is the bus
nearer to the host CPU that controls the system.

Secondary bus In this system, PCI bus 1 is thesecondary(or downstream) bus for
the PCI-PCI bridge.

The bus numbering is important. During initialization the bus
numbers are assigned by the CPU. However, device drivers do
differentiate when communicating with devices on different PC
buses.
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 9-3

PCI Management Library

CI

le

The
r

tion
CI
PCI
the
9.2 PCI configuration

This section provides a brief software-biased overview of PCI configuration. The P
library contains software to fully configure PCI subsystems. This includes:

• scanning and identifying PCI devices on local and bridged PCI buses

• assigning device resources in PCI memory and I/O space

• allocating interrupt numbers

• numbering the PCI-PCI bridges.

The PCI library uses services exported from the µHAL library to access the PCI
subsystem in a generic way (seeAbout µHAL PCI extensionson page 9-15).

The PCI component of the firmware base level contains the PCI library and examp
applications. See the sources for thescanpci application that initializes the PCI
subsystem and displays its topology. A sample device driver is also provided that
initializes the PCI bus and assigns interrupt handlers (seeExample PCI device driveron
page 9-23).

9.2.1 PCI address spaces

There are three PCI address spaces:

• configuration space

• I/O space

• memory space.

Configuration space

Each PCI device in the system has a 256-byte header in PCI configuration space.
contents of this header are specified by the PCI standard and defines, among othe
things:

• the device type

• the device manufacturer

• how much PCI I/O space the device requires

• how much PCI memory address space the device requires.

The address of a PCI Configuration header for a device is directly related to the loca
of the device in the PCI topology. The system initialization code must locate the P
devices in the system by looking at all of the possible PCI configuration headers in
Configuration space. The PCI configuration code is run by the host bridge. That is,
processor that owns PCI bus 0.
9-4 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

PCI Management Library

for
-5).
y

the
e
st and
To find the slot a PCI device is in, the CPU reads the first 32 bits of the PCI header
the device by issuing a Type 0 PCI Configuration Cycle, (see Figure 9-2 on page 9
Each slot is addressed by setting one of bits [31:11]. For example, slot 0 is found b
issuing a Type 0 PCI Configuration Cycle with bit 11 set high.

Figure 9-2 PCI Type 0 configuration cycle

The format of a PCI configuration header for a device is shown in Figure 9-3.

Figure 9-3 PCI configuration header

The device and vendor identifiers are unique and completely identify the maker of
PCI device and its type. In addition, the class code identifies the generic type of th
device (for example, video device). The Base Address Registers are used to reque
grant space in PCI I/O or memory spaces.

Device select Func Register

31 1110 8 7 2 1 0

00

Device ID

Status

Class code

BIST Header type Latency timer

Interrupt pin Interrupt line

Cache line size

Base address registers

Command

Vendor ID

31 16 15 0

0x3C

0x24

0x10

0x08

0x04

0x00
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 9-5

PCI Management Library

ble to

use

that
s.

CI
r PCI
t the

PCI

rget
bus.

o a

on

1 PCI
it
I/O space

PCI I/O space is used for small amounts of memory that the device makes accessi
the main processor. Typically, this contains registers within the device.

Memory space

PCI memory space is used for much larger amounts of memory. Video devices often
large amounts of PCI memory space.

9.2.2 PCI-PCI bridges

The PCI initialization code must recognize PCI-PCI bridges and configure them so
that addresses and data are passed between the upstream and downstream side

Except for the required initialization code, a PCI-PCI bridge is transparent to the P
devices in the system. When a PCI device is granted an address range in PCI I/O o
Memory space, software running on the host bridge does not know the PCI bus tha
device is connected to. PCI I/O and PCI Memory address spaces do not have a
hierarchy.

The PCI configuration code uses a Type 1 PCI Configuration Cycle for addressing
devices that are not on the primary bus (see Figure 9-4).

Figure 9-4 PCI Type 1 configuration cycle

The Type 1 Configuration cycle includes the bus number within the address.

The PCI-PCI bridges (between the host bridge and the final PCI bus to which the ta
device is attached) are responsible for passing the Type 1 cycle along to the next
The algorithm for this mechanism is:

• If the configuration cycle is for a device on the downstream bus, translate it t
Type 0 cycle.

• If the Configuration cycle is for a device beyond the downstream bus, pass it
to the next bridge unchanged (as a Type 1 cycle).

This means that the buses must be numbered in a particular order. When the type
configuration cycle reaches its destination bus, the final PCI-PCI bridge translates
into a Type 0 configuration cycle.

31 24 23 16 15 11 10 8 7 2 1 0

Reserved Bus Device select Func Register 0 1
9-6 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

PCI Management Library

in

rt

CI
ber

sses
ed.

rs
9.3 The PCI library

The PCI library code has three main functions:

• to initialize the PCI subsystem, that is, to identify the PCI devices and buses
the system and then assign them resources

• to locate PCI devices by device drivers

• to allow the PCI device drivers to control their devices.

9.3.1 Initializing the PCI subsystem

This is carried out in three phases:

1. Perform any host bridge initialization (using the system specific µHAL suppo
function).

2. Scan the local PCI bus for PCI devices. Some of the PCI devices found are
PCI-PCI bridges and, in this case, the PCI initialization code also scans for P
devices downstream of the PCI-PCI bridge. In doing this the code must num
the PCI buses.

3. Assign resources to the PCI devices. These resources are:

• areas of PCI I/O and PCI memory. PCI devices must be granted addre
in PCI I/O and PCI Memory space and those addresses must be enabl

• interrupt numbers. PCI devices must be given relevant interrupt numbe
that are meaningful to the device drivers in the application or operating
system.

9.3.2 Data structures

As the initialization code locates PCI devices, it builds aPCIDevice data structure
describing each one. These each have the format shown in Example 9-1.
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 9-7

PCI Management Library

s a
t.

a
f
ge
Example 9-1 Building data structures

/* A PCI device, the PCI configuration code builds a list of PCI devices */
typedef struct PCIDevice {

struct PCIDevice *next ; // next PCI device in the system (all buses)
struct PCIDevice *sibling ; // next device on this bus
struct PCIDevice *parent ; // this device's parent device Flags

struct {
unsigned int bridg e : 1 ; // This is a PCI-PCI bridge device
unsigned int spare : 15 ;
} flags ;
// This part of the structure is only relevant if this is a PCI-PCI bridge
struct {
struct PCIDevice *children ; // pointer to child devices of this PCI-PCI bridge

unsigned char number ; // This bus's number
unsigned char primary ; // number of primary bridge
unsigned char secondary ; // number of secondary bridge
unsigned char subordinate ; // number of subordinate buses

} bridge ;
// Vendor/Device is a unique key across all PCI devices.
unsigned short vendor ;
unsigned short device ;
// PCI Configuration space addressing information for this device
unsigned char bus ;
unsigned char slot ;
unsigned char func ;
} PCIDevice_t ;

The list is hierarchical, reflecting the PCI topology of the system. If the PCI device i
PCI bridge, itschildren pointer points at the first PCI device found downstream of i
Each PCI device is on two lists:

PCIroot Points at the host bridge

PCIDeviceList Points at all of the PCI devices in the system.

To find all of the PCI devices in the system, follow the address inPCIDeviceList

through the next pointer of eachPCIDevice structure.

Figure 9-5 on page 9-9 shows thePCIDevice structures for part of the example PCI
system.PCIRoot points at a host bridge that has two children (a PCI-ISA bridge and
PCI Video device).PCIDeviceList points first at the host bridge and then at each o
the PCI devices in the system. For simplicity, the parent pointer for the PCI-ISA brid
and video device is omitted from the figure.
9-8 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

PCI Management Library

stem

l use

CI
The storage space for these data structures is either statically allocated or, if the sy
supports it, allocated from µHAL heap storage.

Figure 9-5 PCI library data structure

NoteNote
These data structures are not exported beyond the PCI library, they are for interna
and must not be used outside the library.

9.3.3 Host bridge initialization

This function is board-specific and contained in the functionuHALir_PCIInit() .
This function initializes the PCI host and enables the PCI access functions and
primitives to function. This function is expected to be able to safely re-initialize the P
subsystem.

PCIDeviceList

PCIRoot PCIDevice_t

next

sibling

children

Host bridge

PCIDevice_t

next

sibling

children

PCI-ISA
bridge

PCIDevice_t

next

sibling

children

PCI video
device
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 9-9

PCI Management Library

his

ild

CI

ses
sed

n

PCI

s and

area
9.3.4 Scanning the PCI system

During scanning, the PCI initialization code:

1. Builds aPCIDevice data structure describing the host bridge.

2. Issues Type 0 configuration cycles looking for all of the devices attached to t
bus.

3. Builds aPCIDevice data structure for each device it finds and adds it as a ch
of bus 0 and intoPCIDeviceList .

If the device is a multi-function device (as indicated by the Header Type field of the P
Configuration Header), the scanning code creates onePCIDevice data structure for
each function.

If the device is a PCI-PCI bridge, the scanning code scans the downstream PCI bu
looking for more PCI devices and bridges. This depth-wise recursive algorithm is u
in order that the buses attached each PCI-PCI bridge can be correctly numbered.

The scanning phase is complete when:

• the PCI library has a built tree ofPCIDevice data structures that describe the
topology of the PCI subsystem

• the PCI buses have been numbered.

9.3.5 Assigning resources to PCI devices

The next phase is to assign areas of PCI I/O and PCI Memory and, if necessary, a
interrupt number to each of the PCI devices in the system.

PCI-PCI bridges must be configured to allow downstream accesses of PCI I/O and
Memory for those devices attached to their secondary PCI bus.

Assigning PCI I/O and Memory areas

The PCI Configuration header for each device contains a number ofBase Address
Registers(BARs). These describe the type of PCI address space the device require
how much it requires. The device initialization code requests this information by
writing 1s to all bits of each BAR in the device and reading back the result.

If the device returns a nonzero value, the PCI initialization code must assign it an
of PCI I/O or PCI Memory space according to the value of bit 0. If bit 0 is:

0 the request is for PCI I/O space.

1 the request is for PCI memory space.
9-10 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

PCI Management Library

uested

d. For

the
ch
d
idge.

CI
ing
aces.
ond

pt
CI
ce
The PCI library assigns the next area of the address space that the device has req
and enables access to that type of memory (using the Command field of the PCI
Configuration Header).

The location of a device is defined by writing the assigned address back to the
appropriate BAR. Figure 9-6 shows the format of PCI Memory space addresses.

Figure 9-6 Base address for PCI Memory space

Figure 9-7 shows the format of PCI I/O space address.

Figure 9-7 Base address for PCI I/O space

The PCI configuration code ensures that assigned addresses are naturally aligne
example, if a PCI device requests0x40000 bytes of PCI Memory, they align the
allocated address on a0x40000 byte boundary.

PCI-PCI bridges pass PCI Memory and PCI I/O cycles from their upstream side to
downstream side if the address is assigned to one of the downstream devices. Ea
PCI-PCI bridge stores two pairs of addresses in its BARs that define the upper an
lower bounds of the PCI Memory and PCI I/O address spaces downstream of the br

Access to these two spaces must be enabled by using the command field of the P
Configuration header. All PCI I/O and PCI memory addresses downstream, includ
those beyond any downstream PCI-PCI bridges, must be assigned within these sp
Address assignment is carried out using a recursive algorithm with addresses bey
the farthest bridges being assigned first.

Assigning interrupt numbers

The PCI specification describes the function of the interrupt line field of the PCI
configuration header as operating system dependent, but intended to pass interru
routing information between the operating system and the device driver. During P
initialization, the PCI set-up code writes a value into the field. Later, when the devi

Base address

31 234 1 0

0P Type

P = prefetchable

Base address

31 2 1 0

1R

R = reserved
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 9-11

PCI Management Library

,
red,

ber
gree

sed
pin

s
ther

n the
idge.

on

t pin

l pin
driver initializes the device, it reads the value and passes it to the operating system
requesting an interrupt when the triggering event occurs. When an interrupt is trigge
the operating system must route the interrupt to the correct device driver.

Typically, this value is an offset into theProgrammable Interrupt Controller(PIC). For
example, the value 5 would mean bit 5 of the PIC. It is not important what the num
is, but the operating system interrupt handling code and the PCI setup code must a
on the meaning.

Each PCI device has four interrupt pins labelled A, B, C, and D. The interrupt pin u
by a device is defined in the PCI configuration header for the device in the interrupt
field. The routing of interrupts between slots and the interrupt controller is entirely
system specific. For this reason, the PCI library uses a board-specific function,
uHALir_PCIMapInterrupt() , to find out how interrupts are routed on a particular
board.

The interrupt controller might have as few as four PCI interrupts (one per pin) or a
many as (number of slots x 4). PCI interrupts might be shared by other devices. In o
words, they must allow for their interrupt handler being called with no work to do.

Interrupts from downstream devices are routed through each bridge. Depending o
slot number of the device, the interrupt pin might be transposed as it crosses the br
For example, a PCI device interrupting on downstream pin B basic can cause pin C
the upstream side of the bridge to be asserted. The algorithm for working out the
upstream interrupt pin that is asserted given a downstream slot number and interrup
is:

upstream_pin = (((downstream_pin - 1) + slot) % 4) + 1

where Pin A is 1, B is 2, C is 3, and D is 4. A value of 0, means default (Pin A).

The PCI initialization code applies this algorithm once for each PCI-PCI bridge
between the PCI device and the host bridge. When it reaches bus 0, it takes the fina
number and the slot number of the PCI-PCI bridge and calls
uHALir_PCIMapInterrupt() to return the interrupt number for the device.

9.3.6 Rebuilding the PCI library

Use the makefile in the PCI subdirectory of the source directory for your board to
rebuild the library. For example, use
unix\source\Integrator940T\Pci\makefile to rebuild the library for the
Integrator board using the 940T processor.

For general information on makefiles and directory structure, seeBuilding the µHAL
library on page 2-8.
9-12 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

PCI Management Library

l

ing
e

ice
9.4 PCI library functions and definitions

The PCI library provides three functions and a number of definitions. These are al
contained inPCI/Sources/pcilib.h . The PCI library is also used within the boot
monitor component. Currently the PCI Library functions on the EBSA-285
(StrongARM-based evaluation board) and on ARM Integrator systems.

The functions are described in

• PCIr_Init(void)

• PCIr_ForEveryDevice

• PCIr_FindDevice

• PCI definitionson page 9-14.

9.4.1 PCIr_Init(void)

This function initializes the PCI subsystem by calling the system-specific
uHALir_PciInit() function.

