
Integrator™/AP
ASIC Development Motherboard

User Guide
Copyright © 1999-2001. All rights reserved.
ARM DUI 0098B



 

Integrator/AP
User Guide

Copyright © 1999-2001. All rights reserved.

Release Information

Proprietary Notice

Words and logos marked with ® or ™ are registered trademarks or trademarks owned by ARM Limited, except 
as otherwise stated below in this proprietary notice. Other brands and names mentioned herein may be the 
trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document 
may be adapted or reproduced in any material form except with the prior written permission of the copyright 
holder.

The product described in this document is subject to continuous developments and improvements. All 
particulars of the product and its use contained in this document are given by ARM in good faith. However, 
all warranties implied or expressed, including but not limited to implied warranties of merchantability, or 
fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM Limited shall not be liable 
for any loss or damage arising from the use of any information in this document, or any error or omission in 
such information, or any incorrect use of the product.

Conformance Notices

This section contains conformance notices.

Federal Communications Commission Notice

This device is test equipment and consequently is exempt from part 15 of the FCC Rules under section 15.103 
(c).

Description Issue Change

8 September 1999 A New document

26 April 2001 B New note added to FCC statement regarding conformance conditions.

New subsections in System bus on page 3-3. These describe the system 
buses and signal routing.

Address errors in Chapter 4 corrected.

The section Logic module region on page 4-4 now to refers to distributed 
address decoding used by Integrator and requirement for modules to decode 
their own space.

New subsections added to EBI configuration registers on page 4-19 to better 
describe EBI functionality.

Appendix now contains ASB and AHB signals.
ii Copyright © 1999-2001. All rights reserved. ARM DUI 0098B



 

CE Declaration of Conformity

This equipment has been tested according to ISE/IEC Guide 22 and EN 45014. It conforms to the following 
product EMC specifications:

The product herewith complies with the requirements of EMC Directive 89/336/EEC as amended.

Confidentiality Status

This document is Open Access. This document has no restriction on distribution.

Product Status

The information in this documents is Final (information on a developed product).

Web Address

http://www.arm.com
ARM DUI 0098B Copyright © 1999-2001. All rights reserved. iii



 

iv Copyright © 1999-2001. All rights reserved. ARM DUI 0098B



Contents
Integrator/AP User Guide

Preface
About this document .................................................................................... xiv
Further reading ............................................................................................ xvi
Feedback ...................................................................................................  xviii

Chapter 1 Introduction
1.1 About the Integrator/AP ..............................................................................  1-2
1.2 Integrator/AP system features ....................................................................  1-4
1.3 Connectors ..................................................................................................  1-9
1.4 LEDs .........................................................................................................  1-10
1.5 Test points ................................................................................................  1-12

Chapter 2 Setting up the Integrator/AP
2.1 About setting up the Integrator/AP ..............................................................  2-2
2.2 Installing core modules and logic modules .................................................  2-3
2.3 Setting the DIP switches .............................................................................  2-6
2.4 Connecting power .......................................................................................  2-7
2.5 Installing the Integrator/AP in a CompactPCI card rack ..............................  2-9
2.6 Using the boot monitor ..............................................................................  2-10

Chapter 3 Hardware Description
3.1 System controller FPGA ..............................................................................  3-2
ARM DUI 0098B Copyright © 1999-2001. All rights reserved. v



Contents
3.2 System bus .................................................................................................  3-3
3.3 External bus interface ...............................................................................  3-11
3.4 Reset controller ........................................................................................  3-12
3.5 Clock generator ........................................................................................  3-15
3.6 Interrupt controller ....................................................................................  3-19
3.7 Peripherals ...............................................................................................  3-22

Chapter 4 Programmer’s Reference
4.1 About the Integrator memory map ..............................................................  4-2
4.2 System memory map regions .....................................................................  4-4
4.3 Accesses to boot ROM and flash ...............................................................  4-9
4.4 System control registers ...........................................................................  4-10
4.5 EBI configuration registers .......................................................................  4-19
4.6 Counter/timer registers .............................................................................  4-23
4.7 Alphanumeric display, LED, and DIP switch registers ..............................  4-25
4.8 Interrupt controller registers ......................................................................  4-29
4.9 Peripheral registers ..................................................................................  4-36

Chapter 5 PCI Subsystem
5.1 About the PCI subsystem ...........................................................................  5-2
5.2 System to local bus bridge operation .........................................................  5-6
5.3 V360EPC PCI to Host Bridge operation .....................................................  5-9
5.4 PCI to PCI bridge operation ......................................................................  5-15
5.5 Initializing the PCI subsystem ...................................................................  5-16
5.6 PCI subsystem interrupts .........................................................................  5-17

Appendix A Connector Pinouts
A.1 Inter-module connectors HDRA and EXPA ................................................  A-2
A.2 Core module connector HDRB ...................................................................  A-5
A.3 Logic module connector EXPB ...................................................................  A-8
A.4 Expansion module connector EXPM ........................................................  A-11
A.5 Serial interface connectors .......................................................................  A-14
A.6 Keyboard and mouse connectors .............................................................  A-15

Appendix B Specifications
B.1 Mechanical details ......................................................................................  B-2
B.2 Electrical specification ................................................................................  B-3
B.3 Timing specification ....................................................................................  B-4

Appendix C Interfacing to the System Bus
C.1 About the system bus .................................................................................  C-2
C.2 Interfacing with the ASB system bus ..........................................................  C-3
C.3 Interfacing to the AHB system bus .............................................................  C-5
vi Copyright © 1999-2001. All rights reserved. ARM DUI 0098B



List of Tables
Integrator/AP User Guide

  ii
Table 1-1 Connector summary ..................................................................................................  1-9
Table 1-2 LED functional summary .........................................................................................  1-11
Table 1-3 Test point functions .................................................................................................  1-12
Table 2-1 DIP switch settings ....................................................................................................  2-6
Table 3-1 CFGSEL[1:0] encoding .............................................................................................  3-5
Table 3-2 Rotated signal assignment ........................................................................................  3-6
Table 3-3 Arbitration signal assignment ....................................................................................  3-8
Table 3-4 EBI chip-select assignment .....................................................................................  3-11
Table 3-5 Reset signal descriptions ........................................................................................  3-13
Table 3-6 SYSCLK divider values ...........................................................................................  3-16
Table 3-7 P_CLK divider values ..............................................................................................  3-17
Table 3-8 UARTCLK divider values ........................................................................................  3-18
Table 4-1 Top level Integrator/AP memory map .......................................................................  4-4
Table 4-2 Recommended logic module address decoding .......................................................  4-4
Table 4-3 Aliased core module SDRAM mapping .....................................................................  4-5
Table 4-4 ROM, RAM, and peripherals region ..........................................................................  4-6
Table 4-5 External bus interface chip selects ............................................................................  4-6
Table 4-6 Peripheral registers ...................................................................................................  4-7
Table 4-7 System controller status and control registers ........................................................  4-10
Table 4-8 SC_ID register .........................................................................................................  4-11
Table 4-9 SC_OSC register ....................................................................................................  4-12
Table 4-10 System control register ...........................................................................................  4-13
ARM DUI 0098B Copyright © 1999-2001. All rights reserved. vii



List of Tables
Table 4-11 SC_DEC register ....................................................................................................  4-14
Table 4-12 SC_ARB register ....................................................................................................  4-15
Table 4-13 SC_PCI register ......................................................................................................  4-15
Table 4-14 SC_LOCK register ..................................................................................................  4-16
Table 4-15 SC_LBFADDR register ...........................................................................................  4-16
Table 4-16 SC_LBFCODE register ...........................................................................................  4-17
Table 4-17 System controller flag registers ..............................................................................  4-18
Table 4-18 EBI configuration register locations ........................................................................  4-19
Table 4-20 EBI_CSRx default values .......................................................................................  4-20
Table 4-19 EBI_CSRx register ..................................................................................................  4-20
Table 4-21 EBI_LOCK register .................................................................................................  4-22
Table 4-22 Counter/timer registers ...........................................................................................  4-23
Table 4-23 TIMERx_CTL register .............................................................................................  4-24
Table 4-24 LED control and switch registers ............................................................................  4-25
Table 4-25 LED_ALPHA bit assignment ...................................................................................  4-26
Table 4-26 LED_ALPHA bit-to-segment mapping ....................................................................  4-26
Table 4-27 LED_LIGHTS register .............................................................................................  4-28
Table 4-28 LED_SWITCH register ............................................................................................  4-28
Table 4-29 IRQ register bit assignments ..................................................................................  4-31
Table 4-30 IRQ register addresses ...........................................................................................  4-32
Table 4-31 FIQ registers addresses .........................................................................................  4-33
Table 4-32 Software interrupt register ......................................................................................  4-34
Table 4-33 Peripheral register locations ...................................................................................  4-36
Table 4-34 GPIO register summary ..........................................................................................  4-36
Table 4-35 RTC register summary ............................................................................................  4-38
Table 4-36 RTC_DR register ....................................................................................................  4-38
Table 4-37 RTC_MR register ....................................................................................................  4-39
Table 4-38 RTC_STAT/RTC_EOI registers ..............................................................................  4-39
Table 4-39 RTC_LR register .....................................................................................................  4-39
Table 4-40 RTC_CR register ....................................................................................................  4-40
Table 4-41 UART register summary .........................................................................................  4-41
Table 4-42 UARTx_DR register ................................................................................................  4-42
Table 4-43 UARTx_RSR ...........................................................................................................  4-43
Table 4-44 UARTx_LCRH register ...........................................................................................  4-44
Table 4-45 UARTx_LCRM register ...........................................................................................  4-45
Table 4-46 UARTx_LCML register ............................................................................................  4-46
Table 4-47 Typical baud rates and divisors ..............................................................................  4-46
Table 4-48 UARTx_CR register ................................................................................................  4-47
Table 4-49 UARTx_FR register ................................................................................................  4-49
Table 4-50 UARTx_IIR register .................................................................................................  4-50
Table 4-51 KMI register summary .............................................................................................  4-51
Table 4-52 KMI_CR register .....................................................................................................  4-52
Table 4-53 KMI_STAT register .................................................................................................  4-53
Table 4-54 KMI_DATA transmit/receive data register read/write bits .......................................  4-54
Table 4-55 KMI_CLKDIV register read/write bits ......................................................................  4-54
Table 4-56 KMI_IR register .......................................................................................................  4-55
Table 5-1 PCI outbound access windows ...............................................................................  5-10
viii Copyright © 1999-2001. All rights reserved. ARM DUI 0098B



List of Tables
Table 5-2 PCI inbound access windows .................................................................................  5-13
Table 5-3 PCI interrupts ..........................................................................................................  5-17
Table 5-4 System bus fault codes ...........................................................................................  5-19
Table 5-5 PCI IDSEL and interrupt assignments for the PCI expansion bus ..........................  5-20
Table 5-6 PCI IDSEL and interrupt assignments for the CompactPCI bus .............................  5-21
Table 5-7 PCI bus interrupt signal to interrupt controller assignment ......................................  5-21
Table 5-8 Interrupt to connector pin assignment .....................................................................  5-22
Table A-1 Bus bit assignment .................................................................................................... A-3
Table A-2 HDRB signal description ........................................................................................... A-6
Table A-3 EXPB signal description ............................................................................................ A-9
Table A-4 EXPM signal description ......................................................................................... A-11
Table A-5 Serial interface signal descriptions .......................................................................... A-14
Table A-6 Mouse and keyboard port signal descriptions ......................................................... A-15
Table B-1 Electrical characteristics ............................................................................................ B-3
Table B-2 Clock and reset parameters ...................................................................................... B-4
Table B-3 AHB slave input parameters ..................................................................................... B-5
Table B-4 AHB slave output parameters ................................................................................... B-5
Table B-5 Bus master input timing parameters ......................................................................... B-6
Table B-6 Bus master output timing parameters ....................................................................... B-6
Table B-7 AHB arbiter input parameters .................................................................................... B-6
Table B-8 AHB arbiter output parameters ................................................................................. B-7
Table B-9 Clock and reset parameters ...................................................................................... B-7
Table B-10 ASB slave input parameters ...................................................................................... B-8
Table B-11 ASB slave output parameters ................................................................................... B-8
Table B-12 Bus master input parameters .................................................................................... B-8
Table B-13 Bus master output parameters .................................................................................. B-9
Table B-14 ASB decoder input parameters ................................................................................. B-9
Table B-15 ASB decoder output parameters ............................................................................... B-9
Table B-16 ASB arbiter input parameters .................................................................................. B-10
Table B-17 ASB arbiter output parameters ................................................................................ B-10
Table B-18 ASB arbiter combinatorial parameters .................................................................... B-10
Table C-1 CFGSEL[1:0] encoding ............................................................................................  C-2
ARM DUI 0098B Copyright © 1999-2001. All rights reserved. ix



List of Tables
x Copyright © 1999-2001. All rights reserved. ARM DUI 0098B



List of Figures
Integrator/AP User Guide

Figure 1-1 Integrator/AP (not to scale) .......................................................................................  1-3
Figure 1-2 ARM Integrator/AP block diagram .............................................................................  1-5
Figure 1-3 LED locations ..........................................................................................................  1-10
Figure 1-4 Test points ...............................................................................................................  1-12
Figure 2-1 Assembled Integrator development system ..............................................................  2-3
Figure 2-2 Assembled Integrator/AP development system ........................................................  2-4
Figure 2-3 DIP switches .............................................................................................................  2-6
Figure 2-4 Power supply connector ............................................................................................  2-7
Figure 3-1 System controller FPGA functional block diagram ....................................................  3-2
Figure 3-2 System bus architecture ............................................................................................  3-4
Figure 3-3 Signal rotation scheme ..............................................................................................  3-7
Figure 3-4 Arbitration signal assignment to core and logic modules ..........................................  3-8
Figure 3-5 Integrator/AP reset control ......................................................................................  3-12
Figure 3-6 Clock generator block diagram ...............................................................................  3-15
Figure 3-7 Interrupt controller architecture ...............................................................................  3-19
Figure 3-8 nIRQ[3:0] signal routing ..........................................................................................  3-21
Figure 3-9 Counter/timer block diagram ...................................................................................  3-22
Figure 3-10 RTC block diagram .................................................................................................  3-24
Figure 3-11 Serial interface ........................................................................................................  3-26
Figure 3-12 KMI block diagram ..................................................................................................  3-28
Figure 4-1 Integrator memory map for core modules .................................................................  4-2
Figure 4-2 Integrator memory map for logic modules .................................................................  4-3
Figure 4-3 Core module alias memory mapping ........................................................................  4-5
ARM DUI 0098B Copyright © 1999-2001. All rights reserved. xi



List of Figures
Figure 4-4 Alphanumeric display segment designation ...........................................................  4-26
Figure 4-5 Interrupt control .......................................................................................................  4-29
Figure 4-6 GPIO direction control(1 bit) ...................................................................................  4-37
Figure 5-1 PCI subsystem ..........................................................................................................  5-3
Figure 5-2 System bus to PCI space mapping ...........................................................................  5-4
Figure 5-3 System to local bus bridge transactions ...................................................................  5-6
Figure 5-4 PCI to host bridge .....................................................................................................  5-9
Figure A-1 Connector pin numbering .........................................................................................  A-2
Figure A-2 HDRB pin numbering ................................................................................................  A-5
Figure A-3 EXPB socket pin numbering .....................................................................................  A-8
Figure A-4 EXPM pin numbering ..............................................................................................  A-11
Figure A-5 Serial interface connector pinout ............................................................................  A-14
Figure A-6 KMI connector pinouts ............................................................................................  A-15
Figure B-1 Board outline .............................................................................................................  B-2
xii Copyright © 1999-2001. All rights reserved. ARM DUI 0098B



Preface

This preface introduces the ARM Integrator/AP ASIC development platform and its 
reference documentation. It contains the following sections:

• About this document on page xiv

• Further reading on page xvi

• Feedback on page xviii.
ARM DUI 0098B Copyright © 1999-2001. All rights reserved. xiii



Preface 
About this document

This document provides a guide to how to set up and use the ARM Integrator/AP.

Intended audience

This document has been written for experienced hardware and software developers as 
an aid to using the ARM Integrator/AP as the basis of a the development platform for 
ARM-based products.

Organization

This document is organized into the following chapters: 

Chapter 1 Introduction 

Read this chapter for an introduction to the ARM Integrator/AP. This 
chapter identifies the main components and connectors. 

Chapter 2 Setting up the Integrator/AP 

Read this chapter for a description of how to set up and start using the 
Integrator/AP. This chapter describes how to attach modules to the 
Integrator/AP and how to apply power. 

Chapter 3 Hardware Description 

Read this chapter for a description of the hardware architecture of the 
Integrator/AP. This includes clock control, resets control, interrupts 
control and peripherals.

Chapter 4 Programmer’s Reference 

Read this chapter for a description of the system memory map and the 
system control, interrupt control, and peripheral registers.

Chapter 5 PCI Subsystem 

Read this chapter for a description of the PCI subsystem. This chapter 
provides details about the on-board PCI expansion and backplane 
interfaces

Appendix A Connector Pinouts 

Refer to this appendix for a description of the signals that appear on the 
card connectors.
xiv Copyright © 1999-2001. All rights reserved. ARM DUI 0098B



Preface 
Appendix B Specifications 

Refer to this appendix for electrical, timing, and mechanical 
specifications.

Appendix C Interfacing to the System Bus 

Refer to this appendix for information about the AMBA AHB and ASB 
buses as implemented on the Integrator/AP.

Typographical conventions

The following typographical conventions are used in this book:

typewriter Denotes text that can be entered at the keyboard, such as commands, file 
and program names, and source code.

typewriter Denotes a permitted abbreviation for a command or option. The 
underlined text can be entered instead of the full command or option 
name.

typewriter italic 

Denotes arguments to commands and functions where the argument is to 
be replaced by a specific value.

italic Highlights important notes, introduces special terminology, denotes 
internal cross-references, and citations.

bold Highlights interface elements, such as menu names and buttons. Also 
used for terms in descriptive lists, where appropriate.

typewriter bold 

Denotes language keywords when used outside example code and ARM 
processor signal names.
ARM DUI 0098B Copyright © 1999-2001. All rights reserved. xv



Preface 
Further reading

This section lists related publications by ARM Limited and other companies that may 
provide additional information.

ARM publications

The following publications provide information about related ARM Integrator modules:

• ARM Integrator/CM920T-ETM User Guide (ARM DUI 0149)

• ARM Integrator/CM940T, CM920T, CM740T, and CM720T User Guide (ARM 
DUI 0157)

• ARM Integrator/CM946E-S and CM966E-S User Guide (ARM DUI 0138)

• ARM Integrator/CM7TDMI User Guide (ARM DUI 0126)

• ARM Integrator/AM User Guide (ARM DDI 0133)

• ARM Integrator/LM-XCV600E and LM-EP20K600E User Guide 
(ARM DUI 0146)

• ARM Integrator/LM-XCV400+ User Guide (ARM DUI 0130)

The following publications provide reference information about ARM architecture:

• AMBA Specification (ARM IHI 0011)

• ARM Architectural Reference Manual (ARM DDI 0100)

• ARM PrimeCell UART (PL010) Technical Reference Manual (ARM DDI 0139)

• ARM PrimeCell RTC (PL030) Technical Reference Manual (ARM DDI 0140)

• ARM PrimeCell KMI (PL050) Technical Reference Manual (ARM DDI 0143).

The following publication provides information about the ARM Firmware Suite:

• ARM Firmware Suite Reference Guide (ARM DUI 0102)

The following publications provide information about ARM SDT 2.5:

• ARM Software Development Toolkit User Guide (ARM DUI 0040)

• ARM Software Development Toolkit Reference Guide (ARM DUI 0041).