Syntax

void PCIr_Init(void)

9.4.2 PCIr_ForEveryDevice

This function calls the given function once for every PCI device in the system pass
the bus, slot, and function numbers for the device. No ordering of devices should b
assumed

Syntax

void PICir_ForEveryDevice (void (action) (unsigned int ,
unsigned int , unsigned int))

9.4.3 PCIr_FindDevice

This function finds a particular instance of the PCI device given its vendor and dev
identifier.

Syntax

int PCIr_FindDevice(unsigned short vendor ,
unsigned short device ,
unsigned int instance , unsigned int * bus ,
unsigned int * slot , unsigned int * func)
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 9-13

PCI Management Library

ary.
where:

vendor is the vendor identifier.

instance is the instance number.

device is the device identifier.

bus is the PCI bus to which the device is attached.

slot is the slot number of the device.

func is the function of the device.

Return value

0 If it has found the device. The bus, slot, and function number for the
device is set up.

nonzero There is not an Nth instance of such a device.

9.4.4 PCI definitions

There are a number of system-specific PCI definitions that are used by the PCI libr
These are listed in Table 9-1.

Table 9-1 PCI definitions

Definition Function

UHAL_PCI_IO The local bus address that PCI I/O space has been
mapped to

UHAL_PCI_MEM The local bus address that PCI Memory space has
been mapped to

UHAL_PCI_ALLOC_IO_BASE The address in PCI I/O space that the PCI address
allocation should start allocating from

UHAL_PCI_ALLOC_MEM_BASE The address in PCI Memory space that the PCI
address allocation should start allocating from

UHAL_PCI_MAX_SLOT The maximum number of PCI slots available on PCI
bus 0
9-14 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

PCI Management Library

to

e
at
ry.

ese
PCI
ed

nal

he
9.5 About µHAL PCI extensions

The ARM Firmware PCI library is independent of the particular system that it is
running on. This means that it relies on board-specific code within the µHAL library
initialize the PCI subsystem.

The µHAL PCI extensions provide the following functionality to the PCI library:

Host bridge initialization

This system-dependent initialization is usually performed at
system startup and involves setting up the host bridge interfac
(for example the V360EPC chip on the Integrator system) so th
the generic PCI library can access all three areas of PCI memo
This code is held inuHAL\Boards\<board>\board.c and
uHAL\Boards\<board>\driver.s .

Access primitives Access primitives allow access to the PCI memory spaces. Th
are functions and C macros that allow code to access areas of
memory without knowing how these areas of memory are mapp
to and from local bus memory.

Each PCI supporting target must supply a set of functions that
allow access to the three PCI address spaces. Within these
functions the target software might need to perform
system-specific operations. This system-specific code is exter
to the PCI library. The set of functions that are supplied as
board-specific code (in
uHAL\Boards\<board-name>\board.c) are described later in
this section.

Interrupt routing Each PCI supporting board must supply a function that returns t
interrupt number that is associated with the given PCI slot and
interrupt pin. This information is used by the PCI library as it
assigns resources to individual PCI devices.

PCI resource allocation

The µHAL library for a PCI supporting board exports code and
definitions in the µHAL definition fileuHAL\h\uhal.h .
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 9-15

PCI Management Library

the

ore
9.6 µHAL PCI function descriptions

The standard µHAL library for a particular system includes system-specific PCI
extensions to µHAL and system-specific initialization code. This section describes
following µHAL PCI functions:

• uHALir_PCIInit

• uHALr_PCIHoston page 9-16

• uHALr_PCICfgRead8on page 9-17

• uHALr_PCICfgRead16on page 9-17

• uHALr_PCICfgRead32on page 9-18

• uHALr_PCICfgWrite8on page 9-18

• uHALr_PCICfgWrite16on page 9-19

• uHALr_PCICfgWrite32on page 9-19

• uHALr_PCIIORead8on page 9-19

• uHALr_PCIIORead16on page 9-20

• uHALr_PCIIORead32on page 9-20

• uHALr_PCIIOWrite8on page 9-20

• uHALr_PCIIOWrite16on page 9-21

• uHALr_PCIIOWrite32on page 9-21

• uHALir_PCIMapInterrupton page 9-21.

9.6.1 uHALir_PCIInit

This function initializes the host bridge, for example the V360EPC chip on the
Integrator. This board-specific code is not normally called by an application (theref
it has auHALir prefix). Rather, it is called by the PCI library initialization code
PCIr_Init() .

Syntax

void uHALir_PCIInit(void)

9.6.2 uHALr_PCIHost

This function tests the board for PCI support.

Syntax

unsigned char uHALr_PCIHost(void)
9-16 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

PCI Management Library
Returns

TRUE If the system supports PCI.

FALSE Otherwise.

9.6.3 uHALr_PCICfgRead8

This function reads 8 bits from PCI Configuration space.

Syntax

volatile unsigned char uHALr_PCICfgRead8(
unsigned int bus , unsigned int slot ,
unsigned int func , unsigned int offset)

where:

bus is the PCI bus to which the device is attached.

slot is the slot number of the device.

func is the function of the device.

offset is the register offset of the device.

Returns

The 8-bit char from the configuration space.

9.6.4 uHALr_PCICfgRead16

This function reads 16 bits from PCI Configuration space.

Syntax

volatile unsigned short uHALr_PCICfgRead16(
unsigned int bus , unsigned int slot ,
unsigned int func , unsigned int offset)

where:

bus is the PCI bus to which the device is attached.

slot is the slot number of the device.

func is the function of the device.

offset is the register offset of the device.
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 9-17

PCI Management Library
Returns

The 16-bit short from the configuration space.

9.6.5 uHALr_PCICfgRead32

This function reads 32 bits from PCI Configuration space.

Syntax

volatile unsigned int uHALr_PCICfgRead32(unsigned int bus ,
unsigned int slot , unsigned int func ,
unsigned int offset)

where:

bus is the PCI bus to which the device is attached.

slot is the slot number of the device.

func is the function of the device.

offset is the register offset of the device.

Returns

The 32-bit word from the configuration space.

9.6.6 uHALr_PCICfgWrite8

This function writes 8 bits to PCI Configuration space.

Syntax

void uHALr_PCICfgWrite8(unsigned int bus , unsigned int slot ,
unsigned int func , unsigned int offset ,
unsigned char data)

where:

bus is the PCI bus to which the device is attached.

slot is the slot number of the device.

func is the function of the device.

offset is the register offset of the device.

data is the data written to the device.
9-18 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

PCI Management Library
9.6.7 uHALr_PCICfgWrite16

This function writes 16 bits to PCI Configuration space.

Syntax

void uHALr_PCICfgWrite16(unsigned int bus ,
unsigned int slot , unsigned int func ,
unsigned int offset , unsigned short data)

where:

bus is the PCI bus to which the device is attached.

slot is the slot number of the device.

func is the function of the device.

offset is the register offset of the device.

data is the data written to the device.

9.6.8 uHALr_PCICfgWrite32

This function writes 32 bits to PCI Configuration space.

Syntax

void uHALr_PCICfgWrite(unsigned int bus , unsigned int slot ,
unsigned int func , unsigned int offset ,
unsigned int data)

where:

bus is the PCI bus to which the device is attached.

slot is the slot number of the device.

func is the function of the device.

offset is the register offset of the device.

data is the data written to the device.

9.6.9 uHALr_PCIIORead8

This function reads 8 bits from PCI I/O space.

Syntax

volatile unsigned char uHALr_PCIIORead8(unsigned int offset)
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 9-19

PCI Management Library
where:

offset is the address.

Returns

The 8-bit char from the I/O space.

9.6.10 uHALr_PCIIORead16

This function writes 16 bits from PCI I/O space.

Syntax

volatile unsigned short uHALr_PCIIORead16(unsigned int offset)

where:

offset is the address.

Returns

The 16-bit short from the I/O space.

9.6.11 uHALr_PCIIORead32

This function reads 32 bits from PCI I/O space.

Syntax

volatile unsigned int uHALr_PCIIORead32(unsigned int offset)

where:

offset is the address.

Returns

The 32-bit int from the I/O space.

9.6.12 uHALr_PCIIOWrite8

This function writes 8 bits to PCI I/O space.

Syntax-

void uHALr_PCIIOWrite8(unsigned int offset , unsigned char data)
9-20 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

PCI Management Library

pt

er
where:

offset is the register offset of the device.

data is the data written to the device.

9.6.13 uHALr_PCIIOWrite16

This function writes 16 bits to PCI I/O space. The address is given by theoffset
argument.

Syntax

void uHALr_PCIIOWrite16(unsigned int offset ,
unsigned short data)

where:

offset is the register offset of the device.

data is the data written to the device.

9.6.14 uHALr_PCIIOWrite32

This function writes 32 bits to PCI I/O space. The address is given by theoffset
argument.

Syntax

void uHALr_PCIIOWrite32(unsigned int offset , unsigned int data)

where:

offset is the register offset of the device.

data is the data written to the device.

9.6.15 uHALir_PCIMapInterrupt

This function returns the interrupt number associated with this PCI slot and interru
pin.

Syntax

unsigned char uHALir_PCIMapInterrupt(unsigned char pin ,
unsigned char slot)

where:

pin is the bit position of the interrupt in the programmable interrupt controll
for the system.
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 9-21

PCI Management Library
slot is the slot number of the device.

Returns

The interrupt number as an 8-bitchar .
9-22 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

PCI Management Library

iver

42

t

9.7 Example PCI device driver

The PCI component of the ARM Firmware Suite contains an example PCI device dr
(in .../Sources/example-driver.c). This demonstrates how a device driver:

• finds the device

• examines its registers

• takes control of its interrupt.

These steps are carried out as follows:

1. Check that the system supports PCI (or is a PCI host):

/* Must be PCI host to initialise the bus */
if (!uHALr_PCIHost ()) {

uHALr_printf ("Not PCI host - can't scan the bus \n");
return (OK);

}

2. If the system is a PCI host, initialize the PCI subsystem:

/* initialise the bus */
uHALr_printf ("Initialising PCI");
PCIr_Init ();
uHALr_printf ("...done \n");

3. Scan the system for the PCI device of interest. In this example, a Digital 211
ethernet device (with a vendor ID of0x1011 and a device ID of0x0019):

/* look for the Digital 21142 ethernet device */
if (PCIr_FindDevice(DIGITAL, TULIP21142, 0, &bus, &slot,

&func) == 0) {
unsigned int ioaddr, memaddr, irq ;
int i ;

The instance number in this case is 0 because the code is looking for the firs
instance. To find the next instance, make another call toPCIr_FindDevice()

but with an instance of 1.
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 9-23

PCI Management Library

rs

vice
rned

it

ion
4. If the device is found, print out the location of its command and status registe
(CSRs) in PCI I/O and PCI Memory. The code is shown in Example 9-2.

Example 9-2

/* found it, tell the world */
uHALr_printf("Found Digital 21142 ethernet device [%02d:%02d:%02d]\n",

bus, slot, func) ;
/* work out the location of its CSRs in PCI IO and PCI Memory */
ioaddr = uHALr_PCICfgRead32 (bus, slot, func, PCI_MEM_BAR);
ioaddr &= ~0x0F ;
memaddr = uHALr_PCICfgRead32 (bus, slot, func, PCI_MEM_BAR+ 4);
memaddr &= ~0xF ;
uHALr_printf("\tCSRs are at 0x%08X (IO) and 0x%08X (Memory)\n",ioaddr,

memaddr) ;

The addresses are from the PCI configuration header for the device. The de
is addressed using the PCI bus number, slot number and function number retu
by the call toPCIr_FindDevice() in the previous step.

5. Make calls to read the device CSRs from PCI I/O space. The CSRs are 64-b
aligned:

/* print out its CSRs (all 15) */
for (i = 0; i < 15; i++) {

uHALr_printf("\t\tCSR %02d: %08X\n", i,
uHALr_PCIIORead32(ioaddr + (i << 3))) ;

}

6. Find the interrupt number associated with this device from the PCI configurat
header.

/* Find its interrupt number and assign it */
irq = uHALr_PCICfgRead8 (bus, slot, func,

PCI_INTERRUPT_LINE);
uHALr_printf("\tIRQ is @ %d\n", irq) ;
9-24 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

PCI Management Library

At

the

ator)
er. If
7. Initialize the µHAL interrupt subsystem and request control of the interrupts.
this point, if the device generates an interrupt,tulipInterrupt() is called.

/* init the irq subsystem in uHAL */
uHALr_InitInterrupts() ;
/* assign the interrupt */
uHALr_RequestInterrupt(irq, tulipInterrupt,

(unsigned char *)"Digital 21142 interrupt handler") ;

When the above program is run on a PCI supporting system, the output is similar to
following:

ARM Firmware Suite
(c) Copyright ARM Ltd 1999
uHAL v1.1
Initialising...done
Found Digital 21142 ethernet device [00:11:00]
CSRs are at 0x00000000 (IO) and 0x40000000 (Memory)
CSR 00: FE000000
CSR 01: FFFFFFFF
CSR 02: FFFFFFFF
CSR 03: B96998AD
CSR 04: 354F9D62
CSR 05: F0000000
CSR 06: 32000040
CSR 07: F3FE0000
CSR 08: E0000000
CSR 09: FFF483FF
CSR 10: FFFFFFFF
CSR 11: FFFE0000
CSR 12: 000000C6
CSR 13: FFFF0000
CSR 14: FFFFFFFF
IRQ is @ 15

This shows that the 21142 was found in slot 11 on bus 0. On this system (an Integr
this means that the device generates interrupts using bit 15 of the interrupt controll
it is moved to another PCI slot, it might generate a different interrupt.
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 9-25

PCI Management Library

idge
I

age,
map

used

us

start
9.8 PCI initialization on Integrator

The Integrator system uses a V3 Semiconductor V360EPC to provide PCI host br
support. The system-specific µHAL code must initialize this device and provide PC
access mechanisms.

9.8.1 Integrator PCI subsystem overview

The V3 PCI interface chip in Integrator provides several windows from local bus
memory into the PCI memory areas. Because there are too few windows for our us
one of the windows is reused for access to PCI configuration space. The memory
is shown in Table 9-2.

There are three V3 windows, each described by a pair of V3 registers. These are:

• LB_BASE0andLB_MAP0

• LB_BASE1andLB_MAP1

• LB_BASE2andLB_MAP2.

Base0 and Base1 can be used for any type of PCI memory access. Base2 can be
either for PCI I/O or for I20 accesses. By default, µHAL uses this only for PCI I/O
space.

NoteNote
PCI Memory is mapped so that assigned addresses in PCI Memory match local b
memory addresses.

If a PCI device is assigned address0x40200000 , that address is a valid local bus
address as well as a valid PCI Memory address. PCI I/O addresses are mapped to
at zero. This means that local bus address0x60000000 maps to PCI I/O address
0x00000000 and so on.

Table 9-2 PCI memory map

Local bus memory Function Size

0x40000000 – 0x4FFFFFFF PCI memory, non-prefetchable 256M

0x50000000 – 0x5FFFFFFF PCI memory, prefetchable 256M

0x60000000 – 0x60FFFFFF PCI I/O 16M

0x61000000 – 0x61FFFFFF PCI Configuration 16M

0x62000000 V3 internal registers -
9-26 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

PCI Management Library

ation
aces

ip
turn
le, if

by

ion
1 is

M

Table 9-3 shows base registers used for mapping the PCI spaces.

This causes I20 and PCI configuration space accesses to fail. When PCI configur
accesses are required (using the µHAL PCI configuration space primitives) the sp
are remapped as shown in Table 9-4.

To make this work, the code depends on overlapping windows working. The V3 ch
translates an address by checking its range within each of the BASE/MAP pairs in
(in ascending register number order). It uses the first matching pair. So, for examp
the same address is mapped by both LB_BASE0/LB_MAP0 and
LB_BASE1/LB_MAP1, the V3 uses the translation from LB_BASE0/LB_MAP0.

To allow PCI Configuration space access, the code enlarges the window mapped
LB_BASE0/LB_MAP0 from 256M to 512M. This occludes the windows currently
mapped by LB_BASE1/LB_MAP1 so that it can be remapped for use by configurat
cycles. At the end of the PCI Configuration space accesses, LB_BASE1/LB_MAP
reset to map PCI Memory.

Finally, the window mapped by LB_BASE0/LB_MAP0 is reduced in size from 512
to 256M to reveal the now restored LB_BASE1/LB_MAP1 window

Table 9-3 Base register mapping

Local Bus Memory Purpose Base/map registers

0x40000000 – 0x4FFFFFFF Memory LB_BASE0, LB_MAP0

0x50000000 – 0x5FFFFFFF Memory LB_BASE1, LB_MAP1

0x60000000 – 0x60FFFFFF I/O LB_BASE2, LB_MAP2

0x61000000 – 0x61FFFFFF Configuration

Table 9-4 Base register remapping

Local bus memory Usage Base/map registers used

0x40000000 – 0x4FFFFFFF Memory LB_BASE0, LB_MAP0

0x50000000 – 0x5FFFFFFF Memory LB_BASE0, LB_MAP0

0x60000000 – 0x60FFFFFF I/O LB_BASE2, LB_MAP2

0x61000000 – 0x61FFFFFF Configuration LB_BASE1, LB_MAP1
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 9-27

PCI Management Library

CI
NoteNote
I20 mapping is not set up because using I2O disables most of the mappings into P
memory.

9.8.2 Initializing the host bridge

The PCI initialization code is an assembly macro intarget.s . Example 9-3 shows the
code.

Example 9-3 PCI initilization code

; NOTE: load $w1 with the base address of the V3's register set
; at the start of the macro and expect it not to change!

MACRO
$label SETUP_PCI $w1, $w2, $w3, $w4

; first turn on PCI
LDR $w1, =INTEGRATOR_SC_PCIENABLE
LDR $w2, =0x1
STR $w2, [$w1]
; Load up the base address of the V3 register set
LDR $w1, =PCI_V3_BASE

; we can NOT try ANY reads from the V3 bridge chip until LB_IO_BASE is written
; we ASSUME that we've already waited for >=230us (@PCLK 25MHz) since reset
; so that this write WILL have an effect on the V3 chip
; Set up where the V3 registers appear in the memory map (PCI_V3_BASE)
LDR $w2, =PCI_V3_BASE
MOV $w2, $w2, LSR #16
STRH $w2, [$w1, #V3_LB_IO_BASE]

; Wait for the V3 to realise that there is no SROM
LDR $w2, =0xAA LDR $w3, =0x55

30 STRB $w2, [$w1, #V3_MAIL_DATA]
STRB $w3, [$w1, #V3_MAIL_DATA + 4]
LDRB $w4, [$w1, #V3_MAIL_DATA]
CMP $w4, #0xAA
BNEk %b30
LDRB $w4, [$w1, #V3_MAIL_DATA + 4]
CMP $w4, #0x55
BNE %b30
9-28 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

PCI Management Library
; Make sure that V3 register access is not locked, if it is, unlock it.
LDRH $w2, [$w1, #V3_SYSTEM]
AND $w2, $w2, #V3_SYSTEM_M_LOCK
CMP $w2, #V3_SYSTEM_M_LOCK
LDREQ $w2, =0xA05F
STREQH $w2, [$w1, #V3_SYSTEM]

; ensure that slave accesses from PCI are DISabled while we set up windows
LDRH $w2, [$w1, #V3_PCI_CMD] ; get current CMD register
BIC $w2, $w2, #(V3_COMMAND_M_MEM_EN :OR: V3_COMMAND_M_IO_EN)
STRH $w2, [$w1, #V3_PCI_CMD] ; MEM & IO now BOTH bounce

; Clear RST_OUT to 0: keep the PCI bus in reset until we're finished
LDRH $w2, [$w1, #V3_SYSTEM]
BIC $w2, $w2, #V3_SYSTEM_M_RST_OUT
STRH $w2, [$w1, #V3_SYSTEM]

; Make all accesses from PCI space retry until we're ready for them
LDRH $w2, [$w1, #V3_PCI_CFG]
ORR $w2, $w2, #V3_PCI_CFG_M_RETRY_EN
STRH $w2, [$w1, #V3_PCI_CFG]

; Set up any V3 PCI Configuration Registers that we absolutely have to
; LB_CFG controls Local Bus protocol.
; enable LocalBus byte strobes for READ accesses too
LDRH $w2, [$w1, #V3_LB_CFG]
ORR $w2, $w2, #0x0C0 ; set bit7 BE_IMODE & bit6 BE_OMODE
STRH $w2, [$w1, #V3_LB_CFG]

; PCI_CMD controls overall PCI operation
; enable PCI bus master;
; for memory but NOT I/O
LDRH $w2, [$w1, #V3_PCI_CMD]
ORR $w2, $w2, #0x04 ; set bit2 MASTER_EN
STRH $w2, [$w1, #V3_PCI_CMD]

; PCI_HDR_CFG controls PCI master timeouts etc.
; PCI_SUB_VENDOR contains an info field for other masters

; PCI_SUB_ID contains an info field for other masters

; PCI_MAP0 controls where the PCI to CPU memory window is on the Local Bus
LDR $w2, =INTEGRATOR_BOOT_ROM_BASE ; start of EBI memory
MOV $w2, $w2, LSR #20 ; clip to 12-bit field
MOV $w2, $w2, LSL #20 ; at top of word wide reg
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 9-29

PCI Management Library
; aperture size is 512M
ORR $w2, $w2, #V3_PCI_MAP_M_ADR_SIZE_512M
; PCI_BASE0 reg MUST be enabled before writing it
; aperture itself enabled too
ORR $w2, $w2, #V3_PCI_MAP_M_REG_EN :OR: V3_PCI_MAP_M_ENABLE
STR $w2, [$w1, #V3_PCI_MAP0] ; finally write the reg
; PCI_BASE0 is the PCI address of the start of the window
LDR $w2, =INTEGRATOR_BOOT_ROM_BASE ; 1:1 mapping to start of EBI memory
MOV $w2, $w2, LSR #20 ; clip to 12-bit field
MOV $w2, $w2, LSL #20 ; at top of word wide reg
; read may NOT be prefetched for this aperture (MAY change for later FPGA)
; BIC $w2, $w2, #V3_PCI_BASE_M_PREFETCH bit already 0 => NO pre-fetch
STR $w2, [$w1, #V3_PCI_BASE0]

; PCI_MAP1 is LOCAL address of the start of the window
LDR $w2, =INTEGRATOR_HDR0_SDRAM_BASE ; start of aliassed header memory
MOV $w2, $w2, LSR #20 ; clip to 12-bit field
MOV $w2, $w2, LSL #20 ; at top of word wide reg
; aperture size is 1024M
ORR $w2, $w2, #V3_PCI_MAP_M_ADR_SIZE_1024M
; PCI_BASE1 reg MUST be enabled before writing it
; aperture itself enabled too
ORR $w2, $w2, #(V3_PCI_MAP_M_REG_EN :OR: V3_PCI_MAP_M_ENABLE)
STR $w2, [$w1, #V3_PCI_MAP1] ; finally write the reg
PCI_BASE1 is the PCI address of the start of the window
LDR $w2, =INTEGRATOR_HDR0_SDRAM_BASE ; 1:1 mapping to start of header memory
MOV $w2, $w2, LSR #20 ; clip to 12-bit field
MOV $w2, $w2, LSL #20 ; at top of word wide reg
; read may NOT be prefetched for this aperture (MAY change for later FPGA)
; BIC $w2, $w2, #V3_PCI_BASE_M_PREFETCH ;### bit already 0
STR $w2, [$w1, #V3_PCI_BASE1]
; PCI_INT_CFG controls PCI interrupt pins
; FIFO_CFG controls V3 FIFOs in both directions

; FIFO_PRIORITY controls V3 FIFOs in both directions
; Set up the windows from local bus memory into PCI configuration, I/O
; and Memory
; ... PCI I/O, LB_BASE2 and LB_MAP2 are used exclusively for this
LDR $w2, =PCI_IO_BASE
MOV $w2, $w2, LSR #24 ; clip to 8-bit field
MOV $w2, $w2, LSL #8 ; at top of half-word reg
ORR $w2, $w2, #V3_LB_BASE_M_ENABLE
STRH $w2, [$w1, #V3_LB_BASE2]
LDR $w2, =0 ; map to I/0 address 0 and above
STRH $w2, [$w1, #V3_LB_MAP2]
9-30 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

PCI Management Library
; ...PCI Configuration, use LB_BASE1/LB_MAP1. Set up on the fly by
; the PCI Configuration access code in board.c

; ...PCI Memory, use LB_BASE0/LB_MAP0 and LB_BASE1/LB_MAP1
; Map first 256Mbytes as non-prefetchable via BASE0/MAP0
LDR $w2, =PCI_MEM_BASE
MOV $w2, $w2, LSR #20 ; clip to 12-bit field
MOV $w2, $w2, LSL #20 ; at top of word wide reg
ORR $w2, $w2, #0x80 ; Window size is 256 Mbytes (7:4 = 1000)
ORR $w2, $w2, #V3_LB_BASE_M_ENABLE
STR $w2, [$w1, #V3_LB_BASE0]
LDR $w2, =PCI_MEM_BASE ; PCI_MEM_BASE maps to PCI MEM

; address at PCI_MEM_BASE
MOV $w2, $w2, LSR #20 ; clip to 12-bit field
MOV $w2, $w2, LSL #4 ; at top of half-word reg
ORR $w2, $w2, #0x0006 ; 3:0 = 0110 = PCI Memory read/write
STRH $w2, [$w1, #V3_LB_MAP0]
; Map second 256Mbytes as prefetchable via BASE1/MAP1
LDR $w2, =PCI_MEM_BASE+SZ_256M
MOV $w2, $w2, LSR #20 ; clip to 12-bit field
MOV $w2, $w2, LSL #20 ; at top of word wide reg
ORR $w2, $w2, #0x84 ; Window size is 256 Mbytes

; 7:4 = 1000), prefetchable
ORR $w2, $w2, #V3_LB_BASE_M_ENABLE
STR $w2, [$w1, #V3_LB_BASE1]
LDR $w2, =PCI_MEM_BASE+SZ_256M
MOV $w2, $w2, LSR #20 ; clip to 12-bit field
MOV $w2, $w2, LSL #4 ; at top of half-word reg
LDR $w2, =0x0006 ; 3:0 = 0110 = PCI Memory read/write
STRH $w2, [$w1, #V3_LB_MAP1]

; Allow accesses to PCI Configuration space
; and set up A1,A0 for type 1 config cycles
LDRH $w2, [$w1, #V3_PCI_CFG]
BIC $w2, $w2, #V3_PCI_CFG_M_RETRY_EN
BIC $w2, $w2, #V3_PCI_CFG_M_AD_LOW1 ; force A1=0 and
ORR $w2, $w2, #V3_PCI_CFG_M_AD_LOW0 ; A0=1 for config type 1
STRH $w2, [$w1, #V3_PCI_CFG]

; now we can allow in PCI MEMORY accesses
LDRH $w2, [$w1, #V3_PCI_CMD] ; get current CMD register
ORR $w2, $w2, #(V3_COMMAND_M_MEM_EN+V3_COMMAND_M_IO_EN)
STRH $w2, [$w1, #V3_PCI_CMD] ; MEM now accepted

; IO still bounced)
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 9-31

PCI Management Library

s

; Set RST_OUT to take the PCI bus is out of reset, PCI devices
; can initialise and lock the V3 system register so that no one else
; can play with it
LDRH $w2, [$w1, #V3_SYSTEM]
ORR $w2, $w2, #V3_SYSTEM_M_RST_OUT
STRH $w2, [$w1, #V3_SYSTEM]
ORR $w2, $w2, #V3_SYSTEM_M_LOCK
STRH $w2, [$w1, #V3_SYSTEM]

MEND

9.8.3 PCI configuration cycles

The PCI configuration cycle access routines are in the Integratorboard.c file.

Access macros are defined for reading and writing registers within the V3 device a
shown in Example 9-4.

Example 9-4 Defining access macros

// V3 access routines
#define _V3Write16(o,v) (*(volatile unsigned short *)(PCI_V3_BASE + \

(unsigned int)(o)) = (unsigned short)(v))
#define _V3Read16(o) (*(volatile unsigned short *)(PCI_V3_BASE + \

(unsigned int)(o)))

#define _V3Write32(o,v) (*(volatile unsigned int *)(PCI_V3_BASE + \
(unsigned int)(o)) = (unsigned int)(v))

#define _V3Read32(o) (*(volatile unsigned int *)(PCI_V3_BASE + \
(unsigned int)(o)))
9-32 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

PCI Management Library

out
The PCI configuration window is opened and closed as show in Example 9-5. With
these routine calls, PCI Configuration is not accessible.