The following publications provide information about the ARM Developer Suite:

• Getting Started (ARM DUI 0064)

• ADS Tools Guide (ARM DUI 0067)

• ADS Debuggers Guide (ARM DUI 0066)

• ADS Debug Target Guide (ARM DUI 0058)

• ADS Developer Guide (ARM DUI 0056)

• ADS CodeWarrior IDE Guide (ARM DUI 0065).
xvi Copyright © 1999-2001. All rights reserved. ARM DUI 0098B



Preface 
The following publication provide information about the Multi-ICE:

• Multi-ICE User Guide (ARM DUI 0048).

Other publications

The following publication provides information about the clock controller chip used on 
the Integrator modules:

• MicroClock OSCaR User Configurable Clock Data Sheet (MDS525), 
MicroClock Division of ICS, San Jose, CA.

The following publications provide information and guidelines for developing products 
for Microsoft Windows CE: 

• Standard Development Board for Microsoft® Windows® CE, 1998, Microsoft 
Corporation

• HARP Enclosure Requirements for Microsoft® Windows® CE, 1998, Microsoft 
Corporation

Further information on these topics is available from the Microsoft website.

For further information about the PCI local bus and CompactPCI, consult the following 
websites:

• PCI Special Interest Group: http://www.pcisig.com

• PCI Industrial Computer Manufacturers Group: http://www.picmg.com
ARM DUI 0098B Copyright © 1999-2001. All rights reserved. xvii



Preface 
Feedback

ARM Limited welcomes feedback both on the ARM Integrator/AP, and on the 
documentation.

Feedback on this document

If you have any comments about this document, please send email to errata@arm.com 
giving:

• the document title

• the document number

• the page number(s) to which your comments refer

• an explanation of your comments.

General suggestions for additions and improvements are also welcome.

Feedback on the ARM Integrator/AP

If you have any comments or suggestions about this product, please contact your 
supplier giving:

• the product name

• an explanation of your comments.
xviii Copyright © 1999-2001. All rights reserved. ARM DUI 0098B



Chapter 1 
Introduction

This chapter introduces the Integrator/AP. It contains the following sections: 

• About the Integrator/AP on page 1-2

• Integrator/AP system features on page 1-4

• LEDs on page 1-10

• Test points on page 1-12.
ARM DUI 0098B Copyright © 1999-2001. All rights reserved. 1-1



Introduction 
1.1 About the Integrator/AP

The Integrator/AP is an ATX form-factor motherboard that supports the development of 
applications and hardware for ARM processor-based products. It supports up to four 
processors on plug-in modules and provides clocks, bus arbitration, and interrupt 
handling for them. The Integrator/AP also provides operating system support with flash 
memory, boot ROM, and input and output resources. 

The Integrator/AP can be expanded in the following ways:

• by fitting up to five plug-in core modules or logic modules

• by fitting up to three PCI expansion cards

• by installing the Integrator/AP in a CompactPCI card rack.

The Integrator/AP can be used in one of three ways: 

• as a desktop development system

• in an ATX PC case

• in a CompactPCI card rack.

Figure 1-1 on page 1-3 shows the layout of Integrator/AP.
1-2 Copyright © 1999-2001. All rights reserved. ARM DUI 0098B



Introduction 
Figure 1-1 Integrator/AP (not to scale)

O
F

F

1
2

3
4

C
P

_V
(I/O

)

-12V

12V5V

3V
3

G
N

D

Power
button

Reset
button

Serial interface
connectors
(J14, J15)

Serial A

Serial B

Keyboard/mouse
connectors (J16)

Alphanumeric
display

External
alpha display

connector (J12)

4-pole DIP
switch

System controller
FPGA

Core module
connector
(HDRA)

System bus - PCI
bridge

PCI expansion
slots

(J9, J10, J11)

PCI-PCI
bridge

CompactPCI
connectors

(J1, J2)

CompactPCI
arbiter PLD

PCI arbiter PLD Power connector (J21)
(for bench powered use)

External bus
interface connector

(EXPM)

Logic module
connector
(EXPB)

Logic module
connector
(EXPA)

Boot ROM

Core module
connector
(HDRB)

ATX power
connector

(J3)

Flash memory

SRAM

Debug
connectors
(J23, J24)

External interrupts
connector

(J20)

Reset
connector

(J4)

Power-up
connector

(J13)

Power LED
connector

(J22)

FPGA OK
connector

(J8)

ATX Case
ARM DUI 0098B Copyright © 1999-2001. All rights reserved. 1-3



Introduction 
1.2 Integrator/AP system features

The major features on the Integrator/AP are as follows:

• system controller Field Programmable Gate Array (FPGA) that implements:

— system bus interface to core and logic modules

— system bus arbiter

— interrupt controller

— peripheral input and output controllers

— three counter/timers

— reset controller

— system status and control registers

• clock generator

• 32MB flash memory

• 256KB boot ROM

• 512KB SSRAM

• two serial ports (RS232 DTE)

• system expansion, supporting core and logic modules (up to 5 in total)

• PCI bus interface, supporting expansion on-board or in a CompactPCI card rack

• External Bus Interface (EBI), supporting memory expansion.
1-4 Copyright © 1999-2001. All rights reserved. ARM DUI 0098B



Introduction 
1.2.1 System architecture

Figure 1-2 illustrates the architecture of the Integrator/AP.

Figure 1-2 ARM Integrator/AP block diagram

Peripheral input/output

Flash

SRAM

Boot
ROM

System controller
FPGA

PCI host
bridge

PCI PCI
bridge

Core module
connectors

Logic module
connectors

External bus
interface

CompactPCI

System
bus

GPIO

Standard

PCI

slots
ARM DUI 0098B Copyright © 1999-2001. All rights reserved. 1-5



Introduction 
1.2.2 System controller FPGA

The FPGA provides system controller functions for the Integrator/AP-based 
development system. These functions are outlined in this section and described in detail 
in Chapter 3 Hardware Description.

System bus interface

The system bus interface is incorporated into the system controller FPGA. It provides 
arbitration for Integrator/AP and any attached modules. The system bus interface also 
supports transfers to and from the:

• Advanced Peripheral Bus (APB) peripherals implemented within the FPGA

• PCI bus

• EBI.

System bus arbiter

The system bus arbiter provides bus arbitration for a total of six bus masters. These can 
include:

• up to five masters on core modules or logic modules

• PCI bus bridge.

The PCI bus bridge is the highest priority, with the remaining masters being allocated 
mastership on a round-robin arbitration scheme. 

Interrupt controller

The interrupt controller handles IRQs and FIQs for up to four ARM processors. These 
originate from the peripheral controllers, from the PCI bus, and from devices on any 
attached logic modules. The interrupt controller allows interrupt requests from any of 
these sources to be assigned to any of the processors. Interrupts are enabled, 
acknowledged, and cleared using registers in the system controller FPGA.

Peripheral input/output controllers

The FPGA incorporates several peripheral devices. These include:

• two ARM PrimeCell UARTs (PL010)

• ARM PrimeCell Keyboard and Mouse Interface (KMI) (PL050)

• ARM PrimeCell Real Time Clock (RTC) (PL030)

• three 16-bit counter/timers

• GPIO controller

• alphanumeric display and LED controller, and switch reader.
1-6 Copyright © 1999-2001. All rights reserved. ARM DUI 0098B



Introduction 
The peripheral hardware is described in Chapter 3 Hardware Description, and 
programming information is provided in Chapter 4 Programmer’s Reference.

Reset controller

The reset controller initializes the Integrator/AP when the system is reset. It allows the 
Integrator-based development system to be reset from several sources, including:

• push button reset switch

• PCI backplane

• under software control using register accesses

• from core or logic modules

• from Multi-ICE.

System status and control registers

The system controller status and control register space allows software configuration 
and control of the operation of the Integrator/AP. Controls include:

• clock speeds

• software reset

• flash memory write protection.

1.2.3 Clock generator

The Integrator/AP provides clock generators that supply clocks for:

• the system bus 

• the UARTs

• the PCI sub-system

• the real-time clock, counter/timers, and KMI.

See Clock generator on page 3-15.

1.2.4 Memory

The memory on the Integrator/AP comprises:

• 256KB of boot ROM

• 32MB of 32-bit wide flash

• 512KB of 32-bit wide SSRAM

Reads from the flash memory, boot ROM, SSRAM, and external bus interface are 
controlled by the Static Memory Interface (SMI). The FPGA provides write-protection 
for the flash memory.
ARM DUI 0098B Copyright © 1999-2001. All rights reserved. 1-7



Introduction 
1.2.5 PCI bus interface

The Integrator/AP provides a V3 PCI host-bridge controller and a five-slot PCI arbiter. 
The on-board PCI interface provides three expansion connectors.

A PCI-PCI bridge, an additional eight-slot arbiter, and CompactPCI J1 and J2 
connectors allow the card to be installed in a CompactPCI card cage.

1.2.6 System expansion

System expansion allows: 

• up to four core modules to be stacked on the connectors HDRA and HDRB 

• up to four logic modules to be stacked on the connectors EXPA and EXPB

• PCI expansion cards to be added to J9, J10, and J11.

Note
 The combined total of logic and core modules that can be attached is five.

1.2.7 External bus interface

The Integrator/AP provides an external bus interface connector EXPM to allow 
additional memory to be added to the development system. Registers within the system 
controller are used to configure the interface to suit the application. 
1-8 Copyright © 1999-2001. All rights reserved. ARM DUI 0098B



Introduction 
1.3 Connectors

This section provides a summary of the connectors on the Integrator/AP. These are 
illustrated in Figure 1-1 on page 1-3 and listed in Table 1-1.

Connector pinouts and signal descriptions are provided in Appendix A Connector 
Pinouts. 

Table 1-1 Connector summary

Legend Function

J1 and J2 CompactPCI backplane connectors.

J3 PC ATX type power supply input.

J4 Reset. Can be connected to a panel mounted push button.

J5 and J6 Logic module connectors EXPA and EXPB.

J7 Expansion module connector EXPM.

J8 FPGA OK. Can be connected to a panel mounted LED to function as a 
System OK indicator.

J9, J10, J11 PCI bus expansion.

J12 Alphanumeric display extension. Can be connected to a panel mounted 
alphanumeric display. (Not fitted as standard.)

J13 Power button. Can be connected to a panel mounted push button.

J14 and J15 Serial channels A and B.

J16 Mouse (top) Keyboard (lower).

J18 and J19 Core module connectors HDRA and HDRB.

J20 Can be used to connect external interrupt sources. (Not fitted as standard.)

J21 Power supply input. Can be used to connect power from a bench power 
supply.

J22 Power LED. Can be connected to a panel mounted LED to function as a 
Power ON indicator.

J23 Test points for the PCI arbiter PLD. (Not fitted as standard.)

J24 Test points for the CompactPCI PLD. (Not fitted as standard.)
ARM DUI 0098B Copyright © 1999-2001. All rights reserved. 1-9



Introduction 
1.4 LEDs

The Integrator/AP provides nine LEDs for status indication. These are illustrated in 
Figure 1-3.

Figure 1-3 LED locations

3V3
5V

12V

LED0
LED1

LED2

LED3

C
P

_V
(I/O

)

-12V

12V5V

3V
3

G
N

D

Standby

ATX Case

FPGA OK
1-10 Copyright © 1999-2001. All rights reserved. ARM DUI 0098B



Introduction 
1.4.1 LED functional summary

The function of the LEDs is summarized in Table 1-2. 

1.4.2 Power button

Press this surface-mounted button to power up the Integrator/AP when power is applied 
to the ATX power connector J3.

1.4.3 Reset button

Press the reset button to reset the Integrator/AP and any attached core and logic 
modules. 

Table 1-2 LED functional summary

LED Color Function

LED0 Green This is a general purpose LED controlled by writing to bit 0 in 
the LED_LIGHTS register.

LED1 Yellow This is a general purpose LED controlled by writing to bit 1 in 
the LED_LIGHTS register.

LED2 Red This is a general purpose LED controlled by writing to bit 2 in 
the LED_LIGHTS register.

LED3 Green This is a general purpose LED controlled by writing to bit 3 in 
the LED_LIGHTS register.

3V3 Green Indicates that a 3.3V supply is available

5V Green Indicates that a 5V supply is available

12V Green Indicates that a 12V supply is available

STANDBY Red This LED illuminates when power is applied to the ATX 
power connector to warn that the power supply unit is in 
standby mode. To power on the Integrator/AP, press the 
POWER button.

FPGA OK Green This LED illuminates when the system controller FPGA has 
successfully loaded its configuration data following power on.
ARM DUI 0098B Copyright © 1999-2001. All rights reserved. 1-11



Introduction 
1.5 Test points

The Integrator/AP provides five test points as an aid to debug. These are illustrated in 
Figure 1-4. 

Figure 1-4 Test points

The function of the test points is summarized in Table 1-3. 

TP5 TP3

TP1TP2TP4

Table 1-3 Test point functions

Test point Signal Function

TP1 CLK24MHZ Crystal oscillator output

TP2 UARTCLK UART clock input to the system controller

TP3 SYSCLK System bus clock crystal oscillator output

TP4 CP_CLK PCI subsystem clock crystal oscillator output

TP5 nSYSRST Reset signal
1-12 Copyright © 1999-2001. All rights reserved. ARM DUI 0098B



Chapter 2 
Setting up the Integrator/AP

This chapter describes how to set up and use the Integrator/AP. It contains the following 
sections: 

• About setting up the Integrator/AP on page 2-2

• Installing core modules and logic modules on page 2-3

• Setting the DIP switches on page 2-6

• Connecting power on page 2-7

• Installing the Integrator/AP in a CompactPCI card rack on page 2-9

• Using the boot monitor on page 2-10.
ARM DUI 0098B Copyright © 1999-2001. All rights reserved. 2-1



Setting up the Integrator/AP 
2.1 About setting up the Integrator/AP

To set up the Integrator/AP carry out the following main steps:

1. Install a core module. Up to four core modules can be installed. See Installing 
core modules and logic modules on page 2-3.

2. Optionally, install a logic module. Up to four modules can be installed. See 
Installing core modules and logic modules on page 2-3

3. Set the DIP switches. See Setting the DIP switches on page 2-6.

4. Power the Integrator/AP by either:

• connecting a bench power supply (for use as a bench-top development 
system), or 

• installing the Integrator/AP in a CompactPCI card rack, or 

• installing the Integrator/AP into a ATX PC case. 

Note

 The CompactPCI connectors make the Integrator/AP larger than the 
standard ATX footprint and prevents it being fitted into some ATX cases. 
See Mechanical details on page B-2.

See Connecting power on page 2-7 and Installing the Integrator/AP in a 
CompactPCI card rack on page 2-9.

5. Optionally, connect a terminal or terminal emulator using a serial cable. See 
Using the boot monitor on page 2-10
2-2 Copyright © 1999-2001. All rights reserved. ARM DUI 0098B



Setting up the Integrator/AP 
2.2 Installing core modules and logic modules

An assembled Integrator/AP system is illustrated in Figure 2-1 showing the locations of 
the attached core modules and logic modules. 

Figure 2-1 Assembled Integrator development system

O
F

F

1
2

3
4

C
P

_V
(I/O

)

-12V

12V5V

3V
3

G
N

D

Logic moduleCore module
ARM DUI 0098B Copyright © 1999-2001. All rights reserved. 2-3



Setting up the Integrator/AP 
The core modules, logic modules, and expansion cards mount onto the Integrator/AP as 
follows:

• core modules on the connectors HDRA and HDRB

• logic modules on the connectors EXPA and EXPB

• memory expansion module on the connector EXPM.

Figure 2-2 shows four core modules and one logic module attached to an Integrator/AP. 

Figure 2-2 Assembled Integrator/AP development system

Note
 When fitting core or logic modules to the Integrator/AP:

• do not exceed four core modules or logic modules in one stack

• do not exceed a combined total of five core modules or logic modules on the 
Integrator/AP

• fit at least one core module.

Core module 0

Core module 1

Core module 2

Core module 3

Logic module
2-4 Copyright © 1999-2001. All rights reserved. ARM DUI 0098B



Setting up the Integrator/AP 
Fit a core module as follows:

1. Place the Integrator/AP on a firm level surface.

2. Align connectors HDRA and HDRB on core module with the corresponding 
connectors on the Integrator/AP.

3. Press firmly on both ends of the core module so that both connectors close 
together at the same time.

4. Repeat steps 2 and 3 for additional core modules.

Caution
 To prevent damage to the Integrator/AP:

• Power down before fitting or removing modules.

• Check the connectors on the underside of each module before fitting it. Ensure 
that there are no blocked holes that would cause damage to the motherboard 
connectors.

• When removing a module, or when separating modules, take care not to damage 
the connectors. Do not apply a twisting force to the end of the connectors. Loosen 
each connector first before pulling on both ends of the module at the same time.

• Protect the Integrator/AP from ElectroStatic Discharge (ESD).

2.2.1 Module ID

The ID of each core module or logic module is set automatically when it is mounted on 
the motherboard (there are no links to set). A number of signals on the HDRB and 
EXPB connectors are routed to each module according to its mounting location and 
position in the stack. Core module 0 (zero) and logic module 0 are always nearest to the 
motherboard. 

See the user guide for your core or logic module for a description of how these signals 
are used. 
ARM DUI 0098B Copyright © 1999-2001. All rights reserved. 2-5



Setting up the Integrator/AP 
2.3 Setting the DIP switches

The 4-pole DIP switch (S1), illustrated in Figure 2-3, is used to configure the Integrator 
platform. The switch settings can be read from the LED and switch register 
(LED_SWITCHES) and can be assigned any meaning required by the system 
developer. However, at reset, S1[1] is assigned a special meaning by the hardware.

Figure 2-3 DIP switches

At reset S1[1] is used to control whether the boot ROM or flash is located address 0x0 
and, therefore, where code execution begins. The switch settings are shown in Table 2-1 
(where x = don’t care).

To communicate with the boot monitor, connect a terminal using a null-modem cable to 
serial port A (J14). See Using the boot monitor on page 2-10.

The boot monitor only runs if S1[1] is in the ON position. The boot switcher component 
of the ARM Firmware Suite then uses S1[4] to select whether to jump to flash or to 
remain in a loop polling for serial input. If S1[4] is set to OFF, the boot monitor jumps 
to the boot image in flash.

OFF

1 2 3 4

S1

Table 2-1 DIP switch settings

S1[1] S1[2] S1[3] S1[4] Function

ON x x x Code starts execution from boot ROM following reset.

OFF x x x Code starts execution from flash following reset. 
2-6 Copyright © 1999-2001. All rights reserved. ARM DUI 0098B



Setting up the Integrator/AP 
2.4 Connecting power

There are three options for powering the Integrator/AP:

• from a bench power supply using the screw terminals at J21

• from a standard ATX PC power supply using the connector J3

• from a CompactPCI backplane.

The first two of these options are illustrated in Figure 2-4. 

Figure 2-4 Power supply connector

The Integrator/AP and ARM Integrator core modules only require 3.3V and 5V. 
Connect the 12V and –12V supplies if they are required by a logic module or PCI card.

5V

3V
3

G
N

D

C
P

_V
(I/O

)

-12V

12V5V

3V
3

G
N

D

Power button

Standby LED

From bench
power supply

3V35V12V

From ATX
power supply
ARM DUI 0098B Copyright © 1999-2001. All rights reserved. 2-7



Setting up the Integrator/AP 
Power the Integrator/AP as follows:

Caution

 Do not connect an external power supply to the CP_V (I/O) terminal. The 
Integrator/AP includes a circuit that provides 4V to CP_V(I/O) if the Integrator is not 
mounted in a CompactPCI card rack.

1. Connect a power supply, as illustrated in Figure 2-4 on page 2-7. 

2. Apply the necessary AC supply to the power supply:

If you are using a bench power supply, the Integrator/AP powers up. 

If you are using an ATX power supply, the standby LED illuminates. Press the 
power button to power the Integrator/AP development system up.

Caution
 Care must be taken to ensure that the power supply is connected correctly because there 
is no reverse polarity protection provided on the board.
2-8 Copyright © 1999-2001. All rights reserved. ARM DUI 0098B



Setting up the Integrator/AP 
2.5 Installing the Integrator/AP in a CompactPCI card rack

The Integrator/AP is a CompactPCI system controller. When it is installed in a 
CompactPCI card rack, it must be installed in the system slot. This slot is located either 
at the left or right end of the backplane and is denoted by a triangle. 