Example 9-5 Opening and closing the PCI config window

void _V3OpenConfigWindow(void) {
//Set up base0 to see all 512Mbytes of memory space
//(not prefetchable), this frees up base1 for re-use by
// configuration memory
_V3Write32(V3_LB_BASE0,((PCI_MEM_BASE & 0xFFF00000)| 0x90 | \\

V3_LB_BASE_M_ENABLE)) ;
//Set up base1 to point into configuration space, note that
//MAP1 register is set up by uHALir_PCIMakeConfigAddress().
_V3Write32(V3_LB_BASE1, ((PCI_CONFIG_BASE & 0xFFF00000) | 0x40 | \\

V3_LB_BASE_M_ENABLE)) ;
}

void _V3CloseConfigWindow(void) {
//Reassign base1 for use by prefetchable PCI memory
_V3Write32(V3_LB_BASE1, (((PCI_MEM_BASE + SZ_256M) & 0xFFF00000) | 0x84 | \\

V3_LB_BASE_M_ENABLE)) ;
_V3Write16(V3_LB_MAP1, (((PCI_MEM_BASE + SZ_256M) & 0xFFF00000) >> 16) | \\

0x0006) ;
// And shrink base0 back to a 256M window (NOTE: MAP0 already correct)
_V3Write32(V3_LB_BASE0, ((PCI_MEM_BASE & 0xFFF00000) | 0x80 | \\

(pointer unsigned char)V3_LB_BASE_M_ENABLE)) ;
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 9-33

PCI Management Library

tion
. It
e bits
hat
The routine in Example 9-6 is used each time access is made to the PCI Configura
space. This maps the offset into PCI Configuration space into a local bus address
copes with whether or not the bus is the local bus and also with addresses that hav
A31:A24 set. As a side-effect, this routine might alter the contents of LB_MAP1 so t
the V3 can generate the correct addresses.

Example 9-6 Configuration space offset mapping

unsigned int uHALir_PCIMakeConfigAddress(unsigned int bus, unsigned int device,\\
unsigned int function, unsigned int offset) {

unsigned int address, devicebit ;
unsigned short mapaddress ;

if (bus == 0) {
/* local bus segment so need a type 0 config cycle */
/* build the PCI configuration "address" with one-hot in A31-A11 */

address = PCI_CONFIG_BASE ;
address |= ((function & 0x07) << 8) ;

address |= offset & 0xFF ;
mapaddress = 0x000A ; /* 101=>config cycle, 0=>A1=A0=0 */
devicebit = (1 << (device + 11)) ;
if ((devicebit & 0xFF000000) != 0) {

/* high order bits are handled by the MAP register */
mapaddress |= (devicebit >>16) ;

} else {
/* low order bits handled directly in the address */
address |= devicebit ;

} else { /* bus !=0 */
/* not the local bus segment so need a type 1 config cycle */
/* A31-A24 are don't care (so clear to 0) */
mapaddress = 0x000B ; /* 101=>config cycle,

1=>A1&A0 from PCI_CFG */
address = PCI_CONFIG_BASE ;

address |= ((bus & 0xFF) <<16) ; /* bits 23..16 = bus number */
address |= ((device & 0x1F) << 11) ; /* bits 15..11 = device number */
address |= ((function & 0x07) << 8) ; /* bits 10..8 = function number */

address |= offset & 0xFF ; /* bits 7..0 = register number */
}
_V3Write16(V3_LB_MAP1, mapaddress) ;

return address ;
}

9-34 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

PCI Management Library

byte
Example 9-7 shows a typical usage of the configuration routines. In this example, a
is read from PCI Configuration space:

Example 9-7 Reading a byte from PCI Configuration space

unsigned char uHALr_PCICfgRead8(unsigned int bus, unsigned int device,\\
unsigned int function, unsigned int offset) {

pointer unsigned char pAddress ;
unsigned char data ;

// open the (closed) configuration window from local bus memory
_V3OpenConfigWindow() ;

/* generate the address of correct configuration space */
pAddress = (pointer unsigned char)(uHALir_PCIMakeConfigAddress(bus, device, \\

function, offset)) ;

/* now that we have valid params, go read the config space data */
data = *pAddress ;

// close the window
_V3CloseConfigWindow() ;

return(data) ;
}

ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 9-35

PCI Management Library

in
9.8.4 Interrupt routing

The Integrator-specific interrupt routing code uses a static routing table, as shown
Example 9-8. This provides the generic PCI code with mapping of the interrupt
numbers, the slot a device occupies, and the interrupt pin it uses.

Example 9-8 Interrupt mapping

unsigned char uHALir_PCIMapInterrupt(unsigned char pin, unsigned char slot) {
#define INTA IRQ_PCIINT0
#define INTB IRQ_PCIINT1
#define INTC IRQ_PCIINT2
#define INTD IRQ_PCIINT3

//DANGER! For now this is the SDM interrupt table...
char irq_tab[12][4] = {
// INTA INTB INTC INTD
{ INTA, INTB, INTC, INTD }, // idsel 20, slot 9
{ INTB, INTC, INTD, INTA }, // idsel 21, slot 10
{ INTC, INTD, INTA, INTB }, // idsel 22, slot 11
{ INTD, INTA, INTB, INTC }, // idsel 23, slot 12
{ INTA, INTB, INTC, INTD }, // idsel 24, slot 13
{ INTB, INTC, INTD, INTA }, // idsel 25, slot 14
{ INTC, INTD, INTA, INTB }, // idsel 26, slot 15
{ INTD, INTA, INTB, INTC }, // idsel 27, slot 16
{ INTA, INTB, INTC, INTD }, // idsel 28, slot 17
{ INTB, INTC, INTD, INTA }, // idsel 29, slot 18
{ INTC, INTD, INTA, INTB }, // idsel 30, slot 19
{ INTD, INTA, INTB, INTC } // idsel 31, slot 20

} ;
uHALr_printf("pin = %d, slot = %d\n", pin, slot) ;

if (pin == 0) pin = 1 ; //if PIN = 0, default to A
return irq_tab[slot-9][pin-1] ; //return the magic number

}

9-36 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

PCI Management Library

nd

the
9.9 Rebuilding the PCI library

Use the project files or makefiles to rebuild the PCI Library. See Chapter 11Building
AFS Componentsfor more information on rebuilding AFS components.

9.9.1 PC project files

You can build the PCI Library with SDT 2.5 project manager files (.apj) or ADS 1.0
CodeWarrior project files (.mcp).

9.9.2 Unix makefile

The CD has a makefile for use on a Unix workstation.

There is a makefile for rebuilding the PCI Library for a single development board a
processor combination. For example, if you copiedunix\source contents to/AFS use
/AFS/Integrator940T/PCI/Build/makefile to rebuild the library for the
Integrator board with an ARM940T processor.

You must maintain the hierarchy of the CD directories when you copy the files from
CD to your workstation. The makefile definesROOTas the root of the build tree and is
needed bymk. TOOLSis the tools directory that contains build tools of various kinds.

For general information on makefiles and directory structure, seeAFS source structure
on page 11-4.
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 9-37

PCI Management Library
9-38 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

tion,
Chapter 10-
Troubleshooting and Frequently Asked
Questions

This chapter describes solutions to problems that occur when producing an applica
and provides answers to general questions about AFS. It contains the following
sections:

• Frequently asked questionson page 10-2

• Troubleshootingon page 10-5.
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 10-1

Troubleshooting and Frequently Asked Questions

.

se
b

d

d

10.1 Frequently asked questions

This section gives the answers to some frequently asked questions about the AFS

10.1.1 Does AFS support Thumb?

The CodeWarrior IDE project files installed for the AFS components and demo
applications use a define in theC Pre-processorsandAssemblerstabs of the target
settings window to select Thumb support:

-DTHUMB_AWARE=1

There are different directories for Thumb and non-Thumb builds:

Integrator.b This directory contains project files which build non-Thumb versions.
These builds can be run on any supported processor.

IntegratorT.b

This directory contains project files which build Thumb versions. The
builds can be run on any supported processor that can execute Thum
code.

To build applications with the makefile, set the build variable:

make THUMB_AWARE=1

10.1.2 How do I build AFS components using ADS?

There are ADS CodeWarrior IDE project files installed for the AFS components an
demo applications.

The makefile builds for ADS by default. The build is controlled by the following buil
variable:

make ADS_BUILD=1

Usemake ADS_BUILD=0 to build for SDT. All AFS components can be built for both
SDT and ADS without the need for you to edit the source code.

NoteNote
Thescatter , ropi , andrwpi build options are not supported.
10-2 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

Troubleshooting and Frequently Asked Questions

ile

p

table
e

M

e
sales
10.1.3 How do I use the C library?

The CodeWarrior IDE project files installed for the AFS components and demo
applications use a define in theProcessorstab of the target settings window to select
the ADS C library:

-DUSE_C_LIBRARY=1

APM projects that build applications with the ADS C library require an additional
assembler predefine:

USE_C_LIBRARY {SETL} TRUE

and an additional C pre-processor#define :

USE_C_LIBRARY=1

UNIX makefiles that build using the ADS C library must define the additional makef
build variable:

make USE_C_LIBRARY=1

The main effect of building with the ADS C library is that µHAL now defines the hea
and stack base and size and exports these to be used by the C library memory
management routines. Also, program start-up and termination are controlled by C
library routines.

NoteNote
The SDT C libraries are not supported.

10.1.4 Is µHAL free?

The µHAL demonstration and example programs are freely reusable and redistribu
so long as they are used on ARM-based platforms. The other ARM Firmware Suit
components must be licensed from ARM.

10.1.5 Can I use µHAL in my project?

You can use µHAL in your commercial projects, but you must synchronize with AR
the release of µHAL that you are using and the testing procedure.

NoteNote
Because there are portions of the firmware base level that are not free, you must b
careful about the parts that are used and where they are used. Contact your ARM
representative for more information.
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 10-3

Troubleshooting and Frequently Asked Questions

ge in

ash

ard.
10.1.6 What boards are supported?

The current set of supported evaluation boards consist of:

• ARM Development Board (PID7T)

• Integrator

• Prospector.

10.1.7 How do I use boot monitor with Multi-ICE?

If you are using the Integrator board, you can load and debug applications using
Multi-ICE:

1. Install the Multi-ICE server software on your PC.

2. Configure your debugger to use the Multi-ICE interface.

3. Connect the Multi-ICE cable to the JTAG connector on the processor card.

4. Power-on the development board.

5. Use the Load image command from the debugger to load and debug an ima
RAM, or use the debugger console to access the flash utilities.

The boot monitor commands are not available from Multi-ICE, but you can use the fl
utilities AFU and BootFU to access the flash memory. See Chapter 8Using the ARM
Flash Utilites.

10.1.8 How can I verify that Angel is installed?

To test whether Angel is installed on your board:

1. Set the terminal emulator to 9600 baud.

2. Set the configuration switches to boot the Angel image.

3. Apply power to the development board and reset the board.

4. Angel attempts to communicate with the debugger over the serial port. The
terminal emulator displays some symbols and then the Angel banner.

5. If you do not see the Angel banner, you must load the Angel image for your bo
10-4 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

Troubleshooting and Frequently Asked Questions

s of

ck
10.2 Troubleshooting

The topics below list solutions to problems that might occur when you build an
application using µHAL.

10.2.1 µHAL does not work with my processor

µHAL supports the following processors:

• ARM7TDMI

• ARM720T

• ARM740T

• ARM920T

• ARM940T

• StrongARM (SA110 and SA1100).

If the processor you want to use is not on this list, you might still be able to use part
the µHAL source code or definitions in your application.

10.2.2 The boot switcher fails to run an image from Integrator flash

Take one of the following actions to remedy this condition:

• Check that the boot image number is correct by using the boot monitor BI
command.

• Check that the image is correctly programmed by using the boot monitorV

command.

• Use the DC command in the extended command mode to check that the clo
settings in the SIB are reasonable values for the core module you are using.

10.2.3 The boot switcher fails to run an image from Prospector flash

Take one of the following actions to remedy this condition:

• Check that the boot image number is correct by using the boot monitorBI

command.

• Check that the image is correctly programmed by using the boot monitorV

command.

• Check that switch U25-5 is correctly set.
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 10-5

Troubleshooting and Frequently Asked Questions

urs

ng
is

al
in.

t

l
the

e.
10.2.4 Integrator images fail to load after Multi-ICE Auto-Configuration

Take one of the following actions to remedy this condition:

• Reset the system.

• Power the system OFF and then ON again.

• Set the REMAP bit (bit 2 in the CM_CTRL register at0x1000000C) from the
debugger.

10.2.5 Exception vector errors when using Multi-ICE

The messageUnable to set breakpoints on exception vectors is displayed
when using Multi-ICE on Integrator.

• On some processors, Multi-ICE attempts to write to the vectors. This error occ
if the memory has not been remapped. Refer to theMulti-ICE User Guide.

10.2.6 I cannot enable a timer that has not been requested

You must allocate a timer by requesting it before you can use it in any way, includi
enabling it. The System Timer has already been Requested. The System Timer ID
available usinguHALir_GetSystemTimer() .

10.2.7 Enabled timer interval is too long

The interval count is reloaded when the timer is enabled, so it will be the full interv
duration (or slightly longer if the system is busy) before the timer event occurs aga

10.2.8 Terminal emulator does not work with boot monitor

The line parameters for the boot monitor are the defaults for the µHAL port for tha
board. Look in the porting documentation for your board for details. For many ARM
boards, the defaults are 38400 baud, 8 data bits, no parity, and one stop bit.

Either TTY or VT100 emulation should work. You must enable Xon/Xoff flow contro
for the emulator. Where there are two ports, look in the board documentation or in
source to identify the port to use (or more simply, try both).

10.2.9 I cannot use ELF format in my application

The ADS utility fromELF is provided to generate other file formats from an ELF imag
See your ADS documentation for details on using fromELF.
10-6 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

Troubleshooting and Frequently Asked Questions

en
ately

to

iving

ance

age
e

ion
10.2.10 Demo applications run slower as standalone

The µHAL Board Demo routines appear to show differences in running time betwe
the semihosted and standalone variants. The semihosted variants can run approxim
four times faster when not using the processor cache.

This difference is due to the semihosted code being run from system RAM (linked
execute at location0x8000 which is the default location for debugger execution).

The standalone code is linked to run directly from the flash memory in which it is
stored. Flash memory accesses are slower than RAM accesses by a factor of four g
the performance loss.

Two demos in flash show how the use of system caches improve routines perform
from slower memory.

The standalone code can be linked to run from RAM for direct performance
comparison. This can be achieved by setting theRead Only address for the linker to
0x8000 .

When programming the image into the flash memory use the AFU to program an im
into the flash (the location in flash is not important). The flash image contains all th
information in the footer to ensure that the code can be copied to the correct locat
and executed. An example of the code required to exploit this information is in the
ARM boot monitor.
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 10-7

Troubleshooting and Frequently Asked Questions
10-8 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

uild
, but

he
Chapter 11-
Building AFS Components

This chapter describes how to build AFS components. (Use the same process to b
the demonstration applications.) Prebuilt images of each component are provided
you might build a component if you have modified the source code or if you are
constructing a different board and processor combination. This chapter contains t
following sections:

• AFS component variantson page 11-2

• AFS source structureon page 11-4

• Using ARM project fileson page 11-6

• Using GNUmakeon page 11-12

• Build output fileson page 11-20
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 11-1

Building AFS Components

If the
e the

sed

le
k

er

rsions
11.1 AFS component variants

The components can be generic or board-specific:

• Generic components run on all platforms and do not require board or
processor-specific files.