When the Integrator/AP is fitted with core modules and logic modules, it occupies up 
to three card slots (12HP). 

Caution

 Do not connect a power supply to J3 or J21 if the Integrator is installed in a CompactPCI 
card rack. 

Note
 The Integrator/AP is longer than a standard CompactPCI card and so protrudes from a 
card rack.
ARM DUI 0098B Copyright © 1999-2001. All rights reserved. 2-9



Setting up the Integrator/AP 
2.6 Using the boot monitor

The Integrator/AP is shipped with a boot monitor pre-programmed into the boot ROM. 
This section provides an overview of the boot monitor. A detailed description of the 
boot monitor is given in the ARM Firmware Suite Reference Guide.

This monitor allows the user to:

• load images into RAM and flash memory

• specify the flash image to boot 

• run system self tests

• set system clock frequencies

• initialize and interrogate the PCI subsystem.

Use serial port A (J14) to communicate with the boot monitor. Connect a standard null 
modem cable between the Integrator/AP and a terminal (or a PC running a terminal 
emulator). The serial port settings are:

• 38400 baud

• no parity

• 8 bits

• 1 stop bit

• Xon/Xoff software handshaking.

2.6.1 System startup

When the Integrator platform is powered up, a message similar to the following is 
displayed on the terminal:

ARM bootPROM [Version 1.2] Rebuilt on Sep 20 2000 at 13:51:50
Running on a Integrator Evaluation Board
Board Revision V1.0, ARM720T Processor
Memory Size is 32MBytes, Flash Size is 32MBytes
Copyright (c) ARM Limited 1999 - 2000. All rights reserved.
Board designed by ARM Limited
Hardware support provided at http://www.arm.com/

For help on the available commands type ? or h
boot Monitor > 

Type ? to display a list of the available commands. A menu is displayed:

ARM bootPROM [Version 1.2] Rebuilt on Sep 20 2000 at 13:51:50
H: Display help
?: Display help
I: Identify this system
B: Set Baud Rate
D: <hex> Display memory
2-10 Copyright © 1999-2001. All rights reserved. ARM DUI 0098B



Setting up the Integrator/AP 
V: Validate flash contents
BI: Set flash boot image number
E: Erase all of the application flash
T: Run the system self tests
L: Load a Motorola S-Record image into flash
M: Load a Motorola S-Record image into memory and run it

X: enter board specific command mode

This list of commands is generic to a range of boards. To display board-specific 
commands, type the following commands (commands can be entered in both uppercase 
and lowercase):

boot Monitor > x
[Integrator] boot Monitor > ?

The following menu is displayed.

ARM bootPROM [Version 1.2] Rebuilt on Sep 20 2000 at 13:51:52

?: Display help
H: Display help
I: (Re-)Initialise the PCI sub-system
V: Display V3 chip setup
P: Display PCI topology
DPI: <hex> Display PCI IO space (32 bit reads)
DPM: <hex> Display PCI Memory space (32 bit reads)
DPC: <hex> Display PCI Configuration space (32 bit reads)
SCC: Obsolete Command, use SC
SMC: Obsolete Command, use SC
SSC: Obsolete Command, use SC
SPC: Obsolete Command, use SC
SC: Set Clocks
CC: Set Clocks from SIB
DC: Display Clock Frequencies
DH: Display H/W (FPGA Versions etc.)
G: <hex> Goto address
PEEK: <hex> Display memory
POKE: <hex> <hex-value> Poke memory with value
MEM: Enable on chip memory
X: exit board specific command mode
ARM DUI 0098B Copyright © 1999-2001. All rights reserved. 2-11



Setting up the Integrator/AP 
2.6.2 System information block

The System Information Block (SIB) occupies the top sector of the flash memory and 
holds board-specific setup values. On the Integrator/AP the SIB is primarily used to 
store clock frequencies and program them when images are executed.

By default, the Integrator/AP and core module powers up with a set of frequencies that 
are suitable for a wide range of processor test chips. Use the DC command to list the 
default frequencies. To change the SIB settings, use the SC command to change the SIB 
settings. To change the board frequencies immediately to the SIB settings, use the CC 
command.

If S1[4] is in the OFF position when the board is reset, the clocks are changed to the SIB 
settings before the processor jumps to the bootable flash image. The clock frequency 
settings can be overridden at any time by an application that writes to the appropriate 
registers. 

2.6.3 Built-in self tests

The Integrator/AP firmware provides a number of self-tests that allow you to verify 
correct operation. To run the self-tests, type T at the boot monitor prompt. For example:

[Integrator] boot Monitor > x
boot Monitor > t
Generic Tests
Type any character to abort the tests
Timer tests
  Running Timer tests
  ++++++++++
  Timer tests successful
LED flashing test
  Lighting all 4 LEDs in sequence
Did you see the LEDs flash in sequence[Yn]? y
...performed 2 tests, 0 failures
Board Specific Tests
Type any character to abort the tests
Keyboard/mouse tests

Initialising KMI interface
==========================

KMI: wrote FF
KMI: wrote FF
    Port 0: Device unsupported or absent
    Port 1: Device unsupported or absent

...performed 1 tests, 0 failures
boot Monitor >
2-12 Copyright © 1999-2001. All rights reserved. ARM DUI 0098B



Setting up the Integrator/AP 
2.6.4 Displaying FPGA version information

To display FPGA version information for the AP, core modules, and logic modules, 
enter the following command:

[Integrator] boot Monitor > dh

Core Modules
============
                                        ------ FPGA ------
CM Core       Arch  SSRAM  SDRAM  Bus   Type     Rev Build
-- ----       ----  -----  -----  ---   ----     --- -----
0  ARM720       4T   256K    32M  ASB   XC4036XL  B    09
1  ARM966    5TExP     1M      0  AHB   XCV600    B    19

System
======
                                        ------ FPGA ------
                    SSRAM  Flash  Bus   Type     Rev Build
                    -----  -----  ---   ----     --- -----
                     512K    32M  AHB   XC4085XL  B    23

2.6.5 Possible effect on remap of using a debugger

When the Integrator system is powered up, the boot ROM is mapped at address 
0x00000000. To access RAM at this address, you must remap the memory (see Accesses 
to boot ROM and flash on page 4-9). 

However, occasionally when you use a debugger, the boot monitor does not run after 
power up and so does not remap the memory. If this happens, write to the appropriate 
core module register before loading code at address 0x00000000. 
ARM DUI 0098B Copyright © 1999-2001. All rights reserved. 2-13



Setting up the Integrator/AP 
2-14 Copyright © 1999-2001. All rights reserved. ARM DUI 0098B



Chapter 3 
Hardware Description

This chapter describes the Integrator/AP on-board hardware. It contains the following 
sections:

• System controller FPGA on page 3-2

• System bus on page 3-3

• External bus interface on page 3-11

• Reset controller on page 3-12

• Clock generator on page 3-15

• Interrupt controller on page 3-19

• Peripherals on page 3-22.
ARM DUI 0098B Copyright © 1999-2001. All rights reserved. 3-1



Hardware Description 
3.1 System controller FPGA

The system controller FPGA provides comprehensive system control and interface 
functions, as illustrated in Figure 3-1. These include:

• system bus interface and arbiter for AHB or ASB

• External Bus Interface (EBI)

• PCI bridge local interface 

• reset controller

• clock rate registers

• interrupt controller

• three counter/timers 

• two ARM PrimeCell UARTs (PL010)

• ARM PrimeCell Real Time Clock (RTC) (PL030)

• ARM PrimeCell Keyboard and Mouse Interface (KMI) (PL050)

• General Purpose Input/Output (GPIO) port 

• LED driver and boot switch reader.

Figure 3-1 System controller FPGA functional block diagram

Counter/
timers

2xUARTGPIOReal time
clock

PS/2
keyboard/

mouse
interface

LED/
display/
switch

Interrupt
controller

Status and
control

registers

System busExternal
system bus

interface

PCI bridge
controller

Static
memory
controller

System bus
bridge

PCI bridge
local bus
interface

External
bus

interface
Arbiter

Peripheral bus (APB)

PCI Host
Bridge

System
bus

Flash,SSRAM
and ROM
3-2 Copyright © 1999-2001. All rights reserved. ARM DUI 0098B



Hardware Description 
3.2 System bus

This section describes the system bus as it is implemented on Integrator/AP and 
contains the following:

• System bus description

• System bus configuration on page 3-4

• Module-assigned signal routing on page 3-5

• Bus arbitration on page 3-7

• JTAG signal routing on page 3-10.

3.2.1 System bus description

The HDRA/HDRB and EXPA/EXPB connector pairs are used to connect the system 
bus between the AP and other modules. Normally, the modules connect to the 
motherboard as follows: 

• core modules on the connectors HDRA and HDRB

• logic modules on the connectors EXPA and EXPB.

Note

 If you are implementing a processor core or DSP in a logic module and need to connect 
a debugger through the Multi-ICE server then you are advised to mount the logic 
module on the core module stack.

Figure 3-2 on page 3-4 shows the main buses on the motherboard. 

There are three main system buses (labeled A[31:0], C[31:0], and D[31:0]) routed 
between system controller FPGA on the AP and the FPGAs on core and logic modules. 
In addition, there is a fourth bus B[31:0]) routed between the HDRA and EXPA 
connectors. These buses have the following functions:

A[31:0] This is the address bus and is connected between the system controller 
FPGAs on the AP and the FPGAs on each module. 

B[31:0] This bus does not connect to the system controller FPGA on the AP, but 
only connects HDRA to EXPA. Logic modules and core modules that use 
Virtex FPGAs and also have pins connected to this bus.

The B[31:0] signals are reserved for future use.

C[31:0] The upper 10 signals on this bus C[31:22] are reserved. The remaining 
signals are used to implement a system control bus, as described in 
Inter-module connectors HDRA and EXPA on page A-2. 
ARM DUI 0098B Copyright © 1999-2001. All rights reserved. 3-3



Hardware Description 
D[31:0] This is the data bus and is connected between the FPGAs on the 
motherboard and on each module. The AHB on Integrator differs from 
the AMBA standard in that it uses a bidirectional bus HDATA rather than 
HWDATA and HRDATA (see Tristate AHB implementation on 
page C-6). Within the FPGAs, the bidirectional bus is split so that 
standard AHB masters and slaves can be implemented. 

Figure 3-2 System bus architecture

Note

 In addition to the buses described in this section the AP provides a 32-bit General 
Purpose Input/Output (GPIO) bus controlled by the GPIO peripheral in the system 
controller FPGA (see GPIO on page 3-29). This is routed to the EXPB connector only.

3.2.2 System bus configuration

The system bus is routed between FPGAs on core and logic modules and the AP. This 
enables the Integrator to support both of the AHB and ASB bus standards. At reset, the 
FPGAs are programmed with a configuration image stored in a flash memory device. 

FPGA

System controller
FPGA

System bus connectors System bus connectors

HDRA/HDRB

Core module

FPGA

EXPA/EXPB

Logic module

Integrator/AP

A[31:0]

B[31:0]

C[31:0]

D[31:0]
3-4 Copyright © 1999-2001. All rights reserved. ARM DUI 0098B



Hardware Description 
On the AP, the flash contains one image that configures the AP for operation with either 
an AHB or ASB system bus. On core and logic modules, the flash can contain multiple 
images so that the module can be configured to support either AHB or ASB. 

Core and logic modules can be configured automatically using the static configuration 
select signals CFGSEL[1:0] from AP to select the correct image. The encoding of these 
signals is shown in Table 3-1.

The system bus configuration is indicated by a character displayed on the alphanumeric 
display. This is S for ASB or H for AHB.

To change the system bus supported by the AP, use Multi-ICE and the progcards utility 
(which is on the CD-ROM supplied with the AP) to reprogram the FPGA image. 
However, if you do change the bus, you must also reprogram the CPCI arbiter PLD 
because it supplies the CFGSEL[1:0] signals.

Note
 Earlier versions of the system controller FPGA do not display the bus type on the 
alphanumeric display and the bus type may not be displayed if any connected module 
does not support the bus used by the AP. It may be possible to update the module or AP 
to support the required bus (see the ARM website for later versions of the configuration 
images).

3.2.3 Module-assigned signal routing

Some of the signals on HDRB and EXPB are assigned to specific modules and are 
routed in a special way between the plug and socket on all core and logic modules to 
achieve the correct assignment. These signals are rotated in groups of four up through 
the stack to enable the motherboard to identify each module, to modify how the address 
decoder and bus arbiter function, and to correctly route interrupts. 

Table 3-1 CFGSEL[1:0] encoding

CFGSEL[1:0] Description

00 Little endian ASB

01 Reserved

10 Little endian AHB

11 Reserved
ARM DUI 0098B Copyright © 1999-2001. All rights reserved. 3-5



Hardware Description 
The assignment of some of the signals is implemented in slightly different ways for core 
modules and logic modules. For example, core modules connect to SREQ[3:0] with 
SREQ0 connected to the core at the bottom of the stack. Logic modules connect to 
SREQ[1:4] with SREQ4 connected to the module at the bottom of the stack. 

The rotated signals are shown in Table 3-2.

An example of how this signal rotation scheme is implemented is shown in Figure 3-3 
on page 3-7. This shows how the bus request signals (SREQ[3:0]) are routed through 
two core modules. Each module connects devices to its version of the signal at SREQ0 
(that is, the signal name used on the schematics for that module), and passes the other 
signals up the stack onto a different connector pin. This routing ensures that the request 
from each module is routed onto a specific bus request signal on the AP depending on 
where the module is in the stack. 

Table 3-2 Rotated signal assignment

Generic name AHB name ASB name Description

SREQ[3:0] HBUSREQ[3:0] AREQ[3:0] System bus requests for core modules

SGNT[3:0] HGRANT[3:0] AGNT[3:0] System bus grant for core modules

SLOCK[3:0] HLOCK[3:0] Unused System bus lock for core modules

SREQ[1:4] HBUSREQ[1:4] AREQ[1:4] System bus request for logic modules

SGNT[1:4] HGRANT[1:4] AGNT[1:4] System bus grant for logic modules

SLOCK[1:4] HLOCK[1:4] Unused System bus lock for logic modules

ID[3:0] Module ID

nFIQ[3:0] Fast interrupt request, one for each core (HDRB only)

nIRQ[3:0] Interrupt request, one to each core module (HDRB only)

nIRQSRC[3:0] Interrupt request, one from each logic module (EXPB 
only)

nPPRES[3:0] Core module present (HDRB only)

nEPRES[3:0] Logic module present (EXPB only)

SYSCLK[3:0] HCLK[3:0] BCLK[3:0] System clocks (HDRB only)

SYSCLK[7:4] HCLK[7:4] BCLK[7:4] System clocks (EXPB only)
3-6 Copyright © 1999-2001. All rights reserved. ARM DUI 0098B



Hardware Description 
In the example shown in Figure 3-3 on page 3-7, the bus request signals are routed as 
follows:

• Core module 0 connects its own version of SREQ0 straight to SREQ0 on the AP. 

• Core module 1 connects its own version SREQ0 to SREQ1 on core module 0 and 
core module 0 connects SREQ1 straight down to SREQ1 on the AP.

Figure 3-3 Signal rotation scheme

3.2.4 Bus arbitration

The system bus arbiter supports up to six bus masters, five of which can be core and 
logic modules. The arbitration signals are connected to the modules using the HDRB 
and EXPB connectors and are rotated up the stack in a similar way to other 
module-assigned signals as shown in Figure 3-4 on page 3-8 (see Module-assigned 
signal routing on page 3-5). The PCI bridge is always connected to SREQ5, SGNT5, 
and SLOCK5 . 

CM0
S

R
E

Q
0

S
R

E
Q

1

S
R

E
Q

2

S
R

E
Q

3
S

R
E

Q
0

S
R

E
Q

3

S
R

E
Q

2

S
R

E
Q

1
S

R
E

Q
0

S
R

E
Q

1

S
R

E
Q

2

S
R

E
Q

3
S

R
E

Q
0

S
R

E
Q

3

S
R

E
Q

2

S
R

E
Q

1

Integrator/AP

HDRB
plug

S
R

E
Q

0

S
R

E
Q

1

S
R

E
Q

2

S
R

E
Q

3

HDRB
socket

HDRB
plug

HDRB
socket

HDRB
plug

CM1

System controller FPGA

On-board
devices

On-board
devices
ARM DUI 0098B Copyright © 1999-2001. All rights reserved. 3-7



Hardware Description 
Figure 3-4 Arbitration signal assignment to core and logic modules

Note
 The combined total of modules that can be attached to the AP is five. The assignment 
of signals for core and logic modules assumes that core modules are stacked on the 
HDRA/HDRB connectors and logic modules are stacked on the EXPA/EXPB 
connectors (see Appendix A Connector Pinouts).

Table 3-3 lists the arbitration signals and their assignment to the bus masters. 

Integrator/AP

Core module 0 Logic module 0

Core module 1

Core module 2

Core module 3

Logic module 1

Logic module 2

Logic module 3

SREQ0, SGNT0, SLOCK0

SREQ1, SGNT1, SLOCK1

SREQ2, SGNT2, SLOCK2

SREQ3, SGNT3, SLOCK3

SREQ4, SGNT4, SLOCK4

SREQ1, SGNT1, SLOCK1

SREQ2, SGNT2, SLOCK2

SREQ3, SGNT3, SLOCK3

Table 3-3 Arbitration signal assignment

Master Function Signals

0 Core module 0 (bottom of core module stack) SREQ0, SGNT0, SLOCK0

1 Core module 1 or logic module 3 SREQ1, SGNT1, SLOCK1

2 Core module 2 or logic module 2 SREQ2, SGNT2, SLOCK2

3 Core module 3 or logic module 1 SREQ3, SGNT3, SLOCK3

4 Logic module 0 (bottom of logic module stack) SREQ4, SGNT4, SLOCK4

5 PCI bridge SREQ5, SGNT5, SLOCK5
3-8 Copyright © 1999-2001. All rights reserved. ARM DUI 0098B



Hardware Description 
Arbitration priority scheme

The arbiter grants the PCI bridge the highest priority. For the remaining bus masters, the 
AP uses a round-robin arbitration scheme so that requesting bus masters can gain access 
in a balanced way. This is important in a development system, such as the AP, where it 
is impossible to predict the types of devices that might be added to the system and which 
of them should have priority. 

The round-robin arbitration scheme ensures that all bus masters have equal chance to 
gain the bus and that a retracted master does not lock up the bus. The arbiter monitors 
the response signals to detect the end of an access and moves on when an ASB retract, 
or AHB split or retry occurs.

The arbiter grants the bus to a new master when:

• the current master ceases to request the bus

• a slave issues a retract, split, or retry response

• one of the arbitration counters times out.

Arbitration counters

The arbiter provides two programmable counters that allow bus operation to be tailored 
to specific system applications. These are:

• The transaction counter that defines the maximum number of transactions a bus 
master is allowed to keep the bus. The default is eight transactions, allowing a 
master to perform a burst of up to eight transfers before the arbiter reassigns the 
bus. 

• The cycle counter that defines the number of bus clock cycles a bus master is 
allowed to hold the bus.

Both counters are clocked by the system bus clock (SYSCLK). See Clock generator on 
page 3-15.

You can program the transaction counter with any value between 0 and 31, where 0 
means that the counter is disabled. The cycle counter can be programmed with any value 
between 0 and 4095 (0 and 0xFFF) where 0 means the counter is disabled. If both 
counters are programmed, then the one that times-out first is used.

The transaction counter is used in a system where a bursting master must be allowed to 
retain the bus to complete a burst. 

The cycle counter is used in a system where there is a real-time requirement.For 
example, to generate a timeout after 1µs when using a 20MHz bus clock (with a 50ns 
period), load the value 20 (1000/50=20) into the cycle counter. 
ARM DUI 0098B Copyright © 1999-2001. All rights reserved. 3-9



Hardware Description 
The transaction counter and cycle counter are programmed using the SC_ARB register. 
See Arbiter timeout register on page 4-15.

3.2.5 JTAG signal routing

The TDI, TDO, TMS, TCK, RTCK, and nRTCKEN JTAG signals on HDRB and 
EXPB are separate. There is no connection between the two stacks. 

The signal nMBDET is used by a module to detect when its fitted to a motherboard and 
to control the routing of the JTAG signals for each stack. This signal is tied LOW by the 
AP: 

• When a module is attached to the motherboard, it detects that nMBDET is LOW 
and routes TDI and TCK down to the motherboard where they are looped back 
onto TD0 and RTCK. 

• When a module is used standalone, it detects that nMBDET is HIGH and 
provides loop backs for the JTAG signals itself so that the scan chain is intact. 

The signal nRTCKEN is driven LOW by any module that implements a synthesized 
processor core, such as ARM7TDMI-S or ARM966E-S. Synthesized cores (on a core 
module or in FPGA on a logic module) must sample TCK and produce a time-delayed 
version of TCK called RTCK which is passed to the next device in the scan chain. Core 
modules that do not sample TCK, pass it down to the next module. 

When Multi-ICE autoconfigures and detects transitions on RTCK it uses adaptive 
clocking. This means that Multi-ICE adapts to the speed of the target device. For 
non-synthesized processor cores this is unnecessary and so RTCK is driven LOW to 
ensure that Multi-ICE operates at the maximum TCK frequency of 10MHz. However, 
when connecting to multiple processors it might be necessary to reduce the Multi-ICE 
TCK frequency due to loading on TMS. 5MHz is recommended.
3-10 Copyright © 1999-2001. All rights reserved. ARM DUI 0098B



Hardware Description 
3.3 External bus interface

The EBI is a custom design for the AP that provides four fixed-size memory regions 
with separate chip-select lines. There are four chip selects: 

• three are allocated to onboard devices

• one is available for system expansion.

The chip-select assignments are shown in Table 3-4.

You can program theses memory spaces for:

• size (8, 16, or 32-bit)

• number of additional wait states

• synchronous or asynchronous operation

• write protection. 

The EBI registers for the boot ROM, flash, and onboard SSRAM are set to default 
values at power on. However, you might have to modify these values if you change the 
system bus frequency. Each space is write protected by default. To write to flash or 
SSRAM, you must program the write enable bit for that region. 

For details of how to program the EBI_CSR3 register for the expansion memory space, 
see EBI configuration registers on page 4-19.

Note
 The memory expansion interface on the connector EXPM does not support synchronous 
SRAM. 

Table 3-4 EBI chip-select assignment

Chip select Size (bits) Memory space

nMCS0 8 boot ROM.

nMCS1 32 Flash.

nMCS2 32 SSRAM.

nMCS3 8/16/32 Expansion memory space. The bus size and other parameters 
are set using the EBI_CSR3 register. See EBI configuration 
registers on page 4-19.
ARM DUI 0098B Copyright © 1999-2001. All rights reserved. 3-11



Hardware Description 
3.4 Reset controller

A reset controller is incorporated into the system controller FPGA. The AP can be reset 
from a variety of hardware sources or in software using the CS_CTRL register. 

3.4.1 Hardware resets

The hardware reset sources are as follows:

• push-button PBRST and CompactPCI signal CP_PRST
• ATX PSU power OK signal nPW_OK and CompactPCI power fail signal 

CP_FAL 

• FPGADONE signal (routed through CPCI arbiter to become nRSTSRC5) 

• logic modules using nEXPRST
• core modules (and Multi-ICE) using nSRST.

Figure 3-5 shows the architecture of the reset controller.

Figure 3-5 Integrator/AP reset control

Reset
control

FPGA

CP_FAL

nPW_OK

CP_PRST

nRSTSRC5

PBRST

SYSRST

nSRST

nSYSRST[2]

nSYSRST[1]

nSYSRST[0]
Core

modules

Logic
modules

PCI
subsystem

EBI

Sync

CPCI arbiter
PLD

To all modules

SOFTRST

FPGADONE

nEXPRST
3-12 Copyright © 1999-2001. All rights reserved. ARM DUI 0098B



Hardware Description 
When any of the reset inputs are asserted, the output SYSRST output is driven HIGH. 
This signal is routed through inverting buffers and drives the following:

• nSYSRST[2], routed to logic modules

• nSYSRST[1], PCI subsystem, EBI, and flash memory

• nSYSRST[0], Core modules.

3.4.2 Reset signals descriptions

 Table 3-5 describes the AP reset signals. 

Table 3-5 Reset signal descriptions

Name Description Function

PBRST Push-button reset

(input)

The PBRST signal is generated by pressing the reset button on the AP. 

nPW_OK ATX power supply OK 
(input)

The nPW_OK input is supplied by an ATX power supply, if it is used. 
It is used to hold the system in reset until the power supply asserts its 
power OK output.

CP_FAL CPCI power fail (input) The CP_FAL input is asserted by a CompactPCI rack power supply, if 
one is in use. 

CP_PRST CPCI reset The CP_PRST signal is generated by a push button on the 
CompactPCI rack, if one is in use.

nRSTSRC5 System-wide FPGA 
configured 

The nRSTSRC5 signal is an output from the CompactPCI arbiter 
PLD. It is used to hold the system in reset until all FPGAs in the system 
have completed their configuration sequence.

FPGADONE FPGA configured

(wire-AND output)

The FPGADONE signal is generated by all FPGAs when they have 
completed configuration following system power up. It is routed round 
the system through the HDRB and EXPB connectors from the outputs 
of all other FPGAs in the system. 
ARM DUI 0098B Copyright © 1999-2001. All rights reserved. 3-13



Hardware Description 
3.4.3 Software reset

The software reset is triggered by writing to the software reset bit in the SC_CTRL 
register. See System control register on page 4-13.

3.4.4 Multi-ICE reset

The reset signal, nSRST, can be used by Multi-ICE both to sense and drive the reset on 
the target system. This signal is routed between the Multi-ICE connector on the 
uppermost core module and the controller FPGA on each core module and the system 
controller FPGA on the motherboard. 

nEXPRST Expansion reset (open 
collector output)

The nEXPRST reset can be driven by a logic module. It must be 
debounced but does not have to be synchronized by SYSCLK.

nSRST System reset (open 
collector, bidirectional)

The nSRST signal is generated by the core module FPGA when any 
of the of the reset inputs signals are asserted. It can also be driven by a 
core module or by Multi-ICE.

When driven by a core module, it must be debounced but does not have 
to be synchronized by SYSCLK.

SYSRST System reset

(output)

The SYSRST signal is generated by the system controller FPGA and 
is used to generate the nSYSRST[2:0] signals that are routed to 
various modules within the system.

SYSRST is asserted asynchronously to SYSCLK whenever any reset 
source is asserted. It is deasserted synchronously to SYSCLK when 
all reset sources are deasserted.

Table 3-5 Reset signal descriptions (continued)

Name Description Function
3-14 Copyright © 1999-2001. All rights reserved. ARM DUI 0098B



Hardware Description 
3.5 Clock generator

The AP generates four clock signals as follows:

• system bus clock SYSCLK 
• PCI subsystem clock P_CLK and CompactPCI CP_CLK
• UART clock UARTCLK 

• KMI and timer clock CLK24MHZ.

These clocks are generated by three ICS525 devices, as shown in Figure 3-6.

Figure 3-6 Clock generator block diagram

The ICS525 devices are Phase-Locked Loop (PLL) frequency generators that you can 
can configure with divisor inputs to produce a wide range of frequencies of between 1 
and 160MHz. Each ICS525 contains:

• reference divider

• VCO divider

• output divider. 

These contain several bits that are hard wired, and several that can be programmed by 
accessing the oscillator control register (SC_OSC) to select different output 
frequencies. 

The three ICS525s and FPGA are supplied with a common 24MHz reference clock 
signal that is daisychained between the ICS525s and the FPGA. 

24MHz
crystal ICS525 ICS525 ICS525

System controller
FPGA

SC_OSC register

UARTCLKP_CLK

24MHz

CP_CLKSYSCLK

25/33MHz
select
(X/Y)

Programmable
divisor

(P)
ARM DUI 0098B Copyright © 1999-2001. All rights reserved. 3-15



Hardware Description 
3.5.1 System bus clock (SYSCLK)

The frequency of SYSCLK is controllable in 0.25MHz steps in the range 3MHz to 
50MHz. 

Setting the system bus clock

Table 3-6 shows the divisor settings used to set the frequency of the SYSCLK signal. 
The clock frequency is controlled by programming the VCO and output dividers for the 
SYSCLK generator using the SC_OSC register. The VCO divider is controlled by the 
S_VDW bits. 

The output divider (OPDiv) and Reference Divider Word (S_RDW) are fixed. The bits 
marked:

• P can be programmed by writing to the S_VDW field in the SC_OSC register

• 1 are tied HIGH

• 0 are tied LOW.

Note
 The bit pattern 011 in the OPDiv field selects an output divider of 4. That is, it is not a 
binary value.

The clock frequency is given by the formula:

freq(MHz) = (S_VDW+ 8)/4

where S_VDW is the VCO divider word for the system bus clock 

The maximum speed of the clock generator exceeds the likely maximum reliable bus 
speed that can be used (see Timing specification on page B-4). For details about how to 
program S_VDW, see Oscillator divisor register on page 4-12.

Note
 Values for S_VDW and S_OD can be calculated using the ICS525 calculator on the 
Microclock website.

Table 3-6 SYSCLK divider values

Clock speed S_RDW[6:0] S_VDW[8:0] OPDiv [2:0]

3-50MHz in 
0.25MHz 
steps

0 1 0 1 1 1 0 0 P P P P P P P P 0 1 1

46(dec) 4 to 192(dec) (<4 and >192 not allowed) 4
3-16 Copyright © 1999-2001. All rights reserved. ARM DUI 0098B



Hardware Description 
System bus clock usage

The SYSCLK signal is buffered by a PI49FCT3807 low-skew buffer to drive ten loads 
as follows:

• SYSCLK[9] to the V3 PCI bridge

• SYSCLK[8] to the system controller

• SYSCLK[7:4] to logic module connector EXPB

• SYSCLK[3:0] to core module connector HDRB.

The clock signals to the core and logic modules are rotated up through the stacks to 
ensure that each module only connects to one clock and so balance the signal loading 
(see Module-assigned signal routing on page 3-5).

3.5.2 PCI clocks (P_CLK and CP_CLK)

The frequency of P_CLK and CP_CLK is controlled by the DIVX/Y bit in the 
SC_OSC register and can be set to either 25 or 33MHz. Table 3-7 shows divisor settings 
supplied to the P_CLK clock generator by the system controller FPGA in response to 
the setting of the DIVX/Y bit. 

The bits marked:

• X are 0 for 25MHz and 1 for 33MHz

• Y are 1 for 25MHz and 0 for 33MHz. 

Note
 The bit pattern 001 in the OPDiv field selects an output divider of 2. That is, it is not a 
binary value.

The maximum speed of the clock generator exceeds the likely maximum reliable clock 
speed that can be used (see Timing specification on page B-4). For details about how to 
program the DIVX/Y bit, see Oscillator divisor register on page 4-12.

Table 3-7 P_CLK divider values

Clock speed P_RDW[6:0] P_VDW[8:0] OPDiv [2:0]

25MHz 0 0 Y X 1 1 0 0 0 0 0 Y X X X Y 0 0 1

22(dec) 17(dec) 2 

33MHz 0 0 Y X 1 1 0 0 0 0 0 Y X X X Y 0 0 1

14(dec) 14(dec) 2 
ARM DUI 0098B Copyright © 1999-2001. All rights reserved. 3-17



Hardware Description 
PCI bus clock usage

The P_CLK signal is buffered by a PI49FCT3807 low-skew buffer to drive seven loads. 
These are:

• P_CLK[6] to the CP_CLK buffer

• P_CLK[5] to the PCI bus arbiter

• P_CLK[4] to the PCI-PCI bridge

• P_CLK[3:1] to the PCI local bus expansion slots

• P_CLK[0] to the PCI-Host bridge controller.

The CP_CLK clock signal is buffered by a PI49FCT3807 low-skew buffer to drive nine 
loads. These are:

• CP_CLK[8] to the CompactPCI bus arbiter

• CP_CLK[7] to the PCI-PCI bridge

• CP_CLK[6:0] to the CompactPCI slots.

3.5.3 UART clock (UARTCLK)

The UARTCLK clock is generated at a fixed frequency of 14.7456MHz. It is supplied 
to the UARTs within the system controller FPGA to provide a 16x baud-rate clock 
allowing baud rates of up to 460,800 to be selected. Table 3-8 shows divisor settings for 
the UARTCLK generator.

Note
 The bit pattern 010 in the OPDiv field selects an output divider of 8. That is, it is not a 
binary value.

3.5.4 KMI and timer clock (CLK24MHZ)

The CLK24MHZ clock is a fixed-frequency reference clock. It is divided down within 
the system controller FPGA to 8MHz by the KMI, and to 1Hz for the real-time clock. 

Table 3-8 UARTCLK divider values

Clock speed U_RDW[6:0] U_VDW[8:0] OPDiv [2:0]

14.7456MHz 0 1 1 1 0 0 1 0 1 0 0 0 1 0 0 1 0 1 0

57 (dec) 137 (dec) 8 (dec)
3-18 Copyright © 1999-2001. All rights reserved. ARM DUI 0098B



Hardware Description 
3.6 Interrupt controller

The system controller FPGA contains four interrupt controllers. These take interrupts 
from the logic modules and from internal peripherals, and enable you to assign them to 
the IRQ or FIQ pins of any of up to four processors.

3.6.1 Interrupt architecture

Figure 3-7 shows the architecture of the interrupt controller. 

Figure 3-7 Interrupt controller architecture

Core
module 3

Core
module 2

IRQ3/FIQ3
controller

IRQ2/FIQ2
controller

IRQ1/FIQ1
controller

IRQ0/FIQ0
controller

Core
module 1

Core
module 0

PCI
subsystem

Logic
modules

Internal sources

UARTs RTC TimersSoftware
control

nIRQ3

nIRQSRC

nIRQ2

nIRQ1

nIRQ0

nFIQ3

nFIQ2

nFIQ1

nFIQ0

System controller FPGA
ARM DUI 0098B Copyright © 1999-2001. All rights reserved. 3-19



Hardware Description 
The system controller incorporates a separate IRQ and FIQ controller for each core 
module. Each controller has 22 inputs, as shown in Table 4-29 on page 4-31. The four 
main sources of interrupts are:

• system controller internal peripherals

• peripherals or controllers on logic modules

• PCI subsystem

• software.

In addition to the IRQ and FIQ controllers for the individual processors, the system 
controller provides a shared software interrupt generator that can be used by the four 
processors to interrupt one another. See Software interrupts on page 4-34. 

3.6.2 Interrupt signal routing

The IRQ and FIQ signals are routed to core modules so that each module is assigned to 
one IRQ and one FIQ. A signal rotation scheme is used on the HDRB and EXPB 
connectors to ensure that each module receives or issues interrupts on a specific IRQ 
and FIQ signal, depending on its position in the stack (that is, according to the ID of the 
module). This scheme is described in Module-assigned signal routing on page 3-5. 

The routing of the interrupts means that core and logic modules treat interrupts in 
different ways. The differences are:

• core modules:

— receive interrupts and must be mounted on the HDRA/HDRB connectors

— receive interrupts on one IRQ signal and one FIQ signal each, as determined 
by their position in the stack.

•  logic modules:

— issue interrupts and must be mounted on the EXPA/EXPB connectors

— issue interrupts on one nIRQSRC signal each, as determined by their 
position in the stack.

Note
 You can use logic modules to implement a synthesized core. In this case 

they are connected to the HDRB connector and are treated in the same way 
as any other core module.

Figure 3-3 on page 3-7 shows how the interrupt request signals are routed upwards 
through the core module connectors and downwards through logic module connectors. 
Each module utilizes only its own version of nIRQ0 (as identified by the schematic 
diagram for the module) and passes the IRQ[3:0] up or down to the next module in the 
3-20 Copyright © 1999-2001. All rights reserved. ARM DUI 0098B



Hardware Description 
stack. This means that CM0 is assigned to the signal nIRQ0 from the AP, CM1 is 
assigned to nIRQ1, CM2 is assigned to nIRQ2, and CM3 is assigned to nIRQ3 from 
the AP. The nFIQ[3:0] signals are routed in a similar way.

Figure 3-8 nIRQ[3:0] signal routing

 

Integrator/AP

CM0

n
IR

Q
0

n
IR

Q
1

n
IR

Q
2

n
IR

Q
3

n
IR

Q
0

n
IR

Q
3

n
IR

Q
2

n
IR

Q
1

CM1

n
IR

Q
0

n
IR

Q
1

n
IR

Q
2

n
IR

Q
3

n
IR

Q
0

n
IR

Q
3

n
IR

Q
2

n
IR

Q
1

LM0

n
IR

Q
R

S
C

0

n
IR

Q
S

R
C

1

n
IR

Q
S

R
C

2

n
IR

Q
S

R
C

3
Up to cores Down from logic modules

HDRB
plug

n
IR

Q
0

n
IR

Q
1

n
IR

Q
2

n
IR

Q
3

n
IR

Q
S

R
C

0

n
IR

Q
S

R
C

1

n
IR

Q
S

R
C

2

n
IR

Q
S

R
C

3

Core module stack
(up to 4)

HDRB
socket

HDRB
plug

HDRB
socket

HDRB
plug

EXPB
plug

EXPB
plug

Logic module stack
(up to 4)

To core
and

FPGA

To core
and

FPGA
From
FPGAn

IR
Q

R
S

C
0

n
IR

Q
S

R
C

1

n
IR

Q
S

R
C

2

n
IR

Q
S

R
C

3

EXPB
socket
ARM DUI 0098B Copyright © 1999-2001. All rights reserved. 3-21



Hardware Description 
3.7 Peripherals

This section describes the peripheral devices incorporated into the system controller 
FPGA. These include:

• Counter/timers on page 3-22

• Real-time clock on page 3-24

• UARTs on page 3-25

• Keyboard and mouse interface on page 3-28 

• GPIO on page 3-29. 

3.7.1 Counter/timers

Each counter/timer comprises:

• a 16-bit down counter with selectable prescale

• a load register

• a control register. 

This is illustrated in Figure 3-9

Figure 3-9 Counter/timer block diagram

Mode
Divisor

Prescaler

TIMERx_LOADTIMERx_CTRL

Down counter

TIMERx_VALUE

Clock
Interrupt

Read/WriteRead/Write

Read
3-22 Copyright © 1999-2001. All rights reserved. ARM DUI 0098B



Hardware Description 
Timer 0 is clocked by the system bus clock. Timer 1 and Timer 2 are clocked at a fixed 
frequency of 24MHz. The counters can be clocked directly or with a divide by 16 or 256 
clock. The timers provide two operating modes: 

• free-running

• periodic. 

The prescale divisor and operating modes are selected by programming the control 
register TIMERx_CTRL.

A timer is loaded by writing to the load register TIMERx_LOAD. If the timer is enabled 
it begins a down count. When it reaches zero it generates an interrupt request. Interrupts 
are cleared by writing to the TIMERx_CLR register. The current value can be read at 
any time from the TIMERx_VALUE register.

After reaching a zero count:

• If the timer is operating in free-running mode, it wraps round and continues to 
decrement from the maximum register value. 

• If the timer is operating in periodic mode, it reloads the value held in the load 
register and continues to decrement. In this mode the timer is able to generate a 
periodic interrupt.

The timer is enabled by setting a bit in the TIMERx_CTRL register. This register also 
contains the prescale selection bits and mode control bit.