• Board-specific components require definition files specific to the board and
processor.

For some components you can have a generic version or a board-specific version.
generic version is built, some features of the target processor are not available sinc
code is built to run on any ARM processor.

The image resulting from the build is either:

Standalone Standalone images do not require a host workstation. All I/O is proces
on the target board using the hardware on the development board.
putc() , for example, can use the UART port to send characters.

Semihosted Semihosted images require a host workstation. Some I/O, for examp
file access, is processed on the host computer. A communications lin
(serial port or Multi-ICE) is used with a debugger on the host comput
to interpret and process file access.

Where there are both standalone and semihosted versions of a component, both ve
are built from the same makefile or project file.

There are three ways of building the AFS components:

• using ARM .apj project files with SDT 2.5

• using ARM .mcp project files for the CodeWarrior IDE with ADS 1.0

• using GNU makefiles (Windows and Cygwinmake or Unix gnumake).
11-2 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

Building AFS Components

e

fic.

ific.

ic
11.1.1 Installing the component directories

The ARM Firmware Suite consists of a number of components. By default, each
component is held in a subdirectory. If, for example, you copy thewindows\source

contents from the CD intoC:\AFS\source , the source code and build tools are in th
following directory structure:

C:\AFS\source\all

For rebuilding AFS components for multiple boards at one time.

C:\AFS\source\Integrator

For applications for the Integrator board that are not processor-speci

C:\AFS\source\Integrator processor_number

For applications for the Integrator board that are specific to the
processor_numberprocessor.

C:\AFS\source\Prospector

For applications for the Prospector board that are not processor-spec

C:\AFS\source\Prospector processor_number

For applications for the Prospector board that are specific to the
processor_numberprocessor.

C:\AFS\source\Pid processor_number

For applications for the PID ARM Development Board that are specif
to theprocessor_numberprocessor.
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 11-3

Building AFS Components

to
r.

ve

e

uilt
files

is:

or

d,

such
hat
as
clude
11.2 AFS source structure

There are build directories for each development board. For example, it is possible
build µHAL for an Integrator board with either the ARM740T or ARM940T processo
In this case, only the processor-specific code differs.

Each component of AFS has a similar directory structure. The build files use relati
paths. The paths given in this section assume that you copied the contents of the
windows\sources directory from the CD toC:\AFS and that you are building
components for the Integrator board with a ARM940T processor. The same relativ
path descriptions apply for the other boards.

The Angel build process is slightly different. SeeBuilding a µHAL-based Angelon
page 6-10 for details on building Angel for your development board.

11.2.1 The Build subdirectory

This directory contains the makefile and project files. How AFS components are b
is deliberately separated out from the sources themselves. All build definitions and
are kept in theBuild directory of each component.

This directory contains a sub-directory per board variant that can be built for this
component. The path for the boot monitor project files and makefile, for example,

C:\AFS\source\Integrator940T\bootMonitor\Build\Integrator940T.b

The built images are kept in sub-directories of the board-specific build directory. F
example, if you build a standalone version of the µHAL demonstration program
system-timer.c for a Integrator board fitted with an ARM940T based header car
the output file would besystem-timer.axf and the path is:

C:\AFS\source\Integrator940T\uHALDemos\Build\Integrator940T.b\standalone\

11.2.2 The Sources subdirectory

This contains the generic sources for the component. For a pure µHAL component
as theuHALDemos, all of the sources can be found here. (A pure application is one t
only uses µHAL APIs for system-specific code. An impure application is one that h
code that directly accesses the system-specific hardware.) These sources do not in
any board or processor-specific code although they might differentiate between
semihosted and standalone operation.
11-4 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

Building AFS Components

ept
code

es

files.

ches.
11.2.3 The Boards subdirectory

This contains board-specific code for the component. The board-specific code is k
in a separate directory for each board. For example, the path to the board-specific
needed to run µHAL on an Integrator platform is:

C:\AFS\source\Integrator940T\uHAL\Boards\INTEGRATOR

If a component does not have board-specific code, there is not aBoards directory.

The h directory

This subdirectory contains the include files. These files contain definitions of routin
and structures.

11.2.4 The µHAL directories

The µHAL component has two extra directories that contain board and processor

The Processors directory

Each supported processor has specific code for memory management unit and ca
For example, the ARM940T cache flushing code is located in:

C:\AFS\source\Integrator940T\uHAL\Processors\ARM940T\mmu940T.s
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 11-5

Building AFS Components

t

e

dow.

and
11.3 Using ARM project files

Versions of ARM project files for use with theARM Software Development Toolkit
(SDT) version 2.5 and theARM Development Suite(ADS) version 1.0 can be found in
the board-specific build directories. These are calleduHALlibrary.apj for SDT 2.5
anduHALlibrary.mcp for ADS 1.0. To build a particular variant, click on the projec
file and build.

For more information about using ARM project files with SDT 2.5, see theSoftware
Development Toolkit User Guide. For more information about using ARM project files
with ADS 1.0, see theADS CodeWarrior IDE Guide.

11.3.1 Using CodeWarrior IDE (.mcp) project files

The CodeWarrior IDE project files (.mcp extension) are the build files designed for us
with ADS. Operation instructions and help are available from the ADS manuals or
through the on-line help available within the CodeWarrior IDE.

The build system is initiated by either:

• Using the Host PC point and click interface to select the.mcp file.

• Selecting the Codewarrior icon and loading the required project file using
Project→Open from the Codewarrior IDE Menu.

Either of these methods starts the IDE and makes the required project the focus win

The two image types (Targets) produced by the CodeWarrior IDE are semihosted
standalone.
11-6 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

Building AFS Components

the

re
file

ect
ed
The build target can be changed in two ways, by using the pull down menu showing
target name (semihostedor standalone) or by clicking on one of the Targets tabs (Files,
Link Order , andTargets), then selecting the appropriate target (see Figure 11-1).

Figure 11-1 Target

The CodeWarrior IDE project files expect the source files to be in the original firmwa
release directory. If source files are moved they must be removed from the project
by selecting and deleting them from theFiles window. This generates a message
window requiring confirmation of the removal. You can then add the files to the proj
usingProject→Add Files. This also adds the appropriate access path to the select
target. This process must be repeated for both theStandaloneandSemihostedtargets
(see Figure 11-2).

Figure 11-2 Add files
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 11-7

Building AFS Components

e
The CodeWarrior IDE also allows you to directly edit the paths to library and includ
files (see Figure 11-3).

Figure 11-3 Edit paths

To build the chosen target simply click on theMake icon, orProject→Make (see
Figure 11-4).

Figure 11-4 Make
11-8 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

Building AFS Components
The generated image is in the directory:

project_name _Data\ target_selected

with the name:

project_name .axf

For example, the µHAL Demobubble when built using the ADS CodeWarrior IDE
and a semihosted target generates the image:

bubble_Data\semihosted\bubble.axf

NoteNote
The ADS CodeWarrior IDE creates a new directory,uHALLibrary_Data for example,
that contains thesemihosted andstandalone subdirectories. Two separate build
operations are required to build both the semihosted and standalone versions.

The CodeWarrior IDE does not provide theForce Build option provided by the Arm
Project Manager. Targets are only rebuilt if any of theTarget Settingshave changed or
any of the sources have been modified since the last build. To recreate theForce Build
option useProject→Remove Object Code, then build the target (see Figure 11-5).

Figure 11-5 Remove
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 11-9

Building AFS Components

ied
is

the

ll
ect
help

dow.

RM

ted

lone
the

.

ct the

ture.
nd
In order to differentiate between SDT and ADS, the build variable ADS_BUILD is
defined in both the ARM C Compiler and ARM Assembler panels for the µHAL
Library and Demo projects. This ensures that the correct library initialization is carr
out. All of the demonstration programs rely on the presence of the µHAL library. If th
is not present the µHAL Demo project builds it before attempting to compile any of
demo sources.

You can run the final build image (.axf) in the chosen environment.

11.3.2 Using APM (.apj) files

The APM project files (.apj extension) are encapsulated build files that contain a
the build information. These project files are designed for use within the ARM Proj
manager environment that is available as part of SDT. Operation instructions and
are available in the ARM SDT manuals.

The build system can be initiated by one of :

• Use the Host PC point and click interface to select the.apj file.

• Select the APM icon and loading the required project file usingFile→Load from
the APM Menu.

Either of these methods start the APM and make the required project the focus win

The project files produce one of two selectable image types:

Semihosted Relies on the image being run in a debug environment, such as the A
Debug monitor or Angel Debug Monitor, to initiate execution of the
application and to facilitate text output to a host console. The semihos
image runs from the system RAM at hex address0x8000

Standalone Runs on the target system without any additional environment. Text
output is achieved by a system port taking a serial stream. The standa
image is linked to the base of the flash memory region of the board. In
case of the ARM Integrator development board, this address is
0x24800000 and requires a utility to program the image into the flash

The images are selected by expanding the ARM Executable Image heading (sele
'+' icon). This shows the two available image options.

The source files are expected to be in the original firmware release directory struc
If the sources need to be moved then they must be removed from the project file a
added usingProject→Add Files to project from the APM menu once in the new
directory.
11-10 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

Building AFS Components

tool

to
one)
To generate the required image, select the image and select the Force Build option
button orProject→Force Build from the APM menu. The window splits horizontally
to show the make procedure. Once built the window shows the project as being up
date. The image will be in the directory of the selected type (semihosted or standal
with the nameproject_name .axf .

The image is generated as an ARM executable format (.axf) image that can be run
from a development board such as Integrator development board.

All of the µHAL Demonstration programs rely on the µHAL library being built. If the
library is not built, the project files forces the build. In the event of the PCI Library
being required this is also forced. The library builds are controlled asSub Projects
within theDemoapplication build.

The final build image (.axf) can be run in the chosen environment.
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 11-11

Building AFS Components

all

DT

t of

ent
sing
ing:

to

in
11.4 Using GNUmake

To build µHAL and its associated components using makefiles use GNUmake.
GNUmake is available for UNIX, and for Windows 95 and Windows NT.

NoteNote
Before you can use GNUmake with Windows 95 or Windows NT, you must first inst
CygWin. GNUmake is available for Windows 95, Windows 98, and Windows NT as
part of the Cygwin project. It is recommended that you contact Cygnus at:
http://sourceware.cygnus.com

11.4.1 Installing GNUmake on Unix

To use GNUmake on a Unix workstation, you must:

• have access to the appropriate versions of the ARM toolset (currently ARM S
2.5 or ADS v1.0)

• use the correct version of the build tools and the ARM library

• have an environment variable called ARMLIB that contains a pointer to the se
ARM C libraries

• placegnumake in your search path.

11.4.2 Installing GNUmake on Windows

After installing GNUmake on your system, you must set up some links and environm
variables in order to use GNUmake and other Unix tools. Assuming that you are u
the bash shell (a popular free command shell available from Cygnus), do the follow

1. Create a desktop shortcut to point to thecygnus.bat file. By default this is
placed atc:\cygnus\cygwin-b20\cygnus.bat .

2. Make the environment variable for the ARM C library (ARMLIB)
Unix-compliant, for example,c:/arm250/lib instead ofc:\arm250\lib .
Without this change, any applications linking against the ARM C library fails
build.

3. Start a bash shell by double-clicking on the desktop shortcut.

4. Move to the directory where the binary files are kept. This directory is quoted
cygnus.bat :

bash2-02$ cd //c/cygnus/cygwin-b20/H-i586-cygwin32/bin
11-12 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

Building AFS Components

oft

e
l

,

5. Create a soft link:

bash2-02$ ln -s make.exe gnumake.exe

The default name for GNUmake ismake, however the rules files assume that it is
gnumake to avoid conflicts with the native make on Unix systems. Creating a s
link to the real make executable resolves the names.

6. Add the ARM tools to the bash PATH by editing thePATHvariable in
cygnus.bat . For example, change:

SET PATH=c:/cygnus/CYGWIN~1/H-I586~1/bin;%PATH%

to:

SET PATH =c:/cygnus/CYGWIN~1/H-I586~1/bin;c:/ARM250/Bin;%PATH%

7. Test that the ARM tools work by launching a new bash shell and typingarmcc .
armcc executes and lists its input options. Alternatively you can edit the path
environment variables using the System Properties popup window.

8. Move to the directory of the particular type of board you are building for. (Som
components are not board-specific and the makefile exists in the higher-leve
directory.)

9. Type the commandgnumake to build images that contain no debug information
or typegnumake DEBUG=1to build images that can be debugged.

11.4.3 makefile locations

The directory you are in when you executegnumake determines how many and what
versions of µHAL are built. If, for example, thewindows\source contents were
copied intoC:\AFS\source , the board and processor version built depends on the
directories containing the makefile. For example, three locations are possible:

Build all board and processor combinations

Use the makefile inC:\AFS\source\all\uHal\ to build versions of
µHAL for all boards. The list of available boards is in
all\uHal\boards.in . The makefile uses a loop to build for all board
types:

for i in $(BOARDS); \
do (echo '***Making' $$i; \
cd Build/$$i.b ; \
$(MAKE) all) ; \
done
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 11-13

Building AFS Components

.

ard
Build for a generic Integrator boards

Use the makefile in

...\source\IntegratorT\uHAL\build

to build semihosted and standalone versions of µHAL for a generic
Integrator board. The code works with the ARM7TDMI and any later
ARM processor. The T indicates that this build supports Thumb code
Use...\source\Integrator\uHAL\build if you do not want
Thumb support.

The contents ofbuild.in in this directory are:

PROCESSOR_NAME = ARM7TDMI
BOARD_TYPE = INTEGRATOR
BOARD_NAME = Integrator940T

Build standalone and semihosted targets for Integrator with ARM940T

Use the makefile in:

...\source\Integrator940T\uHal\Build\Integrator940T.b

to build the standalone and semihosted versions for the Integrator bo
with an ARM940T.

The contents ofbuild.in in this directory are:

PROCESSOR_NAME = ARM940T
BOARD_TYPE = INTEGRATOR
BOARD_NAME = Integrator940T
link specific options
UHAL_PROCESSOR_ARCHITECTURE = arm940t
THUMB_AWARE = 1

11.4.4 Build control files

The build is controlled by include files:

Common rules file

TheC:\AFS\source\ board _name\uHAL\rules.in file contains a
common set of rules and definitions that are used when building all
firmware components forboard_name . The board-specific makefile for
each component must include the µHAL rules file.
11-14 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

Building AFS Components

e

re
n

lso

ular

.

.

Board-specific include file

Each board variant supported by µHAL is defined by the fileboard.in

in the build directory for that board. For example, the build definition fil
for the ARM720T variant of the Integrator board is:

C:\AFS\source\Integrator720T\uHAL\Build\Integrator720T.b\board.in

This contains:

PROCESSOR_TYPE = ARM720T
BOARD_TYPE = INTEGRATOR
BOARD_NAME = Integrator720T

These definitions are used inrules.in to generate directory names so
that the appropriate board-specific and processor-specific modules a
assembled, compiled, and included. This allows easy adaptation whe
new boards are added or removed from the build process.