See Counter/timer registers on page 4-23 for information about the timer registers.
ARM DUI 0098B Copyright © 1999-2001. All rights reserved. 3-23



Hardware Description 
3.7.2 Real-time clock

This section provides a functional overview of the real-time clock. However:

• for programming information, see RTC control register on page 4-40

• for detailed information about the real-time clock see the RTC (PL030) Technical 
Reference Manual.

RTC functional overview

The RTC comprises the following elements: 

• a 32-bit counter

• a 32-bit match register

• a 32-bit comparator.

Figure 3-10 RTC block diagram

The 32-bit counter increments on successive rising edges of a 1Hz clock generated by 
the system controller FPGA. The counter is loaded with a start value by writing to the 
load register RTC_LR. The value of the counter can be read from the data register 
RTC_DR. When the counter reaches the maximum value, 0xFFFFFFFF, it wraps to zero 
and continues incrementing. 

RTC_MRRTC_CR

Counter
Clock

Interrupt

Read/WriteRead/Write

Read

ComparatorEnable/disable
3-24 Copyright © 1999-2001. All rights reserved. ARM DUI 0098B



Hardware Description 
The match register is programmed by writing to the match register RTC_MR. The value 
in the match register can be read at any time. The counter and match values are 
compared, and when the values are equal the RTC interrupt is asserted. After reset, 
values must be written to the load register RTC_LR and match register RTC_MR.

RTC interrupts

When the counter and match register contents are identical, the interrupt is asserted.

RTC interrupts are controlled as follows:

• to enable the interrupt, set the match interrupt enable bit MIE in the control 
register RTC_CR 

• clear the interrupt by writing any value to the interrupt clear register RTC_EOI 

• mask the interrupt RTCINT by writing to the control register RTC_CR 

• read the status of the interrupt from RTC_STAT.

Synchronization logic is implemented to prevent propagation of metastable values 
when reading RTC_DR. This ensures the stability of the data, even at the point that the 
counter is incrementing.

The RTC interrupt can be used to implement a basic time alarm function. By using a 
1Hz clock signal, the counter increments in one second intervals. This can be used to 
implement a real-time clock function in software as well as a basic alarm function.

3.7.3 UARTs

This section provides a functional overview of the UARTs. However:

• for programming information, see UART registers on page 4-41

• for detailed information about the UART, see the UART (PL010) Technical 
Reference Manual

• for serial interface connector pinout details, see Serial interface connectors on 
page A-14.

The serial interface is implemented with two PrimeCell UARTs are incorporated into 
the system controller FPGA. This is illustrated in Figure 3-11 on page 3-26.
ARM DUI 0098B Copyright © 1999-2001. All rights reserved. 3-25



Hardware Description 
Figure 3-11 Serial interface

The UARTs are functionally similar to standard 16C550 devices. Each UART provides 
the following features:

• modem control inputs CTS, DCD, DSR, and RI

• modem output control signals RTS and DTR 

• programmable baud rates of up to 460,800

• 16-byte transmit FIFO

• 16-byte receive FIFO

• four interrupts.

UART functional overview

Data for transmission is written into a 16-byte transmit FIFO. This causes the UART to 
start transmitting data frames with the parameters defined in the UART line control 
register. Transmission continues until the FIFO is emptied. On the receive side, the 
UART begins sampling after it receives a start bit (LOW level input). When a complete 
word has been received, it is stored in the receive FIFO together with any error bits 
associated with that word. See UART registers on page 4-41 for details of the read FIFO 
bits.

The FIFOs can be disabled. In this case, the UART provides a 1 byte holding register 
for each of the transmit and receive channels. The overrun bit in the UART_RSR 
register is set and an interrupt is generated if a word is received before the previous one 
was read. As a feature of the UART, the FIFOs are not physically disabled but are 
bypassed. This means that if an overrun error occurs, the excess data is still stored in the 
FIFO and must be read out to clear the FIFO.

The baud rate of the UART is set by programming the UART_LCRM and 
UART_LCRL bit rate divisor registers. See UART registers on page 4-41.

UART0 UART1

BA

APBSystem controller FPGA
3-26 Copyright © 1999-2001. All rights reserved. ARM DUI 0098B



Hardware Description 
UART interrupts

Each UART generates four interrupts. These are:

• Modem status which is asserted when any of the status lines (DCD, DSR, and 
CTS) change. It is cleared by writing to the UART_ICR register.

• UART disabled which is asserted when the UART is disabled and a start bit (low 
level) is detected on the receive line. It is cleared if the UART is enabled or if the 
receive line goes HIGH.

• Rx interrupt which is asserted when one of the following events occur: 

— the receive FIFO is enabled and the FIFO is half or more than half full 
(contains 8 or more bytes)

— the receive FIFO is not empty and there has been no data for more than a 
32-bit period

— the receive FIFO is disabled and data is received.

The Rx interrupt is cleared by reading contents of the FIFO.

• Tx interrupt which is asserted when one of the following events occur:

— the transmit FIFO is enabled and the FIFO is half or less than half full 

— the transmit FIFO is disabled and the holding buffer is empty.

The Tx interrupt is cleared by filling the FIFO to more than half full or writing to 
the holding register.

Baud rate selection

The baud rate generator in each UART uses a 16-bit divisor stored in the UART_LCRM 
and UART_LCRL registers to determine the bit period. The baud rate generator 
contains a 16-bit down counter that is clocked at 14.7456MHz by the UARTCLK 
signal. See UART registers on page 4-41 for information about the UART internal 
registers.
ARM DUI 0098B Copyright © 1999-2001. All rights reserved. 3-27



Hardware Description 
3.7.4 Keyboard and mouse interface

This section provides a functional overview of the Keyboard and Mouse Interface 
(KMI). However:

• for programming information, see Keyboard and mouse interfaces on page 4-51

• for detailed information about the KMI, see KMI (PL050) Technical Reference 
Manual

• for KMI connector pinout details, see Keyboard and mouse connectors on 
page A-15.

The keyboard and mouse controllers are implemented with two PrimeCell KMIs that 
are incorporated into the system controller FPGA. This is shown in Figure 3-12.

Figure 3-12 KMI block diagram

Each KMI contains the following functional blocks:

• APB interface and register block

• transmit block

• receive block

• controller block

• timer/clock divider blocks

• synchronization logic.

KBD MSE

Mouse

Keyboard

APB
System controller FPGA
3-28 Copyright © 1999-2001. All rights reserved. ARM DUI 0098B



Hardware Description 
Functional overview

The APB interface and register block provides the interface with the APB and control 
registers. All control register bits are synchronized to the main clock for KMI logic 
before they are used in the KMI core. This block also generates individual transmit and 
receive interrupts. 

The transmit block converts the parallel transmit data into a serial bit stream with a rate 
dependent on the incoming KMI clock signal. This block performs odd parity 
generation, data framing, and parallel-to-serial conversion. This block operates on 
KMIREFCLK (that on the AP is supplied by CLK24MHz) with the incoming clock 
signal KMICLKIN providing the bit-rate information. The data is shifted out on the 
falling edge of the KMICLKIN input.

The receive block performs serial-to-parallel conversion on the serial data stream 
received on the KMIDATAIN input pin. The falling edge on the synchronized and 
sampled KMICLKIN input signal is used to sample the KMIDATAIN input line. The 
KMIDATAIN input is synchronized to the KMIREFCLK clock.

The controller controls transmit and receive operations. If simultaneous requests for 
transmission and reception occur, the transmit request is given priority.

KMI interrupts

The transmit interrupt is asserted to indicate that a byte can be written to the data register 
KMIDATA for transmission. The receive interrupt is asserted to indicate that a byte has 
been received and can be read from the data register KMIDATA. A combined interrupt 
is also asserted if either the transmit or receive interrupt is asserted. This combined 
interrupt is used by the system interrupt controller that provides masking for the outputs 
from each peripheral.

3.7.5 GPIO

The system controller FPGA incorporates a 32-bit General Purpose Input/Output 
Controller (GPIO) port. These connect to pins on the EXPB connector (see Logic 
module connector EXPB on page A-8). This can be used to implement a bus between 
the system controller FPGA on the AP and the FPGA(s) on the logic module. 

Each bit can be individually programmed as an input or an output using the 
GPIO_DIRN register. Bits in the data register are set and cleared using the 
GPIO_DATASET and GPIO_DATACLR registers. It is read from and written to using 
the GPIO_DATAIN and GPIO_DATAOUT locations (see GPIO on page 4-36). 
ARM DUI 0098B Copyright © 1999-2001. All rights reserved. 3-29



Hardware Description 
3-30 Copyright © 1999-2001. All rights reserved. ARM DUI 0098B



Chapter 4 
Programmer’s Reference

This chapter describes the Integrator/AP memory map and local registers. It contains 
the following sections:

• About the Integrator memory map on page 4-2

• System memory map regions on page 4-4

• Accesses to boot ROM and flash on page 4-9

• System control registers on page 4-10

• EBI configuration registers on page 4-19

• Counter/timer registers on page 4-23

• Alphanumeric display, LED, and DIP switch registers on page 4-25

• Interrupt controller registers on page 4-29

• Peripheral registers on page 4-36.
ARM DUI 0098B Copyright © 1999-2001. All rights reserved. 4-1



Programmer’s Reference 
4.1 About the Integrator memory map

Core modules and system bus masters on logic modules or the PCI have a different view 
of memory map for the lowest 272MB of the system address space. Figure 4-1 shows 
the memory map for core modules. This contains resources on core module and 
resources on the motherboard and other modules. The bottom 272MB contains the 
SSRAM, SDRAM, and control registers on the core module. Accesses by the core to 
these areas are not normally passed to the motherboard. 

Figure 4-1 Integrator memory map for core modules

2GB

3GB

4GB

ROM/RAM
and

peripherals

1GB

Reserved

EBI

Peripheral
registers

Core module
SDRAM

Logic
modules

Boot ROM FlashSSRAM

Core module
alias

memory

PCI

S1[1] = OFFS1[1] = ON

S1[1] = x

REMAP=0

REMAP=1

REMAP=0
4-2 Copyright © 1999-2001. All rights reserved. ARM DUI 0098B



Programmer’s Reference 
The EBI region contains the boot ROM and flash. However, during system startup either 
the boot ROM or the flash is aliased to the bottom of the memory map. The SSRAM on 
the core shares the same address as this alias. The switch S1[1] and the REMAP bit in 
the CM_CTRL register on the core module control whether the SSRAM, boot ROM, or 
flash are accessible at this location. See Accesses to boot ROM and flash on page 4-9.

Figure 4-2 shows the memory map for all other system bus masters. In this case, the 
lowest 64MB of the system address space contains an alias of the EBI (see External bus 
interface on page 4-6). The mapping of the EBI alias is also affected by the setting of 
S1[1] (see Accesses to boot ROM and flash on page 4-9). 

Figure 4-2 Integrator memory map for logic modules

2GB

3GB

4GB

ROM/RAM
and

peripherals

1GB

Reserved

EBI

Peripheral
registers

EBI
(alias)

Logic
modules

Chip select 3
(EXPM)

Chip select 2
SSRAM

Chip select 1
Flash

Chip select 0
Boot ROM

Chip select 1
Flash

Chip select 1
Flash

Chip select 1
Flash

Core module
alias

memory

PCI

Chip select 1
Flash

S1[1] = OFFS1[1] = ON
ARM DUI 0098B Copyright © 1999-2001. All rights reserved. 4-3



Programmer’s Reference 
4.2 System memory map regions

The system memory map contains four main regions. These are:

• Logic module region on page 4-4

• Core module alias memory region on page 4-5

• PCI region on page 4-6

• ROM, RAM, and peripherals region on page 4-6.

The top-level memory map is shown in Table 4-1.

4.2.1 Logic module region

This region contains any memory and device registers located on logic modules stacked 
on the EXPA/EXPB connectors. 

Each logic module decodes its own address space and provide responses to all accesses 
within its assigned address space. You can design your own logic modules with fixed, 
link selectable, or position-selected base addresses. However, to ensure compatibility 
with other ARM Integrator modules, it is recommended that your logic module uses the 
ID[3:0] signals from the EXPB connector to determine its base addresses as shown in 
Table 4-2.

Table 4-1 Top level Integrator/AP memory map

Base address Size Description

0xC0000000 1GB Logic modules

0x80000000 1GB Core module alias memory

0x40000000 1GB PCI space

0x00000000 1GB Local RAM, ROM, and peripherals

Table 4-2 Recommended logic module address decoding

Base address Size Description ID[3:0]

0xF0000000 256MB Logic module 3 memory 1101

0xE0000000 256MB Logic module 2 memory 1011

0xD0000000 256MB Logic module 1 memory 0111

0xC0000000 256MB Logic module 0 memory 1110
4-4 Copyright © 1999-2001. All rights reserved. ARM DUI 0098B



Programmer’s Reference 
4.2.2 Core module alias memory region

This region provides access to the SDRAM located on the core modules at an alias 
address on the system bus. The address of the aliased SDRAM on a core module is 
automatically configured by its position in the stack and by the signals ID[3:0] signals 
from the HDR connector, as shown in Table 4-3.

Figure 4-3 illustrates the local and alias memory mapping of the SDRAM on four core 
modules. See the user guide for your particular core module for more information. 

Figure 4-3 Core module alias memory mapping

Table 4-3 Aliased core module SDRAM mapping

Base address Size Description ID[3:0]

0xB0000000 256MB Core module 3 alias memory 1101

0xA0000000 256MB Core module 2alias memory 1011

0x90000000 256MB Core module 1 alias memory 0111

0x80000000 256MB Core module 0 alias memory 1110

System bus address

SDRAM
core module 3

SDRAM
core module 2

SDRAM
core module 1

SDRAM
core module 0

Local address

0x00000000

0x00000000

0x00000000

0x00000000

0x0FFFFFFF

0x0FFFFFFF

0x0FFFFFFF

0x0FFFFFFF

Core 3

Core 2

Core 1

Core 0

0x80000000

0x8FFFFFFF

0x90000000

0x9FFFFFFF

0xA0000000

0xAFFFFFFF
0xB0000000

0xBFFFFFFF

All masters
ARM DUI 0098B Copyright © 1999-2001. All rights reserved. 4-5



Programmer’s Reference 
4.2.3 PCI region

This region provides access to the PCI bus through the V360EPC PCI host bridge 
controller. The address range 0x40000000 to 0x7FFFFFFF is mapped to PCI memory space 
by the host bridge controller (see Chapter 5 PCI Subsystem).

4.2.4 ROM, RAM, and peripherals region 

This region contains the:

• External bus interface

• System control and peripheral registers area on page 4-7

• Core module local SSRAM and SDRAM on page 4-8. 

Table 4-4 shows the memory map for this region.

External bus interface

The EBI space provides access to four smaller areas of memory. These contain the boot 
ROM, flash and SSRAM. An expansion memory can be connected to the EXPM 
connector and accessed within this region. Table 4-5 shows the memory map of the EBI 
space. 

Table 4-4 ROM, RAM, and peripherals region

Base 
address

Size Core module Logic module

0x30000000 256MB Reserved for future expansion Reserved for future expansion

0x20000000 256MB EBI EBI

0x10000000 256MB System control and peripheral registers System control and peripheral registers

0x00000000 256MB Core module local SSRAM and SDRAM EBI (alias)

Table 4-5 External bus interface chip selects

Base address Bus width Description

0x2C000000 8, 16 or 32bits Chip select 3 (for expansion)

0x28000000 32bits SSRAM

0x24000000 32bits Flash

0x20000000 8bits Boot ROM
4-6 Copyright © 1999-2001. All rights reserved. ARM DUI 0098B



Programmer’s Reference 
These devices are also mapped into the bottom the system address space in different 
ways for core and logic modules, as described in Accesses to boot ROM and flash on 
page 4-9.

See EBI configuration registers on page 4-19.

System control and peripheral registers area

Within the this region are the Integrator/AP peripheral control, interrupt and system 
control registers. The naming convention used for the registers is based on the device 
and register function. For example the real-time clock match register is named 
RTC_MR. 

Table 4-6 shows the base addresses for the registers for each device. Read and write 
accesses to locations shown as spare do not generate bus errors but any data read is 
undefined.

Table 4-6 Peripheral registers

Base address Size Description

0x1F000000 16MB Spare

0x1E000000 16MB Spare

0x1D000000 16MB Spare

0x1C000000 16MB Spare

0x1B000000 16MB GPIO

0x1A000000 16MB LED display and boot switch

0x19000000 16MB Mouse 

0x18000000 16MB Keyboard

0x17000000 16MB UART1

0x16000000 16MB UART0

0x15000000 16MB RTC

0x14000000 16MB Interrupt controller

0x13000000 16MB Counter/timers
ARM DUI 0098B Copyright © 1999-2001. All rights reserved. 4-7



Programmer’s Reference 
Core module local SSRAM and SDRAM

This region contains SSRAM and SDRAM on the core modules. Each core module has 
sole access to its own SSRAM and SDRAM within this address range. However, the 
SDRAM also appears within the alias memory region where it can be accessed by any 
system bus master in the system (see Core module alias memory region on page 4-5). 

The boot ROM or flash on the AP can be masked by the lowest portion of the SSRAM 
if the REMAP bit is set to 1 (see Core module accesses to boot ROM or flash on 
page 4-9).

0x12000000 16MB EBI configuration registers

0x11000000 16MB System controller registers 

0x10000000 16MB Core module registers (for core modules) 

Spare (for logic modules)

Table 4-6 Peripheral registers (continued)

Base address Size Description
4-8 Copyright © 1999-2001. All rights reserved. ARM DUI 0098B



Programmer’s Reference 
4.3 Accesses to boot ROM and flash

The mapping of this area of the address map differs for core modules and logic modules. 

4.3.1 Core module accesses to boot ROM or flash 

Accesses by a core module to the SSRAM on the core module and boot ROM or flash 
on the motherboard are controlled by the REMAP bit in the CM_CTRL register on the 
core module and S1[1] on the AP:

REMAP = 0 Default following reset. Accesses to addresses 0x00000000 to 0x0003FFFF 
(or a larger space on later core modules) are routed to the boot ROM or 
flash on the AP depending on the setting of S1[1]:

S1[1] = ON 
the access is to boot ROM

S1[1] = OFF 
the access is to flash.

REMAP = 1 Accesses to addresses 0x00000000 to 0x0003FFFF (or a larger space on later 
core modules) are routed to the local SSRAM on the core module.

For information about the DIP switch, see Setting the DIP switches on page 2-6.

4.3.2 Logic module accesses to boot ROM or flash 

The boot ROM and flash on the AP are attached to the EBI (see External bus interface 
on page 4-6) and are also aliased at the bottom the memory map that a logic module can 
see (as shown in Figure 4-2 on page 4-3). Logic modules can access the boot ROM or 
flash in this area depending on the setting of S1[1]: 

S1[1] = ON the EBI resources are mapped into the bottom 256MB of the system 
memory map.

S1[1] = OFF the flash is mapped repeatedly into the bottom 256MB of the system 
memory map.
ARM DUI 0098B Copyright © 1999-2001. All rights reserved. 4-9



Programmer’s Reference 
4.4 System control registers

The system control registers are used to configure the system controller. They are 
usually controlled by firmware in the boot ROM. Applications programs can also access 
the registers, but with care. Writing inappropriate values into the oscillator register can 
prevent the system from operating. The oscillator register is protected against accidental 
writes by a lock register (see Oscillator lock register on page 4-16). 

Note
 The control registers do not support byte writes and must be accessed as 32-bit words. 
Preserve the values of bits that are not detailed or are marked as reserved using 
read-modify-write operations. 

Table 4-7 shows the system controller registers. 

Table 4-7 System controller status and control registers

Address Name Type Function Reset by

0x11000000 SC_ID Read System controller identification Reset 

0x11000004 SC_OSC Read/write Oscillator divisors Reset

0x11000008 SC_CTRLS Read/write Control register set Reset

0x1100000C SC_CTRLC Read/write Control register clear Reset

0x11000010 SC_DEC Read Decoder status Reset

0x11000014 SC_ARB Read/write Arbiter time-out values Reset

0x11000018 SC_PCI Read/write PCI control Reset

0x1100001C SC_LOCK Read/write Lock Reset

0x11000020 SC_LBFADDR Read PCI local bus fault address Reset

0x11000024 SC_LBFCODE Read PCI local bus fault code Reset

0x11000030 SC_FLAGS Read Flag register Reset

0x11000030 SC_FLAGSET Write Flag set register Reset

0x11000034 SC_FLAGSCLR Write Flag clear register Reset
4-10 Copyright © 1999-2001. All rights reserved. ARM DUI 0098B



Programmer’s Reference 
4.4.1 System controller ID register

The system controller ID register (SC_ID) is a 32-bit read-only register that identifies 
the board manufacturer, board type, and revision. 

Table 4-8 describes the system controller ID register bits.

0x11000038 SC_NVFLAGS Read Nonvolatile flag register POR

0x11000038 SC_NVFLAGSSET Write Nonvolatile flag set register POR

0x1100003C SC_NVFLAGSCLR Write Nonvolatile flag clear register POR

Table 4-7 System controller status and control registers

Address Name Type Function Reset by

Table 4-8 SC_ID register

Bits Name Type Function

31:24 MAN Read Manufacturer ID (0x41=ARM).

23:16 ARCH Read Architecture:
0x00 = ASB little-endian 
0x01 = AHB little-endian

15:12 FPGA Read System controller FPGA type: 
1 = XC4062 
2 = XC4085

11:4 BUILD Read Build value

3:0 REV Read Revision:
0 = Revision A
1 = Revision B

31 24 23 16 15 1211 4 3 0

MAN ARCH FPGA BUILD REV
ARM DUI 0098B Copyright © 1999-2001. All rights reserved. 4-11



Programmer’s Reference 
4.4.2 Oscillator divisor register

The oscillator divisor register (SC_OSC) contains nine active bits that are used to set 
the frequency of the system bus clock and PCI bus clock signals (see Clock generator 
on page 3-15).

Note

 Before writing to the SC_OSC register, you must unlock it by writing the value 
0x0000A05F to the SC_LOCK register. When you have finished writing to the SC_OSC 
register lock it again by writing any value other than 0x0000A05F to the SC_LOCK 
register.

Table 4-9 describes the oscillator divisor register bits.

Table 4-9 SC_OSC register

Bits Name Type Function

8 DIVX/Y Read/write This bit is used to set the frequency of the PCI 
bus clock signal CP_CLK. It controls the 
values of bits in the VCO divider within the 
clock generator chip. The settings for this bit 
are as follows:
0 = 33MHz (default) 
1 = 25MHz.

7:0 S_VDW Read/write These bits are used to set the frequency of the 
system bus clock signal SYSCLK. They 
control the value of the lower 8 VCO divider 
bits within the clock generator chip. The range 
of values for this bit-field is 4-192(dec) 
(giving 3-50MHz in 0.25MHz steps). 

Values below 4 and above 192 are not 
permitted.

DIVX/Y S_VDW

8 7 0
4-12 Copyright © 1999-2001. All rights reserved. ARM DUI 0098B



Programmer’s Reference 
4.4.3 System control register

The system control register (SC_CTRL) is accessed using the SC_CTRLS and 
SC_CTRLC locations. The system control register is an 8-bit register that is used to 
control the UART modem lines, flash memory protection, and software reset. 

Set, read, and clear bits in the system controller register as follows:

• Set bits in the control register by writing to the SC_CTRLS location: 

1 = SET the associated bit in the control register

0 = leave the associated bit in the control register unchanged.

• Read the current state of the control register bits from the SC_CTRLS location.

• Clear bits in the control register by writing to the SC_CTRLC location: 

1 = CLEAR the associated bit in the control register

0 = leave the associated bit in the control register unchanged.

Table 4-10 describes the bits in the system control register.

Table 4-10 System control register

Bits Name Function

7 UART1DTR Controls the UART1 DTR line (active LOW):
0 = HIGH (default) 
1 = LOW.

6 UART1RTS Controls the UART1 RTS line (active LOW):
0 = HIGH (default) 
1 = LOW.

5 UART0DTR Controls the UART0 DTR line (active LOW): 
0 = HIGH (default) 
1 = LOW.

4 UART0RTS Controls the UART0 RTS line (active LOW):
0 = HIGH (default) 
1 = LOW. 

3 - Reserved

UART0RTSUART0DTRUART1RTSUART1DTR RSVD FLASHWP FLASHVPP SOFTRST

7 6 5 4 3 2 1 0
ARM DUI 0098B Copyright © 1999-2001. All rights reserved. 4-13



Programmer’s Reference 
4.4.4 Decoder status register

The decoder status register (SC_DEC) is an 8-bit read-only register that provides 
information about any modules that are stacked on the EXP and HDR connectors.

Table 4-11 describes the bits in the status decoder register.

2 FLASHWP Flash write-protection:
0 = protected (default) 
1 = unprotected.

1 FLASHVPP Flash Vpp enable:
0 = disabled (default) 
1 = enabled.

0 SOFTRESET Software reset. A 1 written to this bit resets the system. 

Table 4-10 System control register (continued)

Bits Name Function

Table 4-11 SC_DEC register

Bits Name Function

7:4 EPRES[3:0] Module present on EXP connectors, 1 bit for each module: 

0000 = no modules fitted 

0001 = module 0 fitted

0011 = module 1 and 0 fitted

0111 = module 2, 1, and 0 fitted

1111 = module 3, 2, 1, and 0 fitted.

3:0 PPRES[3:0] Module present on HDR connectors 1 bit for each module:

0000 = no modules fitted 

0001 = module 0 fitted

0011 = module 1 and 0 fitted

0111 = module 2, 1, and 0 fitted

1111 = module 3, 2, 1, and 0 fitted.

EPRES[3:0] PPRES[3:0]

7 4 3 0
4-14 Copyright © 1999-2001. All rights reserved. ARM DUI 0098B



Programmer’s Reference 
4.4.5 Arbiter timeout register

The arbiter timeout register (SC_ARB) is a 32-bit read-write register that contains a 
transaction counter and cycle counter. Use the counters to tailor the operation of the 
arbiter for your application. See Arbitration counters on page 3-9.

Table 4-12 describes the arbiter timeout register bits.

4.4.6 PCI control register

The PCI control register is used to enable or disable the PCI interface and to clear a 
PCILBINT interrupt. Table 4-13 describes the PCI control register bits. For information 
about using the PCILBINT interrupt, see PCI subsystem interrupts on page 5-17.

Table 4-12 SC_ARB register

Bits Name Function

19:8 CCOUNT Cycle counter load value, 0x000 to 0xFFF(default 0x000).

7:5 Reserved Reserved.

4:0 TCOUNT Transaction counter load value, 0x00 to 0x1F (default 0x08).

CCOUNT

457819 0

TCOUNTR

Table 4-13 SC_PCI register

Bits Name Function

1 PCILBINT_CLR Clear PCILBINT:

Always reads as 0.

Write 1 to clear an interrupt.

0 PCIEN PCI interface enable:

0 = disabled (default)

1 = enabled.
ARM DUI 0098B Copyright © 1999-2001. All rights reserved. 4-15



Programmer’s Reference 
4.4.7 Oscillator lock register

The lock register (SC_LOCK) is used to control access to the SC_OSC register allowing 
it to be locked and unlocked. Use this mechanism to protect SC_OSC registers from 
being accidently overwritten with values that could render the Integrator/AP inoperable. 

Table 4-14 describes the lock register bits.

4.4.8 PCI local bus fault address register

The PCI local bus fault address register (SC_LBFADDR) is read when a PCILBINT 
interrupt occurs. Read this register to determine the address at which the fault occurred 
during an access on the PCI local bus.

Table 4-15 describes the bits in the PCI local bus fault address register.

Table 4-14 SC_LOCK register

Bits Name Function

16 LOCKED Lock bit. Read this bit to determine if the SC_OSC register is 
locked: 

0 = unlocked
1 = locked.

15:0 KEY Lock key. Write 0xA05F to unlock the SC_OSC register. 

Write any other value to lock the SC_OSC register.

KEY

1516 0

LOCKED

Table 4-15 SC_LBFADDR register

Bits Name Function

31:0 FADDRESS Fault address. The word address at which a fault occurred on 
the PCI local bus. Read the byte enable BEN[3:0] bits in the 
fault code register for the byte or half-word address. 

31 0

FADDRESS
4-16 Copyright © 1999-2001. All rights reserved. ARM DUI 0098B



Programmer’s Reference 
4.4.9 PCI local bus fault code register

The PCI local bus fault code register (SC_LBFCODE) is read when a PCILBINT 
interrupt occurs. Read this register for information about the access in progress when 
the fault occurred. 

Table 4-16 describes the bits in the PCI local bus fault code register.

For information about how to use the SC_LBFADDR and SC_LBFCODE registers (see 
PCI subsystem interrupts on page 5-17).

Table 4-16 SC_LBFCODE register

Bits Name Function

7 BEN3 Byte enable 3. Indicates that data bits 31:24 were being 
accessed.

6 BEN2 Byte enable 2. Indicates that data bits 23:16 were being 
accessed.

5 BEN1 Byte enable 1. Indicates that data bits 15:8 were being 
accessed.

4 BEN0 Byte enable 0. Indicates that data bits 7:0 were being accessed.

3 LBURST Indicates that a burst was in progress. That is:

1 = this word was not the last of the burst.

2 LREAD These bits indicate the direction of transfer as viewed by the 
current master. The encoding of bits 2:1 is:

00 = data in, PCI (or V3 DMA) write to AMBA

01 = data out, AMBA write to PCI

10 = data out, PCI (or V3 DMA) read from AMBA

11 = data in, AMBA read from PCI.

1 MASTER

0 RLBFINT Raw PCI local bus fault interrupt (PCILBNT) status.

7 0

BEN3 BEN2 BEN1 BEN0 LBURST LREAD MASTER RLBFINT
ARM DUI 0098B Copyright © 1999-2001. All rights reserved. 4-17



Programmer’s Reference 
4.4.10 System controller flag registers

The flag registers provide you with two 32-bit register locations containing general 
purpose flags that you can assign any meaning to. 

The core module provides two distinct types of flag registers:

• the FLAGS registers are cleared by a normal reset, such as a reset caused by 
pressing the reset button

• the NVFLAGS registers retain their contains after a normal reset and are only 
cleared by a Power-On Reset (POR).

Flag and nonvolatile flag register 

The status register contains the current state of the flags.

Flag and nonvolatile flag set register

The flag set locations are used to set bits in the flag registers as follows:

• write 1 to SET the associated flag.

• write 0 to leave the associated flag unchanged.

Flag and nonvolatile flag clear register

The clear locations are used to clear bits in the flag registers as follows:

• write 1 to CLEAR the associated flag

• write 0 to leave the associated flag unchanged

Table 4-17 System controller flag registers

Register Name Address Access Reset by Description

SC_FLAGS 0x11000030 R Reset Flag register

SC_FLAGSSET 0x11000030 W Reset Flag set register

SC_FLAGSCLR 0x11000034 W Reset Flag clear register

SC_NVFLAGS 0x11000038 R POR Nonvolatile flag register

SC_NVFLAGSSET 0x11000038 W POR Nonvolatile flag set register

SC_NVFLAGSCLR 0x1100003C W POR Nonvolatile flag clear register
4-18 Copyright © 1999-2001. All rights reserved. ARM DUI 0098B



Programmer’s Reference 
4.5 EBI configuration registers

The EBI configuration registers are 8-bit read/write registers that are used to define the 
operating parameters for four EBI regions. The EBI provides four fixed-size memory 
regions each with its own chip select signal. Additional address decoding must be 
handled by addresses within the region selected by the chip select. 

The locations of the EBI registers are shown in Table 4-18.

4.5.1 EBI configuration registers

The four registers have a similar format.

These parameters are shown in Table 4-19 on page 4-20 and are described in:

• Wait states on page 4-21

• SSRAM on page 4-21

• Write enable on page 4-21

• Memory size on page 4-21.

Table 4-18 EBI configuration register locations

Address Name Type Function 

0x12000000 EBI_CSR0 Read/write Chip select 0 configuration (boot ROM)

0x12000004 EBI_CSR1 Read/write Chip select 1 configuration (flash)

0x12000008 EBI_CSR2 Read/write Chip select 2 configuration (SSRAM)

0x1200000C EBI_CSR3 Read/write Chip select 3 configuration (EXPM)

0x12000020 EBI_LOCK Read/write EBI lock register

7 4 3 2 1 0

WAIT SSRAM WREN MEMSIZE
ARM DUI 0098B Copyright © 1999-2001. All rights reserved. 4-19



Programmer’s Reference 
The default values in the EBI_CSRx registers are shown in Table 4-20.

Table 4-19 EBI_CSRx register

Bits Name Function

7:4 WAIT Wait states: 
0x0 = 0 cycles 
0x1 = 1 cycle

0x2 = 2 cycles

...
0xC = 12 cycles

0xD = 13 cycles

0xE = 13 cycles

0xF = 13 cycles.

3 SSRAM Synchronous SRAM: 
0 = asynchronous memory 
1 = synchronous memory.

2 WREN Write enable:
0 = writes disabled 

1 = writes enabled.

1:0 MEMSIZE Memory size:

00 = 8 bit 
01 = 16 bit 
10 = 32 bit 
11 = reserved.

Table 4-20 EBI_CSRx default values

Register
Default 
value

WAIT Memory type WREN MEMSIZE Device

EBI_CSR0 0x20 2 cycles Asynchronous Disabled 8 bit Boot ROM

EBI_CSR1 0x22 2 cycles Asynchronous Disabled 16 bit Flash

EBI_CSR2 0x0E N/A Synchronous Enabled 32 bit SSRAM

EBI_CSR3 Undefined - - - - User defined
4-20 Copyright © 1999-2001. All rights reserved. ARM DUI 0098B



Programmer’s Reference 
Wait states

The basic transfer takes one decode cycle and two active cycles to complete. A 4-bit 
counter is used to add wait states. This is programmed using the WAIT field of the 
associated EBI_CSRx register. Values of 0 - 13 (decimal) are valid. Values of 14 and 15 
are treated as 13.

The access time is given by the formula:

Cycles = 3 + wait states

where cycles is less than or equal to 16.

For example, in a system with a 25MHz system bus the cycle time is 40ns, giving a 
minimum read cycle time of 3 x 40 = 120ns. If the wait-state register is programmed 
with 3, the read cycle time is 6 x 40 = 240ns. 

SSRAM

When the SSRAM bit is 1, the wait state field is ignored. Accesses always take one 
decode and two active cycles. All control signals are sampled on the rising edge of 
MEMCLK. The address strobe signals nMADSP and nMADSC are address strobes 
for the synchronous SRAM and not are available on the expansion connector EXPM.

Write enable

For asynchronous memories the write enable pulse is driven LOW half a clock cycle 
after MA and nMCS become active. This allows for address and chip-select setup 
before write enable, as required by most asynchronous memories. The write enable 
pulse is driven HIGH half a clock cycle before MA and nMCS are driven inactive to 
ensure sufficient data hold time. 

For synchronous SRAM, the write enable pulse is always 1 cycle and driven in the 
second active cycle. 

The write enable bit in the register is 0 by default to avoid accidental writes to the boot 
ROM and flash. 

Memory size

The memory size bits in the registers define the data width of the external memory. This 
is 8 bits for boot ROM and 32 bits for the flash and onboard SSRAM. The EBI compares 
the memory size with the access width (indicated by HSIZE or BSIZE) and generates 
the appropriate number of cycles. For example, a 32 bit access to an 8 bit memory 
requires one decode cycle followed by 8 access cycles.
ARM DUI 0098B Copyright © 1999-2001. All rights reserved. 4-21



Programmer’s Reference 
4.5.2 EBI lock register

The lock register (EBI_LOCK) is used to control access to the EBI configuration 
registers allowing it to be locked and unlocked. Use this mechanism to protect 
EBI_CSRx registers from being accidently overwritten with values that could render the 
Integrator/AP inoperable. 

Table 4-14 describes the lock register bits.

Table 4-21 EBI_LOCK register

Bits Name Function

16 LOCKED Lock bit. Read this bit to determine if the EBI_CSRx registers 
are locked: 

0 = unlocked 
1 = locked.

15:0 KEY Lock key. 
Write 0xA05F to unlock the EBI_CSRx registers. 

Write any other value to lock the EBI_CSRx register.

KEY

1516 0

LOCKED
4-22 Copyright © 1999-2001. All rights reserved. ARM DUI 0098B



Programmer’s Reference 
4.6 Counter/timer registers

The counter/timer registers control the three counter/timers. See Counter/timers on 
page 3-22. There are four registers for each of the three counter/timers, as shown in 
Table 4-22. 

4.6.1 Timer x load register

The timer load register is a 16-bit read/write register that contains a 16-bit initial count 
value that is reloaded each time the counter reaches zero, if the timer is operating in 
periodic mode.

Write the upper 16 bits (of 32 bits) as 0s. They are undefined when read.

4.6.2 Timer x current value register

The timer value register contains the current count value for the timer. The upper 16bits 
(of 32bits) are undefined. 

Table 4-22 Counter/timer registers

Address Name Type Size Function 

0x13000000 TIMER0_LOAD Read/write 16 Timer 0 load register

0x13000004 TIMER0_VALUE Read 16 Timer 0 current value register

0x13000008 TIMER0_CTRL Read/write 16 Timer 0 control register

0x1300000C TIMER0_CLR Write 1 Timer 0 clear register

0x13000100 TIMER1_LOAD Read/write 16 Timer 1 load register

0x13000104 TIMER1_VALUE Read 16 Timer 1 current value register

0x13000108 TIMER1_CTRL Read/write 16 Timer 1 control register

0x1300010C TIMER1_CLR Write 1 Timer 1 clear register

0x13000200 TIMER2_LOAD Read/write 16 Timer 2 load register

0x13000204 TIMER2_VALUE Read 16 Timer 2 current value register

0x13000208 TIMER2_CTRL Read/write 16 Timer 2 control register

0x1300020C TIMER2_CLR Write 1 Timer 2 clear register
ARM DUI 0098B Copyright © 1999-2001. All rights reserved. 4-23



Programmer’s Reference 
4.6.3 Timer x control register

The timer control registers are 8-bit read/write registers that control the operation of 
their associated counter/timers. The format of these three registers is similar.

Table 4-23 describes the timer control register bits.

4.6.4 Timer x clear register

The timer clear register is a write-only location that does not have a storage element. 
Writing any value to this location clears the interrupt for the associated counter/timer.

Table 4-23 TIMERx_CTL register

Bits Name Function

7 ENABLE Timer enable: 
0 = disabled 
1 = enabled.

6 MODE Timer mode:
0 = free running, counts once and then wraps to 0xFFFF
1 = periodic, reloads from load register at the end of each 
count.

5:4 Unused Unused, always write as 0s.

3:2 PRESCALE Prescale divisor: 
00 = none 
01 = divide by 16

10 = divide by 256

11 = undefined.

1:0 Unused Unused, always write as 0s.

UnusedUnused

4 3 2 1567 0

PRESCALEMODEENABLE
4-24 Copyright © 1999-2001. All rights reserved. ARM DUI 0098B



Programmer’s Reference 
4.7 Alphanumeric display, LED, and DIP switch registers

These registers are used to control the alphanumeric display and LEDs, and to read the 
4-input DIP switch.

4.7.1 Alphanumeric characters register

This register is used to write characters to the alphanumeric display. The system 
controller FPGA manages the transfer of character data into a shift register within the 
alphanumeric display. You must allow each transfer to complete before writing new 
characters to the display using the following sequence:

1. Check that the display status is IDLE (bit 0 = 0) in the LED_ALPHA register.

2. Write 2 characters LED_ALPHA register (bits 31:1).

Note
 The data from the LED_ALPHA register is transferred as a serial bit-stream into the 
alphanumeric display at the same time as the LED control bits in LED_LIGHTS 
register. 