Environment file

Each component has a top-level file, for exampleuHAL\environ.in ,
that defines the board variants supported within that component. It a
contains relative directory names for µHAL and any other firmware
library needed by a particular component.

Generic makefile

The generic makefile...\uHal\Build\common.make contains build
rules and dependencies for software to boards supported by a partic
component. When you add a new µHAL module,common.make must be
changed. The other board-specific makefiles do not require changing

µHAL Board Definition File

The following is theboard.in definition file for the Prospector SA-1100 based board
All of the variables are used byrules.in to generate various build flags and
definitions:

what flavour board is this?
PROCESSOR_NAME = SA110
BOARD_TYPE = PROSPECTOR
BOARD_NAME = Prospector1100
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 11-15

Building AFS Components

he

hich
. If

r.
The following variables must be set in the definition file:

BOARD_NAME

The name of this board variant. For Prospector1100, this describes t
directory where the built objects are kept. If the build is from:

...\source\Prospector1100\uHAL\Build

the object files are in:

...\source\Prospector1100\uHAL\Build\Prospector1100.b

BOARD_TYPE

The type of board. This generates definitions for the compiler and
assembler:

-DPROSPECTOR=1
-PD "PROSPECTOR SETL {TRUE}"

This is also the name of the directory withinuHAL that contains the
board-specific code. If the build is from:

...\source\Prospector1100\uHAL\Build

the path is:

...\source\Prospector1100\uHAL\Boards\PROSPECTOR

PROCESSOR_NAME

The name of the processor supported by this board. This describes w
directory the processor-specific definitions and macros are taken from
the build is from:

...\source\Prospector1100\uHAL\Build

the path is:

...\source\Prospector1100\uHAL\Processors\SA1100

The included files generate definitions for the compiler and assemble
For Prospector1100 this is:

-DSA110=1
-PD "SA110 SETL {TRUE}"
11-16 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

Building AFS Components

ler

r

.

The following variables are optional and might be set in the definition file:

UHAL_BOARD_ADEFS

These are board-specific definitions that are included on the assemb
command line.

UHAL_BOARD_CDEFS

These are board-specific definitions that are included on the compile
command line.

UHAL_BOARD_LDEFS

These are board-specific definitions that are included on the linker
command line.

UHAL_BOARD_ELFDEFS

These are board-specific definitions that are included on the fromELF
command line.

UHAL_BOARD_ARDEFS

These are board-specific definitions that are included on the armar
command line.

UHAL_BOARD_SOURCES

The set of files that make up the sources for the port of µHAL to this
board. This is defaulted toboard.c , drver.s , andmemmap.s.

UHAL_BOARD_INCLUDES

The set of include files for this board. This defaults toplatform.h ,
platform.s , andtarget.s .

THUMB_AWARE

If this variable is present and true, AFS builds as ARM-Thumb
interworking code. This is the default in some files. The files in
IntegratorT.b , for example, build Thumb interworking applications
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 11-17

Building AFS Components

ths
The environ.in File

This file describes whereuHAL is relative to this component and the set of board
variants that are built. Example 11-1contains theenviron.in file for the uHALDemos
component of AFS:

Example 11-1 environ.in

#
Copyright (C) ARM Limited 1999. All rights reserved.
#
#--
This set of makefile definitions describe the build
environment for the uHAL based programs
#--
Where is uHAL (relative to ./Boards/<BOARD_NAME>)
UHAL_BASE = ../../../uHAL
Where is PCI library (relative to ./Boards/<BOARD_NAME>)
PCILIB_BASE = ../../../PCI
Where is the Flash library
FLASHLIB_BASE = ../../../FlashLibrary
The set of boards/subdirectories that we need to build.
BOARDS = Integrator IntegratorT Integrator720T Integrator740T \
Integrator920T Integrator940T Integrator966T Prospector1100 \
PID7T PID740T PID940T

Board-specific makefile

Example 11-2 is the board-specific makefile for the Integrator variant of the
uHALDemos component. The environ.in file for this component is used to get the pa
to other include and rules files.

Example 11-2 Board-specific makefile

Copyright (C) ARM Limited 1999. All rights reserved.
uHAL demo makefile
#
include ../../environ.in
#--
Locally defined things.
#--
BOARD_NAME = Integrator
11-18 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

Building AFS Components

path
#--
Use the uHAL rule sets
#--
include $(UHAL_BASE)/Build/$(BOARD_NAME).b/board.in
include $(UHAL_BASE)/rules.in

#**
Make targets
#**
#
On Integrator, we assume that we're running out of Flash at
0x24800000 and that we don't care how we got into memory.
Practically this means being flashed via EmbeddedICE or
MultiICE.
#
all:

$(MAKE) TARGET=semihosted semihosted_all
$(MAKE) TARGET=standalone TEXT=0x24800000 \
DATA=0x00010000 TYPE='-aifbin' standalone_all

include ../common.make

#**
clean up the development tree.
#**
clean: # clean up

$(MAKE) TARGET=semihosted semihosted_clean
$(MAKE) TARGET=standalone standalone_clean

11.4.5 Location of control files

When the makefile requires access to include files located in other directories, the
to the files is defined by relative paths and by defined variables. For example, the
makefile in:

c:\AFS\source\Integrator940T\uHal\Build\Integrator940T.b

includesrules.in andboards.in from:

C:\AFS\source\Integrator940T\uHal\

since the UHAL_BASE variable defines a relative path:

UHAL_BASE = ../../
include board.in
include $(UHAL_BASE)/rules.in
include $(UHAL_BASE)/boards.in
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 11-19

Building AFS Components

mats.

F

or
11.5 Build output files

The ARM Project Manager, CodeWarrior IDE, and GNUmake build ELF files for
standalone and semihosted operation. Some of the build tools also make other for
The formats supported by AFS are:

output .axf

This is anARM eXecutable Format(.axf) file that is an ELF format
image. This can be converted into other formats by using the fromEL
utility.

output .a

This is an ARM library (armar) format image used with ADS. (This
format is used when a library is created that will be linked with other
code.)

output .alf

This is an ARM format image used with SDT.

output .aifbin

This is a binary image with an AIF header.

output .bin

This is a plain binary image.

Use the fromELF utility to produce other formats, for example Motorola S-record. F
more information on image formats, see the documentation for your ARM toolkit.
11-20 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

Building AFS Components

ed

he

rt of
ur

C

r

d

riate
s a
11.6 Using the ADS C libraries

This section provides an overview of theARM Development Suite(ADS) libraries. You
can extend the library by creating new functions or by replacing existing semihost
functions with standalone functions.

For a detailed description of how the libraries comply with the ISO standard, see t
chapter on compilers in theADS Tools Guide.

See the description of semihosting in theADS Debug Target Guidefor more
information on the debug environment.

You can re-implement any of the target-dependent functions of the C library as pa
your application. This lets you tailor the C library, and therefore the C++ library, to yo
own execution environment.

Building an application with ADS and µHAL combines the high-level support of the
and C++ library with the low-level routines of µHAL.

11.6.1 ADS build options and library variants

When you build your application, you must make certain fundamental choices. Fo
example:

Byte order Big-endian or little-endian.

Processor Different processors have different capabilities, for example Thumb
support, that are supported in different library variants.

Scatter loading or single area

µHAL does not support scatter loading.

Floating-point support

FPA, VFP, software, or none. µHAL uses software floating point.

Position-independence

µHAL does not support ROPI or RWPI (position independent code an
position independent data).

When you link your assembly language, C, or C++ code, the linker selects approp
C and C++ library variants compatible with the build options you specified. There i
variant of the ANSI C library for each combination of major build options.
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 11-21

Building AFS Components

y

or

n

le.
n

ed
11.6.2 ADS library directory structure

The ADS libraries are installed in two subdirectories within
ADS_install_directory \lib :

armlib This subdirectory contains the variants of the ARM C library, the
floating-point arithmetic library, and the math library.

cpplib This subdirectory contains the variants of the Rogue Wave C++ librar
and supporting C++ functions. The Rogue Wave and supporting C++
functions are collectively referred to as the ARM C++ Libraries.

NoteNote
• The ARM C libraries are supplied in binary form only.

• The ADS libraries must not be modified. If you want to create a new
implementation of a library function, place the new function in an object file,
your own library, and include it when you link the application. Your version of
the function is used instead of the standard library version.

• Normally, only a few functions in the ANSI C library require re-implementatio
in order to create a target-dependent application.

• The source for the Rogue Wave Standard C++ Library is not freely distributab
You can obtain it from Rogue Wave Software Inc., or through ARM Ltd, for a
additional licence fee. See the Rogue Wave online documentation in
ADS_install_directory \Html for more about the C++ library supplied with
ADS.

11.6.3 µHAL initialization of the library

Library initialization performed by µHAL during both the standalone and semihost
startup allows µHAL to remain in control of the system. The library initialization
routines are:

• __rt_stackheap_init()

• _init_alloc()

• _initio()

An example of initialization code is shown in Example 11-3.
11-22 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

Building AFS Components

ave
e

rface
ry

.

Example 11-3 Library initialization

uHALir_CLibInit
STMFD sp!, {r14}
; Must keep the next two routine calls in order, init_alloc
; needs the heap base and limit in r0 and r1 respectively.
BL __rt_stackheap_init
BL _init_alloc
LDR r4, =_initio
BLNE _initio ;Opens stdin, stdout and stderr
LDMFD sp!, {pc} ; restore registers and return

Upon branching to main, both the heap and stacks and the standard I/O streams h
been initialized. The floating point initialization must also be performed if the imag
has been built to use software floating point.

11.6.4 µHAL and the ADS run-time memory model

Define the locations of the stack and heap and their respective sizes using the inte
provided by the library. µHAL defines a new memory model using the provided libra
interface.

To define a new memory model__rt_stack_heap_init() is provided, along with
the stack limit handling function__rt_stack_overflow() if the images are to be
built with stack checking. The current implementation is shown in Example 11-4.

Example 11-4 Stack and heap initialization

__rt_stackheap_init
LDR r4, =uHALiv_BaseOfMemory
LDR a1, [r4] ; Here's the top of free RAM
LDR r4, =uHALiv_TopOfHeap ; Top of installed memory
LDR a2, [r4]
MOV pc, lr

Since µHAL initializes stacks separately,__rt_stack_heap_init() returns only the
lower and upper bounds of memory to be used as a heap ina1 anda2. An
_init_alloc() function then uses this data to initialize library heap management
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 11-23

Building AFS Components

tup.

nt

not
r if

thin

d

tions

xits
The stack pointers for the various processor modes are initialized during µHAL star
The C library inherits these stacks and therefore no further stack initialization is
required. Because there is a valid heap and stack, the library memory manageme
facilities,malloc() , realloc() , calloc() , andfree() can be used unchanged
from the library.

If the heap is fully allocated__rt_heap_extend() is called. It attempts to return a
pointer to the location of the extended heap. You can use this interface to provide
additional non-contiguous blocks of memory to extend the heap. The library does
define a default implementation of this. However, it is used by the memory manage
defined. The current implementation simply returns zero ina1, denoting failure.

11.6.5 ADS I/O functions

Each of the I/O functions is based on a SWI interface. Since there is no support wi
µHAL for the SWI interface in the standalone case, some tailoring of the library is
necessary to present a common interface between the standalone and semihoste
images for theprintf() andscanf() families. There is no file system for the
standalone case. Therefore, file I/O requests must be denied. The I/O support func
require some modification to support standalone images.

11.6.6 ADS trap handling

Any run-time errors found by the library are signalled through the function
__rt_raise() that in turn calls__raise() . If there is no other signal handler
available__default_signal_handler() is called. This prints a message detailing
the error discovered by the library. The message is printed using_ttywrch() which
uses a SWI interface to output the message one character at a time.

The exception handling interface provided by the library in_ttywrch() must be
retargeted for the standalone case by the implementation of the required SWI.

The return value from__raise() denotes whether or not the exception has been
handled and if execution can continue. If the return value is non-zero the program e
through a call to_sys_exit() with the return value as the exit code.

11.6.7 Program handling

Library program termination is carried out by a branch toexit() that calls
_sys_exit() to shutdown the library and terminate the program using a SWI
interface. Modifications, similar to the library initialization modifications, give µHAL
control of program termination.
11-24 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

Building AFS Components

y

s
HAL
Therefore a return frommain() using program startup, as described inµHAL and the
ADS run-time memory modelon page 11-23, results in fall through to_sys_exit()

within boot.s . By shutting the library down from µHAL the present program
termination code remains the same with the addition of the following calls to librar
shutdown routines:

• _terminateio()

• _terminate_user_alloc()

Example 11-5 shows an example of program termination within µHAL.

Example 11-5 Program termination

BL main
_sys_exit

BL _terminateio ;close down any file I/O
BL _terminate_user_alloc ;Free any allocated memory
BL uHALir_DisableInt

IF :DEF: SEMIHOSTED
LDR r0, =angel_SWIreason_ReportException
LDR r1, =ADP_Stopped_ApplicationExit
SWI SWI_Angel

ENDIF
0

B %0 ; Loop forever

11.6.8 Building an application with ADS

This section describes:

• µHAL with ADSon page 11-25

• Build variantson page 11-26

• Retargeting µHAL functionson page 11-27

µHAL with ADS

All µHAL applications, by default, link with the ADS C library. The linker always scan
the appropriate C library for any non-weak references that are not resolved by the µ
library.

If, for example, a µHAL application references the C librarymalloc() functionality,
the linker includes the library member that containsmalloc() , as well as all associated
library members and initialization code.
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 11-25

Building AFS Components

e

.

L

g

e

ed
The initialization of the library routine is performed within µHAL startup code. In th
example ofmalloc() , the µHAL initialization routineuHALir_ClibInit() calls
_init_alloc() to initialize the library heap allocator. Ifmalloc() is not used by the
application, the library heap initialization is not included in the image.

Library members, routines (including initilization routines), and definitions are only
included in the image if they are directly or indirectly referenced by the application

NoteNote
There is a single exception. Floating point initialization is only performed if the µHA
library has been built to use software floating point emulation. This is due to the
possibility of hardware support that eliminates the requirement for C library floatin
point initialization code.

Build variants

The build optionUSE_C_LIBRARYcontrols how a µHAL application links against the
ADS C library:

• USE_C_LIBRARY =0uses the helper functions provided by µHAL, for exampl
__rt_udiv() and__raise() .

There is still some minimal functionality from the ADS C library because the
modulert_memcpy_w.o is always included from the C library. To build µHAL
applications that do not use the C library at all, you must provide your own
version of the memcopy routine__rt_memcpy_w() . (If you are building an
application that uses interworking, you must also provide
__16__rt_memcpy_w() .)