Table 4-24 LED control and switch registers

Address Name Type Size Function 

0x1A000000 LED_ALPHA Read/write 32 Alphanumeric characters register

0x1A000004 LED_LIGHTS Read/write 4 LED control register

0x1A000008 LED_SWITCHES Read 4 DIP switch register
ARM DUI 0098B Copyright © 1999-2001. All rights reserved. 4-25



Programmer’s Reference 
Table 4-25 describes LED_ALPHA register bits.

The digits and segments are identified in Figure 4-4.

Figure 4-4 Alphanumeric display segment designation

The bit assignments for the alphanumeric display segments in the LED_ALPHA 
register are shown in Table 4-26.

Table 4-25 LED_ALPHA bit assignment

Bit Name Function

30:1 CHARACTERS Bit patterns that form characters on the alphanumeric display. 
See Table 4-26 for segment and bit assignments.

Ensure that the display is idle before writing each new 
character. 

0 STATUS This is a read-only bit that returns the status of the 
alphanumeric display:

0 = idle 

1 = busy

A

B

C

D

E

F

G H

K
M

N

RST

DP

Digit 1
A

B

C

D

E

F

G H

K
M

N

RST

DP

Digit 2

Table 4-26 LED_ALPHA bit-to-segment mapping

Digit 1 Segment Digit 2

29 DP 30

28 T 14

27 S 13

26 R 12
4-26 Copyright © 1999-2001. All rights reserved. ARM DUI 0098B



Programmer’s Reference 
4.7.2 LED control register

The LED_LIGHTS register controls four of the LEDs on the Integrator/AP. The LEDs 
are attached to bit-ports provided by the alphanumeric display. Accesses to these bit 
ports are managed by the FPGA. Application programs write appropriate values into the 
LED_LIGHTS register, and the FPGA carries out the necessary transfer to turn the 
LEDs ON or OFF.

You must allow each transfer the alphanumeric display to complete before writing new 
data to the display using the following sequence:

1. Check the display status is IDLE (bit 0 = 0) in the LED_ALPHA register.

2. Write a value to the LED_LIGHTS register.

Note

 The data from the LED_LIGHTS register is transferred as a serial bit-stream into the 
alphanumeric display at the same time as the character data in LED_ALPHA. 

25 N 11

24 M 10

23 K 9

22 H 8

21 G 7

20 F 6

19 E 5

18 D 4

17 C 3

16 B 2

15 A 1

Table 4-26 LED_ALPHA bit-to-segment mapping  (continued)

Digit 1 Segment Digit 2
ARM DUI 0098B Copyright © 1999-2001. All rights reserved. 4-27



Programmer’s Reference 
The bit assignments for the LED_LIGHTS register are shown in Table 4-27.

See LEDs on page 1-10 for the location and function of the LEDs.

4.7.3  DIP switch register

The DIP switch register is used to read the 4-pole DIP switch S1. The bit assignments 
for this register are shown in Table 4-28. A bit reads as 1 when the associated switch is 
ON and 0 when the switch is OFF.

See Setting the DIP switches on page 2-6 for the location and function of the switches.

Table 4-27 LED_LIGHTS register

Bit Type Function

3 Read/write LED3:

0 = OFF

1 = ON. 

2 Read/write LED2:

0 = OFF

1 = ON. 

1 Read/write LED1:

0 = OFF

1 = ON. 

0 Read/write LED0:

0 = OFF

1 = ON. 

Table 4-28 LED_SWITCH register

Bit Type Function

3 Read-only Switch pole 4 (S1-4)

2 Read-only Switch pole 3 (S1-3)

1 Read-only Switch pole 2 (S1-2)

0 Read-only Switch pole 1 (S1-1)
4-28 Copyright © 1999-2001. All rights reserved. ARM DUI 0098B



Programmer’s Reference 
4.8 Interrupt controller registers

The system controller FPGA provides interrupt handling for up to four processors. For 
each processor there is a 22-bit IRQ and 22-bit FIQ controller with the IRQ and FIQ 
outputs from the FPGA being assigned to the processors as follows:

• IRQ0 and FIQ0 to the processor on core module 0 

• IRQ1 and FIQ1 to the processor on core module 1

• IRQ2 and FIQ2 to the processor on core module 2

• IRQ3 and FIQ3 to the processor on core module 3.

See Interrupt controller on page 3-19 for a description of the interrupt controller 
hardware.

4.8.1 About the IRQ and FIQ control registers

The IRQ and FIQ controllers each provide three registers for controlling and handling 
interrupts. These are:

• status register

• raw status register

• enable register, accessed using the enable set and enable clear locations.

The way that the interrupt enable, clear, and status bits function for each interrupt is 
illustrated in Figure 4-5.

Figure 4-5 Interrupt control

Set

Clear
Enable

Status

Raw status

Enable set

Interrupt source

Enable clear

From other
bit slices

nIRQ
ARM DUI 0098B Copyright © 1999-2001. All rights reserved. 4-29



Programmer’s Reference 
The following subsections describe each of these registers. The headings for the 
descriptions contain the generic register name for both IRQ and FIQ types, and address 
offset from the base address of each interrupt controller. The full addresses are shown 
in Table 4-30 on page 4-32 and Table 4-31 on page 4-33.

IRQx_STATUS/FIQx_STATUS (+0x0)

The status register contains the logical AND of the bits in the raw status register and the 
enable register.

IRQx_RAWSTAT/FIQx_RAWSTAT (+0x4)

The raw status register indicates the signal levels on the interrupt request inputs. A bit 
set to 1 indicates that the corresponding interrupt request is active.

IRQx_ENABLESET/FIQx_ENABLESET (+0x8)

The enable set location is used to set bits in the enable register as follows:

• Set bits in the enable register by writing to the ENABLESET location for the 
required IRQ or FIQ controller:

1 = SET the associated bit in the enable register

0 = leave the associated bit in the enable register unchanged.

• Read the current state of the enable register bits from the ENABLESET location.

IRQx_ENABLECLR/FIQx_ENABLECLR (+0xC)

The enable clear location is used to clear bits in the enable register as follows:

• Clear bits in the enable register by writing to the ENABLECLR location 

1 = CLEAR the associated bit in the enable register for the required IRQ or FIQ 
controller

0 = leave the associated bit in the enable register unchanged.
4-30 Copyright © 1999-2001. All rights reserved. ARM DUI 0098B



Programmer’s Reference 
4.8.2 IRQ and FIQ register bit assignments

The bit assignment for interrupts in the status, raw status, and enable registers for each 
of the interrupt controllers is similar and is shown in Table 4-29. 

Table 4-29 IRQ register bit assignments

Bit Name Function

21 EXTINT External interrupt reserved for external sources

20 PCILBINT PCI local bus fault interrupt

19 ENUMINT CompactPCI auxiliary interrupt (ENUM#)

18 DEGINT CompactPCI auxiliary interrupt (DEG#)

17 LINT V3 PCI bridge interrupt 

16 PCIINT3 PCI bus (INTD#)

15 PCIINT2 PCI bus (INTC#)

14 PCIINT1 PCI bus (INTB#)

13 PCIINT0 PCI bus (INTA#)

12 EXPINT3 Logic module 3 interrupt

11 EXPINT2 Logic module 2 interrupt

10 EXPINT1 Logic module 1 interrupt

9 EXPINT0 Logic module 0 interrupt

8 RTCINT Real time clock interrupt

7 TIMERINT2 Counter-timer 2 interrupt

6 TIMERINT1 Counter-timer 1 interrupt

5 TIMERINT0 Counter-timer 0 interrupt

4 MOUSEINT Mouse interrupt

3 KBDINT Keyboard interrupt

2 UARTINT1 UART 1 interrupt

1 UARTINT0 UART 0 interrupt

0 SOFTINT Software interrupt (see Software interrupts on page 4-34)
ARM DUI 0098B Copyright © 1999-2001. All rights reserved. 4-31



Programmer’s Reference 
4.8.3 IRQ registers

The register set of each IRQ controller is shown in Table 4-30. Not shown in this table 
are the software interrupt registers that are described in Software interrupts on 
page 4-34.

Table 4-30 IRQ register addresses

Address Name Type Size Function

0x14000000 IRQ0_STATUS Read 22 IRQ0 status

0x14000004 IRQ0_RAWSTAT Read 22 IRQ0 interrupt request status

0x14000008 IRQ0_ENABLESET Read/write 22 IRQ0 enable set

0x1400000C IRQ0_ENABLECLR Write 22 IRQ0 enable clear

0x14000040 IRQ1_STATUS Read 22 IRQ1 status register

0x14000044 IRQ1_RAWSTAT Read 22 IRQ1 raw status

0x14000048 IRQ1_ENABLESET Read/write 22 IRQ1 enable set

0x1400004C IRQ1_ENABLECLR Write 22 IRQ1 enable clear

0x14000080 IRQ2_STATUS Read 22 IRQ2 status register

0x14000084 IRQ2_RAWSTAT Read 22 IRQ2 raw status

0x14000088 IRQ2_ENABLESET Read/write 22 IRQ2 enable set

0x1400008C IRQ2_ENABLECLR Write 22 IRQ2 enable clear

0x140000C0 IRQ3_STATUS Read 22 IRQ3 status register

0x140000C4 IRQ3_RAWSTAT Read 22 IRQ3 raw status

0x140000C8 IRQ3_ENABLESET Read/write 22 IRQ3 enable set

0x140000CC IRQ3_ENABLECLR Write 22 IRQ3 enable clear
4-32 Copyright © 1999-2001. All rights reserved. ARM DUI 0098B



Programmer’s Reference 
4.8.4 FIQ registers

The register set of each FIQ controller is shown in Table 4-31.

Table 4-31 FIQ registers addresses

Address Name Type Size Function

0x14000020 FIQ0_STATUS Read-only 22 FIQ0 status

0x14000024 FIQ0_RAWSTAT Read-only 22 FIQ0 raw status

0x14000028 FIQ0_ENABLESET Read/write 22 FIQ0 enable set

0x1400002C FIQ0_ENABLECLR Write-only 22 FIQ0 enable clear

0x14000060 FIQ1_STATUS Read-only 22 FIQ1 status register

0x14000064 FIQ1_RAWSTAT Read-only 22 FIQ1 raw status

0x14000068 FIQ1_ENABLESET Read/write 22 FIQ1 enable set

0x1400006C FIQ1_ENABLECLR Write-only 22 FIQ1 enable clear

0x140000A0 FIQ2_STATUS Read-only 22 FIQ2 status register

0x140000A4 FIQ2_RAWSTAT Read-only 22 FIQ2 raw status

0x140000A8 FIQ2_ENABLESET Read/write 22 FIQ2 enable set

0x140000AC FIQ2_ENABLECLR Write-only 22 FIQ2 enable clear

0x140000E0 FIQ3_STATUS Read-only 22 FIQ3 status register

0x140000E4 FIQ3_RAWSTAT Read-only 22 FIQ3 raw status

0x140000E8 FIQ3_ENABLESET Read/write 22 FIQ3 enable set

0x140000EC FIQ3_ENABLECLR Write-only 22 FIQ3 enable clear
ARM DUI 0098B Copyright © 1999-2001. All rights reserved. 4-33



Programmer’s Reference 
4.8.5 Software interrupts

The interrupt controller provides a 16-bit software interrupt register that is multiply 
mapped to appear at an offset of 0x10 from the four IRQ register-set base addresses. The 
software interrupt registers are accessed at the locations shown in Table 4-32. 

The software interrupt register contains four fields, each containing 4 bits. The bits 
within each field are logically ORed so that, if the software interrupt is enabled, an 
interrupt is generated for a processor if any bit within the associated field is set.

For example, if any of bits [11-8] are set then the SOFTINT bit in both 
IRQ2_RAWSTAT and FIQ2_RAWSTAT are set. 

The following subsections describe the function of each of the soft interrupt register 
locations. The headings for the descriptions contain the generic register name. There is 
one set and one clear location. These can be accessed at the address offset shown from 
the base address of each IRQ interrupt controller. The full addresses for the these 
locations are shown in Table 4-32.

Table 4-32 Software interrupt register

Address Name Type Size Function

0x14000010 INT_SOFTSET Read/write 16 Software interrupt set

0x14000050

0x14000090

0x140000D0

0x14000014 INT_SOFTCLEAR Write 16 Software interrupt clear

0x14000054

0x14000094

0x140000D4

IRQ0/FIQ0IRQ2/FIQ2

8 7 4 3111216 0

IRQ1/FIQ1IRQ3/FIQ3
4-34 Copyright © 1999-2001. All rights reserved. ARM DUI 0098B



Programmer’s Reference 
INT_SOFTSET (+0x10)

The software interrupt set locations are used to set bits in the software interrupt 
(SOFT_INT) register as follows:

• Set bits in the SOFT_INT register by writing to the SOFTSET location: 

1 = SET the associated bit in the SOFT_INT register

0 = leave the associated bit in the SOFT_INT register unchanged.

• Read the current state of the SOFT_INT register bits from the SOFTSET location.

INT_SOFTCLEAR (+0x14)

 The software interrupt clear locations are used to clear bits in the software interrupt 
(SOFT_INT) register as follows:

• Clear bits in the SOFT_INT register by writing to the SOFTCLR location: 

1 = CLEAR the associated bit in the SOFT_INT register.

0 = leave the associated bit in the SOFT_INT register unchanged.

Using the software interrupt register

Using the SOFT_INT register, it is possible for one processor to interrupt any other, or 
all four processors simultaneously, with a single write. Also, because there are 4 bits for 
each processor, it is possible to devise a software protocol to determine the source of the 
interrupt.

For example, in order to pass messages between processors, you would want to know 
which processor generated an interrupt. To do this, assign the software interrupts as 
follows:

• bits 0, 4, 8, and 12 assigned to interrupts from processor 0

• bits 1, 5, 9, and 13 assigned to interrupts from processor 1

• bits 2, 6, 10, and 14 assigned to interrupts from processor 2

• bits 3, 7, 11, and 13 assigned to interrupts from processor 3.

Using this protocol, the interrupted processor is able to determine the source of the 
interrupt by reading the software interrupt register and then take the appropriate action. 
For example, reading a shared data structure in memory. 

The bit assignment in the software interrupt register is arbitrary enabling you to devise 
a protocol to suit your application. 
ARM DUI 0098B Copyright © 1999-2001. All rights reserved. 4-35



Programmer’s Reference 
4.9 Peripheral registers

This section provides an overview of the peripheral registers implemented in the system 
controller FPGA. These are:

• GPIO

• Real time clock on page 4-38

• UART registers on page 4-41

• Keyboard and mouse interfaces on page 4-51.

Table 4-33 shows the base address for each of these devices.

4.9.1 GPIO

The GPIO provides 32 general-purpose input and output signals that are connected to 
the EXPB logic module connector. See Logic module connector EXPB on page A-8. 
The registers used to control these pins are shown in Table 4-34. 

Table 4-33 Peripheral register locations

Base address Size Description

0x1B000000 16MB GPIO

0x19000000 16MB Mouse 

0x18000000 16MB Keyboard

0x17000000 16MB UART1

0x16000000 16MB UART0

0x15000000 16MB RTC

Table 4-34 GPIO register summary

Address Name Type Size Function

0x1B000000 GPIO_DATASET Write 32 Data output set

GPIO_DATAIN Read 32 Read data input pins

0x1B000004 GPIO_DATACLR Write 32 Data register output clear

GPIO_DATAOUT Read 32 Read data output pins

0x1B000008 GPIO_DIRN Read/write 32 Data direction
4-36 Copyright © 1999-2001. All rights reserved. ARM DUI 0098B



Programmer’s Reference 
Data output set register

The GPIO_DATASET location is used to set individual GPIO output bits as follows:

1 = SET the associated GPIO output bit

0 = leave the associated GPIO bit unchanged.

Read data input register

Read the current state of the GPIO input bits from this location.

Data register output clear

The GPIO_DATACLR location is used to clear individual GPIO output bits as follows:

1 = CLEAR the associated GPIO output bit

0 = leave the associated GPIO bit unchanged.

Read data output pins

Read the current state of the GPIO output bits from this location.

Data direction

The GPIO_DIRN location is used to set the direction of each GPIO pin as follows:

1 = pin is an output

0 = pin is an input (default).

Figure 4-6 on page 4-37 shows the data direction control for one GPIO bit. 

Figure 4-6 GPIO direction control(1 bit)

Data direction register

Data register

Read data output
Read data input

Pin/pad
ARM DUI 0098B Copyright © 1999-2001. All rights reserved. 4-37



Programmer’s Reference 
4.9.2 Real time clock 

This section provides a memory map and functional overview of the RTC registers:

• RTC data register on page 4-38

• RTC match register on page 4-39

• RTC interrupt status register and Interrupt clear register on page 4-39

• RTC load register on page 4-39

• RTC control register on page 4-40.

For more detailed information, please refer to the ARM PrimeCell RTC (PL030) 
Technical Reference Manual. The RTC registers are summarized in Table 4-35. 

RTC data register

The RTC data register is a 32-bit read-only data register. Reads from this register return 
the current counter value. Table 4-36 describes the RTC data register bits.

Table 4-35 RTC register summary

Address Name Type Size Function

0x15000000 RTC_DR Read 32 Data register

0x15000004 RTC_MR Read/write 32 Match register

0x15000008 RTC_STAT Read 1 Interrupt status register

RTC_EOI Write 0 Interrupt clear register

0x1500000C RTC_LR Read/write 32 Load register

0x15000010 RTC_CR Read/write 1 Control register

Table 4-36 RTC_DR register

Bits Name Access Function

31:0 RTC data register Read Current counter value.
4-38 Copyright © 1999-2001. All rights reserved. ARM DUI 0098B



Programmer’s Reference 
RTC match register

The RTC match register is a 32-bit read/write register. Writes to this register load the 
match register. Reads return the last written value. Table 4-37 describes the RTC match 
register bits.

RTC interrupt status register and Interrupt clear register

The RTC status and RTC interrupt clear registers share the same location. The write 
location has no physical storage element but clears the RTCINT interrupt line and the 
corresponding status bit. A read from bit 0 returns the value of RTCINT.

RTC load register

The RTC load register is a 32-bit read/write load register. Writes to this register load the 
counter (the loads do not occur immediately). The contents of this register are loaded 
into an intermediate register before updating the free-running counter on the rising edge 
of a 1MHz clock generated internally by the system controller FPGA. Reads return the 
last written value.

Table 4-37 RTC_MR register

Bits Name Type Function

31:0 RTC match register Read/write Match register.

Table 4-38 RTC_STAT/RTC_EOI registers

Bits Name Access Function

31:0 RTC_EOI Write A write to this register clears RTCINT, 
regardless of data value written.

31:1 Reserved Read Reserved, unpredictable when read.

0 Interrupt status 
(RTCINT)

Read This bit is set to 1 if RTCINT interrupt 
is asserted.

Table 4-39 RTC_LR register

Bits Name Type Function

31:0 RTC load register Read/write Counter load register.
ARM DUI 0098B Copyright © 1999-2001. All rights reserved. 4-39



Programmer’s Reference 
RTC control register

The RTC control register is a 1-bit read/write register that controls the masking of the 
RTC interrupt. Writing 1 to bit position 0 enables the interrupt. Writing 0 disables the 
interrupt. Reads from this register return the last value written at bit position 0.

Table 4-40 RTC_CR register

Bits Name Type Function

31:1 Reserved Read/write Reserved, read unpredictable. Preserve 
using read-modify-writes.

0 Match interrupt 
enable (MIE)

Read/write If this bit is set to 1, the match interrupt 
is enabled.
4-40 Copyright © 1999-2001. All rights reserved. ARM DUI 0098B



Programmer’s Reference 
4.9.3 UART registers

This section provides an memory map and functional overview of the UART registers:

• UARTx receive data register on page 4-42

• UARTx receive status register on page 4-42

• UARTx error clear register on page 4-44

• UARTx line control register, high byte on page 4-44

• UARTx line control register, middle byte on page 4-45

• UARTx line control register, low byte on page 4-46

• UARTx control register on page 4-47

• UARTx flag register on page 4-48

• UARTx interrupt identification and clear registers on page 4-50

For more detailed information, refer to the ARM PrimeCell UART (PL010) Technical 
Reference Manual. 