• USE_C_LIBRARY =1uses the helper functions provided by the C library.
(Examples of helper functions arert_memcpy_w.o , sys_command.o , and
rt_raise.o .)

If your µHAL application directly references any ADS C library routine, all associat
library members are included into the output image and the setting ofUSE_C_LIBRARY

is ignored. You can use the-noscanlib link option to prevent the including of C
library routines. The-noscanlib option causes a link failure if non-µHAL library
functions are referenced.
11-26 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

Building AFS Components
Retargeting µHAL functions

If an application references an ADS C library function and there is also a µHAL
implementation of the function, the µHAL version of the function is redundant. The
µHAL version is retargeted so that any calls are redirected to the C library
implementation (see Figure 11-6).

Figure 11-6 Redirection

For example, if an application uses the C library routineprintf() , any subsequent
calls touHALr_printf() are redirected to the C library implementation,printf() .
This is repeated formalloc() , free() , getchar() , putchar() , andgetc() .

However, if the application links against the C library but makes no reference to
non-µHAL functionality, none of the µHAL functions (for exampleuHALr_printf()

or uHALr_malloc()) are retargeted and appropriate C library initialization is not
performed.

printf("A")

uHALr_printf("B")

Code implementing
printf()

SWI call

Handler for print SWI
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. 11-27

Building AFS Components
11-28 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

n
or
-Glossary

ADS SeeARM Developer Suite.

ADU SeeARM Debugger for UNIX.

ADW SeeARM Debugger for Windows.

AFU SeeARM Flash Utility.

AFS SeeARM Firmware Suite.

ANSI American National Standards Institute.

API SeeApplication Programming Interface.

APM SeeARM Project Manager.

Application
Programming
Interface

The syntax of the functions and procedures within a module or library.

Angel Angel is a program that enables you to develop and debug applications running o
ARM-based hardware. Angel can debug applications running in either ARM state
Thumb state.

ARM Boot Flash
Utility

TheARM Boot Flash Utility(BootFU) allows modification of the specific boot flash
sector on the system.
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. Glossary-1

Glossary

t
s.

t
ution

n

n

ns.

the

port

ess

nts

e or
reset.
ARM Debugger for
UNIX

TheARM Debugger for UNIX(ADU) andARM Debugger for Windows(ADW) are two
versions of the same ARM debugger software, running under UNIX or Windows
respectively.

ARM Debugger for
Windows

SeeARM Debugger for Unix.

ARM Developer
Suite

A suite of applications, together with supporting documentation and examples, tha
enable you to write and debug applications for the ARM family of RISC processor

ARM eXtendable
Debugger

TheARM eXtendable Debugger(AXD) is the latest debugger software from ARM tha
enables you to make use of a debug agent in order to examine and control the exec
of software running on a debug target. AXD is supplied in both Windows and UNIX
versions.

ARM Flash Utility TheARM Flash Utility(AFU) is an application for manipulating and storing data withi
a system that uses the flash library.

ARM Firmware Suite A collection of utilities to assist in developing applications and operating systems o
ARM-based systems.

ARM Project
Manager

The ARM project manager is the component of SDT that controls building applicatio
The equivalent in ADT is the CodeWarrior IDE. Unix systems can use makefiles to
build applications.

ARMulator ARMulator is an instruction set simulator. It is a collection of modules that simulate
instruction sets and architecture of various ARM processors.

armsd The ARM Symbolic Debugger (armsd) is an interactive source-level debugger
providing high-level debugging support for languages such as C, and low-level sup
for assembly language. It is a command-line debugger that runs on all supported
platforms.

ATPCS TheARM and Thumb Procedure Call Standard(ATPCS) defines how registers and the
stack are used for subroutine calls.

AXD SeeARM eXtendable Debugger.

Big-Endian Memory organization where the least significant byte of a word is at a higher addr
than the most significant byte.

BootFU SeeARM Boot Flash Utility.

Boot monitor A ROM-based monitor that communicates with a host computer using simple
commands over a serial port. Typically this application is used to display the conte
of memory and provide system debug and self-test functions.

Boot switcher The boot switcher selects and runs an image in application flash. You can store on
more code images in flash memory and use the boot switcher to start the image at
Glossary-2 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

Glossary

ss

y and

ss

ems.

n
ts
Canonical Frame
Address

In DWARF 2, this is an address on the stack specifying where the call frame of an
interrupted function is located.

CFA SeeCanonical Frame Address.

CodeWarrior IDE The development environment for the ARM Developer Suite.

Coprocessor An additional processor which is used for certain operations. Usually used for
floating-point math calculations, signal processing, or memory management.

Debugger An application that monitors and controls the execution of a second application.
Usually used to find errors in the application program flow.

Double word A 64-bit unit of information. Contents are taken as being an unsigned integer unle
otherwise stated.

DWARF Debug With Arbitrary Record Format(DWARF) is a format for debug tables.

EC++ A variant of C++ designed to be used for embedded applications.

ELF Executable Linkable Format

Environment The actual hardware and operating system that an application will run on.

Execution view The address of regions and sections after the image has been loaded into memor
started execution.

Flash memory Non-volatile memory that is often used to hold application code.

Halfword A 16-bit unit of information. Contents are taken as being an unsigned integer unle
otherwise stated.

Hardware
abstraction layer

Code designed to conceal hardware differences between different processor syst

Heap The portion of computer memory that can be used for creating new variables.

Host A computer which provides data and other services to another computer.

ICE In Circuit Emulator.

IDE Integrated Development Environment, for example the CodeWarrior IDE in ADS.

Image An executable file which has been loaded onto a processor for execution.

A binary execution file loaded onto a processor and given a thread of execution. A
image may have multiple threads. An image is related to the processor on which i
default thread runs.

Inline Functions that are repeated in code each time they are used rather than having a
common subroutine. Assembler code placed within a C or C++ program.
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. Glossary-3

Glossary

et to

ss

ry but

utes.
will
See alsoOutput sections

Input section Contains code or initialized data or describes a fragment of memory that must be s
zero before the application starts.

See alsoOutput sections

Interworking Producing an application that uses both ARM and Thumb code.

Library A collection of assembler or compiler output objects grouped together into a single
repository.

Linker Software which produces a single image from one or more source assembler or
compiler output objects.

Little-endian Memory organization where the least significant byte of a word is at a lower addre
than the most significant byte. See alsoBig-endian.

Local An object that is only accessible to the subroutine that created it.

Load view The address of regions and sections when the image has been loaded into memo
has not yet started execution.

Memory
management unit

Hardware that controls caches and access permissions to blocks of memory, and
translates virtual to physical addresses.

MMU SeeMemory Management Unit.

Multi-ICE Multi-processor in-circuit emulator. ARM registered trademark.

Output section Is a contiguous sequence of input sections that have the same RO, RW, or ZI attrib
The sections are grouped together in larger fragments called regions. The regions
be grouped together into the final executable image.

See alsoRegion

PCI SeePeripheral Component Interconnect.

PCS Procedure Call Standard.

See alsoATPCS

Peripheral
Component
Interconnect

An expansion bus used with PCs and workstations.

PIC Position Independent Code.

See alsoROPI

PID Position Independent Dataor the ARM Platform-Independent Development card.
Glossary-4 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

Glossary

sure

rted
n

, RW,

ged at

than

de.
vate

tion
See alsoRWPI

Profiling Accumulation of statistics during execution of a program being debugged, to mea
performance or to determine critical areas of code.

Call-graph profilingprovides great detail but slows execution significantly.Flat
profiling provides simpler statistics with less impact on execution speed.

For both types of profiling you can specify the time interval between
statistics-collecting operations.

Program image See Image.

Reentrancy The ability of a subroutine to have more that one instance of the code active. Each
instance of the subroutine call has its own copy of any required static data.

Remapping Changing the address of physical memory or devices after the application has sta
executing. This is typically done to allow RAM to replace ROM once the initializatio
has been done.

Regions In an Image, a region is a contiguous sequence of one to three output sections (RO
and ZI).

Retargeting The process of moving code designed for one execution environment to a new
execution environment.

ROPI Read Only Position Independent. Code and read-only data addresses can be chan
run-time.

RTOS Real Time Operating System.

RWPI Read Write Position Independent. Read/write data addresses can be changed at
run-time.

Scatter loading Assigning the address and grouping of code and data sections individually rather
using single large blocks.

Scope The accessibility of a function or variable at a particular point in the application co
Symbols which have global scope are always accessible. Symbols with local or pri
scope are only accessible to code in the same subroutine or object.

Section A block of software code or data for an Image.

See alsoInput sections

Semihosting A mechanism whereby the target communicates I/O requests made in the applica
code to the host system, rather than attempting to support the I/O itself.

SIB SeeSystem Information Block.
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. Glossary-5

Glossary

g.

tem.
f

may

nge

to

ss
System Information
Block

A block of user-defined nonvolatile storage.

SWI Software Interrupt. An instruction that causes the processor to call a
programer-specified subroutine. Used by ARM to handle semihosting.

Target The actual target processor, (real or simulated), on which the application is runnin

The fundamental object in any debugging session. The basis of the debugging sys
The environment in which the target software will run. It is essentially a collection o
real or simulated processors.

Thread A context of execution on a processor. A thread is always related to a processor and
or may not be associated with an image.

Veneer A small block of code used with subroutine calls when there is a requirement to cha
processor state or branch to an address that cannot be reached from the current
processor state.

Watchpoint A location within the image which will be monitored and which will cause execution
break when it changes.

Word A 32-bit unit of information. Contents are taken as being an unsigned integer unle
otherwise stated.
Glossary-6 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

Index

The items in this index are listed in alphabetical order, with symbols and numerics appearing at the end. The
references given are to page numbers.
A
Access primitives, PCI 9-15
Accessing flash 7-5
AFS

about 1-3
Angel 1-12
board demontsrations 1-11
flash memory and 1-5
generic demonstrations 1-9
PCI 1-11
µC/OS 1-12
µHAL 1-3

AFU
operation 8-3
user commands 8-4

AFU commands
Delete All 8-13
Delete Block command 8-12
Diagnostic List 8-6
Diagnostic List Footer 8-8
Help command 8-17
Identify 8-18

List 8-5
List All 8-7
Program Image 8-13
Read image 8-17
Swap command 8-19
Test Block 8-11, 8-12

ambauart.h source file 6-9
Angel

building 6-10
cache memory 6-2
Integrator 6-4
Prospector 6-7
source file descriptions 6-13
sources and definitions 6-9
using 6-4
µHAL 6-2

Angel source file
banner.h 6-13
devices.c 6-14
makelo.c 6-15
serial.c 6-16
target.s 6-16
timerdev.c 6-16

ANSI C library
build options 11-21
directory structure 11-22

API
C library 11-21
extemded functions 3-3
extended coprocessor functions

3-51
extended initialization 3-32
extended MMU functions 3-40
extended timer functions 3-47
extended µHAL functions 2-3
flash library 7-11
MMU and cache 3-11
PCI 9-7
processor mode functions 3-44
simple functions 3-3
simple interrupt functions 3-34
simple LED functions 3-22
simple serial I/O functions 3-26
simple support functions 3-20
simple timer functions 3-13
simple µHAL functions 2-3
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. Index-1

Index
SWI function 3-39
types 2-3
µHAL functions 2-3
µHAL naming conventions 2-5

Applications programming interface,
see API

ARM Boot Monitor, see Boot monitor
ARM Flash Library 7-2
ARM Flash Utility, see AFU
ARM Project files 2-8, 11-2
ARM support xii
Assigning PCI interrupt numbers 9-11
Assigning resources to PCI devices

9-10

B
banner.h source file 6-9
Base address for PCI IO space 9-11
Base address for PCI Memory space

9-11
Baud rate, setting 4-5
Board-specific command mode 4-11
Boot monitor

functions 4-3
hardware accesses 4-2
Integrator 4-12
overview 4-2

Boot monitor commands
display help 4-7
display Integrator clocks 4-18
display Integrator hardware 4-21
display Integrator help 4-21
display memory 4-24
display PCI configuration 4-17
display PCI I/O 4-16
display PCI memory 4-16
display PCI topology 4-14, 4-16,

4-17
display Prospector help 4-23
display system memory 4-6
display V3 setup 4-13
enter board specific command mode

4-11
erase system flash 4-6
exit command mode 4-24
go to address 4-21, 4-24
identify the system 4-7

initialize PCI subsystem 4-13
load S-records into flash 4-7
poke memory 4-24
Prospector-specific 4-22
run image 4-24
set baud rate 4-5
set core clock 4-20
set default flash boot image number

4-5
set Integrator clocks 4-17
set memory clock 4-20
set PCI clock 4-20
system self tests 4-9
upload an image into memory 4-9
validate flash 4-11
view images 4-23

Boot switcher
Integrator 4-27
set default boot image 4-5

BootFU commands
clear 8-30
diagnosticList 8-25
help 8-24
identify 8-30
list 8-25
messages 8-31
overview 8-23
program 8-27
quit 8-29
read 8-29
swap 8-30

Building
boot monitor 4-34
using ARM project files 11-6
using GNU make 11-12
µHAL 11-2
µHAL application 2-7
µHAL library 2-8
µHAL-based Angel 6-10

C
Cache

library function 3-54
Code image area, flash 7-2
Code portability 7-5
Codewarrior IDE 2-8, 11-2
Contents iii

Coprocessor access functions 3-51
C++ library

Rogue Wave 11-22
source 11-22

D
Data structures, PCI 9-7
Demonstrations 1-11
devconf.h source file 6-9
devices.c source file 6-9
Display system memory command 4-6
Download to flash 7-11

E
Erase system flash command 4-6
Extended API functions 3-3
Extended µHAL functions 2-3
External file translation interface, flash

7-14

F
Feedback xii
File headers and formats, flash 7-14
Finding flash 7-41
Firmware 1-2
Fixed AIF 8-2
Flash 7-11

accessing 7-5
block access 7-12
device structure 7-6
executing an image 7-43
external interface functions 7-14
file formats 7-14
file processing functions 7-13, 7-29
footer information 7-3
footer structure 7-8
formatted files 7-14
image footers 7-12
image information 7-2, 7-3
image management 7-8
image structure 7-9
images 7-12
Integrator board 4-25
Index-2 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

Index
library and memory structure 7-2
library functions 7-16
library functions by type 7-11
library specifications 7-5
library usage 4-2
locating 7-11
management, overview 7-4
preparing and programming an

image 7-42
Prospector 4-30
reading a file into memory 7-41
reading an image to a file 7-42
simple file access 7-13
single word access 7-11
System Information Block 7-34
types 7-7
using the library 7-41
validate 4-11

Flash Library functions
fLib_BuildFooter() 7-28
fLib_ChecksumFooter() 7-23
fLib_ChecksumImage() 7-23
fLib_CloseFile() 7-30
fLib_DeleteArea() 7-19
fLib_DeleteImage() 7-22
fLib_ExecuteImage() 7-22
fLib_FindFlash() 7-16
fLib_FindFooter() 7-27
fLib_FindImage() 7-21
fLib_GetBlockSize() 7-19
fLib_GetEmptyArea() 7-24
fLib_GetEmptyFlash() 7-24
fLib_initFooter() 7-25
fLib_OpenFile() 7-30
fLib_OpenFlash() 7-16
fLib_ReadArea() 7-18
fLib_ReadFileHead() 7-31
fLib_ReadFileRaw() 7-29
fLib_ReadFile() 7-32
fLib_ReadFlash32() 7-17
fLib_ReadFooter() 7-25
fLib_ReadImage() 7-20
fLib_VerifyFooter() 7-27
fLib_VerifyImage() 7-21
fLib_WriteArea() 7-18
fLib_WriteFileHead() 7-32
fLib_WriteFileRaw() 7-29
fLib_WriteFile() 7-33
fLib_WriteFlash32() 7-17

fLib_WriteFooter() 7-26
fLib_WriteImage() 7-20
SIB_Close() 7-37
SIB_Copy() 7-38
SIB_Erase() 7-40
SIB_GetPointer() 7-37
SIB_GetSize() 7-39
SIB_Open() 7-36
SIB_Program() 7-38
SIB_Verify() 7-39

Footer information, flash 7-3
Formatted file access, flash 7-14
Frequently asked questions, µHAL 2-3
Further reading x

G
Global enumerated variables, µHAL

2-6
Global structures, µHAL 2-6
Global variables, µHAL 2-5
GNU makefiles 2-8

H
Hardware accesses

boot monitor 4-2
Header information, flash 7-2
Help

AFU 8-17
boot monitor 4-7
BootFU 8-24

Host bridge initialization, PCI 9-9

I
Identify the system command 4-7
Image information, flash 7-2, 7-3
Initializing

API functions 3-32
memory in boot monitor 4-2
PCI 9-7
simple operating system 5–4
system 2-4

Installing GNU make on Windows
11-12

Integrator board
boot monitor 4-25
loading Angel 6-4
PCI initilization 9-26
using flash memory 4-25

integrator.h source file 6-9
Internal pointers, µHAL 2-6
Internal variables, µHAL 2-6
Interrupt

assigning PCI 9-11
extended API 3-34
handling functions 3-34
routing PCI 9-15
simple API functions 3-8
µHAL control 2-5

L
LED

control code example 3-25
Integrator 4-27
µHAL generic 2-5

Licensing
µC/OS-II 5–4

Load S-records into flash command
4-7

Locating flash 7-11

M
Makefile 11-6

Board-specific 11-15
common rules file 11-14
environment file 11-15
generic 11-15
GNU 11-2

makelo.c source file 6-9
Memory

API functions 3-4
boot monitor initilization 4-2
extended MMU and cache API 3-40
initialization in boot monitor 4-2
management by µHAL 2-5
MMU and cache example 3-12
MMU library support 3-54
simple MMU and cache API 3-11

Motorola S-record 8-2
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. Index-3

Index
loader 4-4

N
Naming conventions

µHAL 2-5
µHAL global enumerated variables

2-6
µHAL global structures 2-6
µHAL global variables 2-5
µHAL internal pointers 2-6
µHAL internal variables 2-6
µHAL pointers 2-6

O
Object types, µHAL 2-5
Operating modes, µHAL applications

2-3
Operating system

complex 5–2, 5–12
context switching 5–7
efficiency considerations 5–11
Linux 5–2
porting 5–12
simple 5–2
µC/OS 5–2

P
PCI

about 9-2
address spaces 9-4
configuration 9-4
configuration header 9-5
configuration space 9-4
data structures 9-7
definitions 9-14
device driver example 9-23
function descriptions 9-16
host bridge 9-2
Host bridge initialization 9-9
host bus 9-2
ISA bridge 9-3
I/O space 9-6
library 4-2, 9-7

library data structure 9-9
library functions 9-13
memory space 9-6
overview 9-2
PCI bridge 9-3, 9-6
primary bus 9-3
resource allocation 9-15
resources 9-10
scanning 9-10
secondary bus 9-3
subsystem initialization 9-7
Type 0 configuration cycle 9-5
Type 1 configuration cycle 9-6
µHAL extensions 9-15

PCI functions
PCIr_FindDevice 9-13
PCIr_ForEveryDevice() 9-13
PCIr_Init() 9-13
uHALir_PCIInit 9-16
uHALir_PCIMapInterrupt 9-21
uHALr_PCICfgRead16 9-17
uHALr_PCICfgRead32 9-18
uHALr_PCICfgRead8 9-17
uHALr_PCICfgWrite16 9-19
uHALr_PCICfgWrite32 9-19
uHALr_PCICfgWrite8 9-18
uHALr_PCIHost 9-16
uHALr_PCIIORead16 9-20
uHALr_PCIIORead32 9-20
uHALr_PCIIORead8 9-19
uHALr_PCIIOWrite16 9-21
uHALr_PCIIOWrite32 9-21
uHALr_PCIIOWrite8 9-20

Pointer, µHAL 2-6
Processor execution mode functions

3-44
Project files 11-6
Prospector board

boot monitor 4-30

R
Related publications x
Relocatable AIF 8-2
Running

AFU 8-3
boot monitor 4-4
BootFU 8-21

S
Scanning the PCI system 9-10
Serial port

example 3-28
functions 3-26
µHAL initialization 2-4

serial.c source file 6-9
Set baud rate command 4-5
Set boot image command 4-5
Setting up AFU 8-3
SIB functions

description 7-34
SIB_Close() 7-37
SIB_Copy() 7-38
SIB_Erase() 7-40
SIB_GetPointer() 7-37
SIB_GetSize() 7-39
SIB_Program() 7-38
SIB_Verify() 7-39

SIB_Open() 7-36
Simple API functions 3-3
Simple file access, flash 7-13
Simple µHAL functions 2-3
Software interrupt (SWI) function 3-39
Source files

Angel 6-8, 6-13
µHAL 11-4

Starting up flash 7-41
Support functions 3-20
SWI calls 2-4
System information block, see SIB
System initialization, µHAL 2-4
System self test 4-4

command 4-9
System timer programming example

3-15

T
Table of contents iii
Terminal emulator

boot monitor 4-2
loading boot monitor with 4-28
settings 4-28

Timer
extended API functions 3-47
simple API functions 3-13
Index-4 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

Index
µHAL generic 2-4
timerdev.c source file 6-9
Troubleshooting 10-1
Typographical conventions ix

U
uHALir_CacheSupported() 3-54
uHALir_CheckUnifiedCache() 3-55
uHALir_CleanDCacheEntry() 3-42
uHALir_CleanDCache() 3-41
uHALir_CpuControlRead() 3-51
uHALir_CpuControlWrite() 3-52
uHALir_CpuIdRead() 3-51
uHALir_DefineIRQ() 3-36
uHALir_DisableDCache() 3-41
uHALir_DisableICache() 3-41
uHALir_DisableTimer() 3-49
uHALir_DisableWriteBuffer() 3-42
uHALir_DispatchIRQ() 3-37
uHALir_EnableDCache() 3-41
uHALir_EnableICache() 3-40
uHALir_EnableWriteBuffer() 3-42
uHALir_EnterLockedSvcMode() 3-45
uHALir_EnterSvcMode() 3-44
uHALir_ExitSvcMode() 3-45
uHALir_GetTimerIRQ() 3-49
uHALir_InitBSSMemory() 3-33
uHALir_InitTargetMem() 3-33
uHALir_MMUSupported() 3-54
uHALir_MPUSupported() 3-54
uHALir_NewIRQ() 3-35, 3-36
uHALir_PCIInit 9-16
uHALir_PCIMapInterrupt 9-21
uHALir_PlatformInit() 3-33
uHALir_ReadCacheMode() 3-42
uHALir_ReadMode() 3-45
uHALir_TimeHandler() 3-48
uHALir_TrapIRQ() 3-35
uHALir_WriteCacheMode() 3-43
uHALir_WriteMode() 3-46
uHALr_CountLEDs() 3-23
uHALr_CountTimers() 3-13
uHALr_DisableCache() 3-12
uHALr_DisableInterrupt() 3-10
uHALr_EnableCache() 3-12
uHALr_EnableInterrupt() 3-10
uHALr_EnableTimer() 3-19

uHALr_EndOfFreeRam() 3-4
uHALr_EndOfRam() 3-5
uHALr_FreeInterrupt() 3-9
uHALr_FreeTimer() 3-16
uHALr_free() 3-6
uHALr_getchar() 3-26
uHALr_GetTimerInterval() 3-17
uHALr_GetTimerState() 3-18
uHALr_HeapAvailable() 3-5
uHALr_InitHeap() 3-5
uHALr_InitInterrupts() 3-8
uHALr_InitLEDs() 3-23
uHALr_InitMMU() 3-11
uHALr_InitTimers() 3-14
uHALr_InstallSystemTimer() 3-15
uHALr_InstallTimer() 3-16
uHALr_LibraryInit() 3-53
uHALr_malloc() 3-6
uHALr_memcmp() 3-20
uHALr_memcpy() 3-21
uHALr_memset() 3-20
uHALr_PCICfgRead16 9-17
uHALr_PCICfgRead32 9-18
uHALr_PCICfgRead8 9-17
uHALr_PCICfgWrite16 9-19
uHALr_PCICfgWrite32 9-19
uHALr_PCICfgWrite8 9-18
uHALr_PCIHost 9-16
uHALr_PCIIORead16 9-20
uHALr_PCIIORead32 9-20
uHALr_PCIIORead8 9-19
uHALr_PCIIOWrite16 9-21
uHALr_PCIIOWrite32 9-21
uHALr_PCIIOWrite8 9-20
uHALr_printf() 3-27
uHALr_putchar() 3-27
uHALr_ReadLED() 3-24
uHALr_RequestInterrupt() 3-9
uHALr_RequestSystemTimer() 3-14
uHALr_RequestTimer() 3-16
uHALr_ResetLED() 3-23
uHALr_ResetMMU() 3-11
uHALr_ResetPort() 3-26
uHALr_SetLED() 3-24
uHALr_SetTimerInterval() 3-17
uHALr_SetTimerState() 3-18
uHALr_StartOfRam() 3-4
uHALr_strlen() 3-21
uHALr_TrapSWI() 3-39

uHALr_WriteLED() 3-24
Upload an image command 4-9
User commands, AFU 8-4
Using AFU 8-3
Using the flash library 7-41

V
Validate flash command 4-11

Symbols
µHAL

Angel 6-8
API 3-2
application operating modes 2-3
building 2-8, 11-2
coprocessor functions, extended

3-51
frequently asked questions 2-3
global enumerated variable naming

2-6
global structure naming 2-6
global variable naming 2-5
initialization functions, extended

3-32
internal pointer naming 2-6
internal variable naming 2-6
interrupt functions 3-8
interrupt handling functions,

extended 3-34
LED functions 3-22
licensing 2-2
memory functions 3-4
MMU and cache extended API 3-40
MMU and cache, simple API 3-11
naming conventions 2-5
object types 2-5
overview 2-2
parameter types 3-2
PCI extensions 9-15
PCI functions 9-15
pointer naming 2-6
processor execution mode functions

3-44
serial I/O functions 3-26
simple API functions 3-3, 3-4
ARM DUI 0102C Copyright © 1999, 2000 ARM Limited. All rights reserved. Index-5

Index
simple API interrupt functions 3-8
simple API LED control functions

3-22
source structure 11-4
support functions 3-20
SWI fuction, extended 3-39
system initialization 2-4
timer functions 3-13
timer functions, extended 3-47
Index-6 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0102C

	ARM Firmware Suite
	Contents
	Preface
	About this document
	Further reading
	Feedback

	Introduction to the AFS
	1.1 What is firmware?
	1.2 About the ARM Firmware Suite

	An Introduction to µHAL
	2.1 About µHAL
	2.2 Building a new µHAL-based application
	2.3 Building the µHAL library

	µHAL APIs
	3.1 About the µHAL APIs
	3.2 Simple API memory functions
	3.3 Simple API interrupt functions
	3.4 Simple API MMU and cache functions
	3.5 Simple API timer functions
	3.6 Simple API support functions
	3.7 Simple API LED control functions
	3.8 Serial input/output functions, definitions, and macros
	3.9 Extended API initialization functions
	3.10 Extended API interrupt handling functions
	3.11 Extended API software interrupt (SWI) function
	3.12 Extended API MMU and cache functions
	3.13 Extended API processor execution mode functions
	3.14 Extended API timer functions
	3.15 Extended API coprocessor access functions
	3.16 Library support functions

	ARM Boot Monitor
	4.1 About the boot monitor
	4.2 Common commands for the boot monitor
	4.3 Integrator-specific commands for boot monitor
	4.4 Prospector-specific commands for boot monitor
	4.5 Using the boot monitor on Integrator
	4.6 Using boot monitor on Prospector
	4.7 Rebuilding the boot monitor

	Operating Systems and µHAL
	5.1 About porting operating systems
	5.2 Simple operating systems
	5.3 Complex operating system

	Angel
	6.1 About Angel
	6.2 Angel on Integrator
	6.3 Angel on Prospector
	6.4 µHAL-based Angel
	6.5 Building a µHAL-based Angel
	6.6 Source file descriptions
	6.7 Device drivers

	Flash Library Specification
	7.1 About the flash library
	7.2 About flash management
	7.3 ARM flash library specifications
	7.4 Functions listed by type
	7.5 Flash library functions
	7.6 File processing functions
	7.7 SIB functions
	7.8 Using the library
	7.9 Rebuilding the flash library

	Using the ARM Flash Utilities
	8.1 About the AFU
	8.2 Starting the AFU
	8.3 AFU commands
	8.4 The Boot Flash Utility
	8.5 BootFU commands

	PCI Management Library
	9.1 About PCI
	9.2 PCI configuration
	9.3 The PCI library
	9.4 PCI library functions and definitions
	9.5 About µHAL PCI extensions
	9.6 µHAL PCI function descriptions
	9.7 Example PCI device driver
	9.8 PCI initialization on Integrator
	9.9 Rebuilding the PCI library

	Troubleshooting and FAQ
	10.1 Frequently asked questions
	10.2 Troubleshooting

	Building AFS Components
	11.1 AFS component variants
	11.2 AFS source structure
	11.3 Using ARM project files
	11.4 Using GNUmake
	11.5 Build output files
	11.6 Using the ADS C libraries

	Glossary
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	Symbols