The UART registers are summarized in Table 4-41. The following subsections describe 
each of these registers. The headings for the descriptions contain the generic register 
name and address offset from the base address of each UART.

Table 4-41 UART register summary

UART0 
address

UART1 
address

Name Access Function

0x16000000 0x17000000 UARTx_DR Read Receive data

Write Transmit data

0x16000004 0x17000004 UARTx_RSR Read Receive status register

UARTx_ECR Write Error clear register

0x16000008 0x17000008 UARTx_LCRH Read/write Line control register, high byte

0x1600000C 0x1700000C UARTx_LCRM Read/write Line control register, middle byte

0x16000010 0x17000010 UARTx_LCRL Read/write Line control register, low byte

0x16000014 0x17000014 UARTx_CR Read/write Control register

0x16000018 0x17000018 UARTx_FR Read Flag register

0x1600001C 0x1700001C UARTx_IIR Read Interrupt identification register

UARTx_ICR write Interrupt clear register
ARM DUI 0098B Copyright © 1999-2001. All rights reserved. 4-41



Programmer’s Reference 
UARTx receive data register

The UART receive data register stores the last byte received by the UART as follows:

• For bytes to be transmitted:

— FIFOs enabled. Data written to this location is pushed into the transmit 
FIFO.

— FIFOs disabled. Data is stored in the transmitter holding register (the 
bottom byte of the transmit FIFO). 

• For received byte:

— FIFOs enabled. The data byte is extracted, and a 3-bit status (break, frame 
and parity) is pushed into the 11-bit wide receive FIFO.

— FIFOs disabled. The data byte and status are stored in the receiving holding 
register (the bottom byte of the receive FIFO).

The received data byte is read by performing reads from the UARTx_DR register and 
then reading the corresponding status information from the UARTx_RSR register.

Note
 Read a received character from UARTx_DR first followed by the status error associated 
with that character from the UARTx_RSR. This read sequence cannot be reversed. 

UARTx receive status register

The UART receive status register is a 4-bit read-only register containing status 
information associated with the data character read from UARTx_DR immediately 
prior to reading this register. 

Table 4-42 UARTx_DR register

Bits Name Type Function

7:0 DATA Read/write Receive (read) data character

Transmit (write) data character

4 3 2 17 0

OE BE PE FEReserved
4-42 Copyright © 1999-2001. All rights reserved. ARM DUI 0098B



Programmer’s Reference 
Table 4-43 describes the UART receive status register bits. All the bits are cleared to 0 
on reset.

Note

 The received data character must be read first from UARTx_DR and the error status 
associated with that data character can be read from UARTx_RSR. This read sequence 
cannot be reversed.

Table 4-43 UARTx_RSR

Bit Name Type Function

7:4 Reserved Read Reserved, unpredictable when read.

3 OE Read Overrun Error.

This bit is set to 1 when data is received and 
the FIFO is already full.

This bit is cleared to 0 by a write to 
UARTx_ECR.

The FIFO contents are still valid because data 
cannot be written when the FIFO is full. Only 
the contents of the shift register are 
overwritten. To empty the FIFO, the CPU 
must read the data.

2 BE Read Break Error.

This bit is set to 1 if a break condition is 
detected.

This bit is cleared to 0 by a write to 
UARTx_ECR.

1 PE Read Parity Error.

This bit is set to 1 to indicate that the parity of 
the received data character does not match the 
parity selected in UARTx_LCRH (bit 2).

This bit is cleared to 0 by a write to 
UARTx_ECR. 

0 FE Read Framing Error.

This bit is set to 1 to indicate that the received 
character did not have a valid stop bit (a valid 
stop bit is 1).

This bit is cleared to 0 by a write to 
UARTx_ECR.
ARM DUI 0098B Copyright © 1999-2001. All rights reserved. 4-43



Programmer’s Reference 
UARTx error clear register

The UART error clear register is a write-only location. Write any value to this location 
to clear the framing, parity, break, and overrun errors bits in the UARTx_RSR register.

UARTx line control register, high byte

Note

 The UARTx_LCRH, UARTx_LCRM, and UARTx_LCRL locations together access the 
23-bit wide register (UARTx_LCR). This register is updated on the write strobe 
generated by writing to UARTx_LCRH. Therefore, writes to UARTx_LCRM or 
UARTx_BLCRL, must always be followed by a write to UARTx_LCRH.

The UART line control high byte location accesses bits 23 to 16 of the UART bit rate 
and line control register, UARTx_LCR. All the bits are cleared to 0 after a reset.

Table 4-44 describes the UART line control register high byte bits.

Table 4-44 UARTx_LCRH register

Bits Name Type Function

7 Reserved Read/write Reserved, do not modify, read as 0.

6:5 WLEN Read/write Word length [1:0] 

The select bits indicate the number of data bits 
transmitted or received in a frame as follows:

11 = 8 bits 
10 = 7 bits

01 = 6 bits

00 = 5 bits.

4 FEN Read/write Enable FIFOs

Set to 1 to enable the transmit and receive 
FIFO buffers (FIFO mode). Cleared to 0 to 
disable the FIFOs (character mode).

4 3 2 17 6 5 0

STP2 EPS PEN BRKReserved WLEN FEN
4-44 Copyright © 1999-2001. All rights reserved. ARM DUI 0098B



Programmer’s Reference 
UARTx line control register, middle byte

The UART line control middle byte location accesses bits 15 to 8 of the UARTx_LCR 
register, as shown in Table 4-45. All the bits are cleared to 0 on reset. 

3 STP2 Read/write Two Stop Bits Select

Set to 1 to transmit two stop bits at the end of 
each frame. The receive logic does not check 
for two stop bits being received.

2 EPS Read/write Even Parity Select 

Set to 1 to select even parity generation and 
checking. 

Cleared to 0 to select odd parity generation 
and checking. 

This bit has no effect if parity is disabled by 
the Parity Enable (bit 1) being cleared to 0.

1 PEN Read/write Parity Enable

Set to 1 to enable parity checking and 
generation.

0 BRK Read/write Send Break 

Set to 1 to drive a continuous low level output 
on the UARTx_TXD. This bit must be 
asserted for at least one complete frame 
transmission time in order to generate a break 
condition.

For normal use, this bit must be cleared to 0.

Table 4-45 UARTx_LCRM register

Bit Name Type Function

7:0 Baud Rate [15:8] Read/write Most significant byte of baud rate divisor.

These bits are cleared on reset.

Table 4-44 UARTx_LCRH register (continued)

Bits Name Type Function
ARM DUI 0098B Copyright © 1999-2001. All rights reserved. 4-45



Programmer’s Reference 
UARTx line control register, low byte

The UART line control register low byte location accesses bits 7 to 0 of the 
UARTx_LCR register, as shown in Table 4-46. All the bits are cleared to 0 on reset.

The baud rate divisor is calculated as follows:

Baud rate divisor = (FUARTCLK/ (16 * Baud rate)) –1

where FUARTCLK is the UART reference clock frequency.

Table 4-47 shows some typical bit rates and their corresponding divisors (in 
hexadecimal) for a UART clock frequency of 14.7456 MHz. A divisor value of zero is 
illegal and prevents transmission or reception.

Table 4-46 UARTx_LCML register

Bit Name Type Function

7:0 Baud Rate [7:0] Read/write Least significant byte of baud rate divisor.

These bits are cleared to 0 on reset.

Table 4-47 Typical baud rates and divisors

Baud rate Divisor UARTx_LCRM UARTx_LCRL

460800 0x0001 0x00 0x01

230400 0x0003 0x00 0x03

115200 0x0007 0x00 0x07

76800 0x000B 0x00 0x0B

57600 0x000F 0x00 0x0F

38400 0x0017 0x00 0x17

19200 0x002F 0x00 0x2F

14400 0x003F 0x00 0x3F

9600 0x005F 0x00 0x5F

2400 0x017F 0x01 0x7F

1200 0x02FF 0x02 0xFF
4-46 Copyright © 1999-2001. All rights reserved. ARM DUI 0098B



Programmer’s Reference 
Note

 The UART operates at up to 460800 baud but the line driver is only guaranteed up to 
250Kbaud.

UARTx control register

The UART control register is an 8-bit read/write register that is used to set a number of 
operating parameters.

Table 4-48 describes the bits in the UART control register. All the bits are cleared to 0 
on reset.

Table 4-48 UARTx_CR register

Bit Name Type Function

7 LBE Read/write Loop Back Enable.

When this bit is set to 1 and the SIR Enable bit 
is 0, the internal transmit path is fed through to 
the receive path. 

This bit is cleared to 0 on reset, disabling 
loopback mode.

6 RTIE Read/write Receive Timeout Interrupt Enable.

If this bit is set to 1, the receive timeout 
interrupt is enabled. 

5 TIE Read/write Transmit Interrupt Enable.

If this bit is set to 1, the transmit interrupt is 
enabled. 

4 RIE Read/write Receive Interrupt Enable.

If this bit is set to 1, the receive interrupt is 
enabled. 

3 MSIE Read/write Modem Status Interrupt Enable.

If this bit is set to 1, the modem status interrupt 
is enabled. 

4 3 2 17 6 5 0

MSIE Reserved Reserved UARTENLBE RTIE TIE RIE
ARM DUI 0098B Copyright © 1999-2001. All rights reserved. 4-47



Programmer’s Reference 
UARTx flag register

UARTx_FR register is an 8-bit read-only register that contains status flags.

2 Unused Read/write This bit selects the IrDA encoding mode 
(unused by the Integrator). Always write with 
0.

1 Unused Read/write This bit is the SIR enable bit (unused by the 
Integrator). Always write with 0.

0 UARTEN Read/write UART Enable.

If this bit is set to 1, the UART is enabled. Data 
transmission and reception occurs for either 
UART signals or SIR signals according to the 
setting of SIR Enable (bit 1).

Table 4-48 UARTx_CR register  (continued)

Bit Name Type Function

4 3 2 17 6 5 0

BUSY DCD DSR CTSTXFE RXFF TXFF RXFE
4-48 Copyright © 1999-2001. All rights reserved. ARM DUI 0098B



Programmer’s Reference 
Table 4-49 describes the UART status flags. After reset TXFF, RXFF and BUSY are 
0, TXFE and RXFE are1.

Table 4-49 UARTx_FR register

Bits Name Type Function

7 TXFE Read Transmit FIFO Empty.

If the FIFO is disabled, this bit is SET when the 
transmit holding register is empty.

If the FIFO is enabled, this bit is SET when the 
transmit FIFO is empty.

6 RXFF Read Receive FIFO Full.

If the FIFO is disabled, this bit is SET when the 
receive holding register is full.

If the FIFO is enabled, this bit is SET when the 
receive FIFO is full.

5 TXFF Read Transmit FIFO Full.

If the FIFO is disabled, this bit is set when the 
transmit holding register is full.

If the FIFO is enabled, the TXFF bit is set when the 
transmit FIFO is full.

4 RXFE Read Receive FIFO Empty.

If the FIFO is disabled, this bit is set when the 
receive holding register is empty.

If the FIFO is enabled, the RXFE bit is set when the 
receive FIFO is empty.

3 BUSY Read UART Busy.

If this bit is set to 1, the UART is busy transmitting 
data. This bit remains set until the complete byte, 
including all the stop bits, has been sent from the 
shift register.

This bit is set as soon as the transmit FIFO becomes 
non-empty (regardless of whether the UART is 
enabled or not).
ARM DUI 0098B Copyright © 1999-2001. All rights reserved. 4-49



Programmer’s Reference 
UARTx interrupt identification and clear registers

This location provides access to the read-only UART interrupt identification and the 
write-only interrupt clear register. Reading this location returns the UART interrupt 
flags. A write of any value to UARTx_ICR clears the interrupts.

The interrupt identification bits are as shown in Table 4-50. All the bits are cleared to 0 
when reset.

2 DCD Read Data Carrier Detect

This bit is the complement of the UART data carrier 
detect modem status input. That is, the bit is 1 when 
the modem status input is 0.

1 DSR Read Data Set Ready.

This bit is the complement of the UART data set 
ready modem status input. That is, the bit is 1 when 
the modem status input is 0.

0 CTS Read Clear To Send.

This bit is the complement of the UART clear to 
send modem status input. That is, the bit is 1 when 
the modem status input is 0.

Table 4-50 UARTx_IIR register

Bit Name Type Function

7:4 Reserved Read Reserved, unpredictable when read.

3 RTIS Read Receive Timeout Interrupt Status.

This bit is set to 1 if the UARTRTINT receive 
interrupt is asserted.

Table 4-49 UARTx_FR register  (continued)

Bits Name Type Function

4 3 2 17 0

RTIS TIS RIS MISReserved
4-50 Copyright © 1999-2001. All rights reserved. ARM DUI 0098B



Programmer’s Reference 
4.9.4 Keyboard and mouse interfaces

This section provides a memory map and functional overview of the KMI registers:

• KMI control register on page 4-52

• KMI status register. on page 4-53

• KMI data register on page 4-54

• KMI clock divisor register on page 4-54

• KMI interrupt identification register on page 4-54.

For more detailed information, please refer to the KMI (PL050) Technical Reference 
Manual. The KMI registers are summarized in Table 4-51.

2 TIS Read Transmit Interrupt Status.

This bit is set to 1 if the UARTTXINT 
transmit interrupt is asserted.

1 RIS Read Receive Interrupt Status.

This bit is set to 1 if the UARTRXINT receive 
interrupt is asserted.

0 MIS Read Modem Interrupt Status.

This bit is set to 1 if the UARTMSINT 
modem status interrupt is asserted.

Table 4-50 UARTx_IIR register  (continued)

Bit Name Type Function

Table 4-51 KMI register summary

Keyboard
Address

Mouse
Address

Name Type Description

0x18000000 0x19000000 KMI_CR Read/write Control register

0x18000004 0x19000004 KMI_STAT Read Status register

0x18000008 0x19000008 KMI_DATA Read Received data register 

Write Transmit data register 

0x1800000C 0x1900000C KMI_CLKDIV Read/write Clock divisor register

0x18000010 0x19000010 KMI_IR Read Interrupt identification register
ARM DUI 0098B Copyright © 1999-2001. All rights reserved. 4-51



Programmer’s Reference 
KMI control register

The KMI control register is an 8-bit read/write register that control various functions 
within the KMI.

The KMI control register bits are described in Table 4-52. All bits are cleared to 0 on 
reset.

Table 4-52 KMI_CR register

Bits Name Access Function

7:6 Reserved read/write Reserved, read unpredictable, write as 0.

5 TYPE read/write Keyboard type:

0 = PS2/AT mode (default)

1 = No line control bit mode.

4 RIEN read/write Receiver interrupt enable. 

Set to 1 to enable the KMI receiver interrupt.

3 TIEN read/write Transmitter interrupt enable.

Set to 1 to enable the KMI transmitter 
interrupt.

2 KMIEN read/write KMI enable.

Set to 1 to enable the KMI.

1 FKMID read/write Force KMI data LOW.

Set to 1 to force PS2 the KMI data LOW.

0 FKMIC read/write Force KMI clock LOW.

Set to 1 to force the KMI clock LOW.

4 3 2 17 6 5 0

KMIEN KMID FKMICReserved TYPE RIEN TIEN
4-52 Copyright © 1999-2001. All rights reserved. ARM DUI 0098B



Programmer’s Reference 
KMI status register.

The KMI status register is a 8-bit, read-only register that indicates the status of the 
different lines in the KMI.

The KMI status register bits are described in Table 4-53.

Table 4-53 KMI_STAT register

Bits Name Type Function

7 Reserved Read Reserved, read unpredictable.

6 TXEMPTY Read Transmit register status:

0 = Transmit register full

1 = Transmit register empty, ready to be 
written.

5 TXBUSY Read KMI data transmitter status:

0 = Idle

1 = Busy, sending data.

4 RXFULL Read Receiver register status:

0 = Receive register empty.

1 = Receive register full, ready to be read.

3 RXBUSY Read KMI receiver status:

0 = Idle

1 = Busy, receiving data.

2 RXPARITY Read Parity bit for the last received data byte (odd 
parity).

1 KMIC Read Status of the KMI clock input line after 
synchronizing and sampling.

0 KMID Read Status of the KMI data input line after 
synchronizing.

4 3 2 17 6 5 0

RXPARITY KMICKIN KMIDINReserved TXBUSYTXEMPTY RXFULL RXBUSY
ARM DUI 0098B Copyright © 1999-2001. All rights reserved. 4-53



Programmer’s Reference 
KMI data register

The KMI transmit/receive data register is 8-bits wide. When KMI_DATA is read, the 
received data is accessed. When KMI_DATA is written to, it is loaded into the transmit 
register and then serially shifted out onto the KMI DATA pin.

KMI clock divisor register

The KMI clock divisor register is used to specify the division factor by which the input 
KMIREFCLK is divided to provide an 8MHZ internal clock signal. The frequency of 
the clock signal supplied to this input is fixed at 24MHz. This register must be 
programmed with a divisor value of 2 order to generate the internal 8MHz signal.

KMI interrupt identification register

The KMI interrupt identification register is an 8-bit read-only register that contains 
interrupt status information for the KMI.

Table 4-54 KMI_DATA transmit/receive data register read/write bits

Bits Name Type Function

7:0 KMIDATA Read/write Receive/transmit register:

Read - Receive register.

Write - Transmit register.

Table 4-55 KMI_CLKDIV register read/write bits

Bits Name Type Function

3:0 KMICLKDIV Read/write Clock divisor register. 

The KMI divides the input clock by 
(1+KMICLKDIV) to generate the 8MHZ 
internal clock. 

2 17 0

TXINTR RXINTRReserved
4-54 Copyright © 1999-2001. All rights reserved. ARM DUI 0098B



Programmer’s Reference 
The KMI interrupt identification register bits are described in Table 4-56.

Table 4-56 KMI_IR register

Bits Name Type Function

7:2 Reserved Read Reserved, read unpredictable.

1 TXINTR Read This bit is set to 1 if the KMI transmit interrupt 
is asserted.

0 RXINTR Read This bit is set to 1 if the KMI receive interrupt 
is asserted.
ARM DUI 0098B Copyright © 1999-2001. All rights reserved. 4-55



Programmer’s Reference 
4-56 Copyright © 1999-2001. All rights reserved. ARM DUI 0098B



Chapter 5 
PCI Subsystem

This chapter describes the PCI subsystem of the Integrator/AP. It contains the following 
sections:

• About the PCI subsystem on page 5-2

• System to local bus bridge operation on page 5-6

• V360EPC PCI to Host Bridge operation on page 5-9

• PCI to PCI bridge operation on page 5-15

• Initializing the PCI subsystem on page 5-16

• PCI subsystem interrupts on page 5-17.
ARM DUI 0098B Copyright © 1999-2001. All rights reserved. 5-1



PCI Subsystem 
5.1 About the PCI subsystem

The PCI subsystem enables you to add expansion cards to the Integrator/AP or to 
connect it to a CompactPCI backplane. The Integrator/AP is a slot 1 CompactPCI card. 

The basic operations of the PCI subsystem can be described in terms of the:

• topology of the PCI subsystem

• cycle types supported

• function of the PCI bridges

• arbitration on various bus segments within the subsystem

• PCI subsystem interrupts. 

The remaining sections in this chapter describe these operations in more detail.

5.1.1 PCI subsystem topology

The major parts of the PCI subsystem are:

• System bus to local bus bridge (part of the system controller FPGA)

• V-cubed V360EPC PCI Host Interface controller

• PCI expansion bus with 3 expansion slots and 5-slot arbiter

• Intel 21152 PCI-PCI Bridge 

• CompactPCI system controller providing:

— CompactPCI bus arbiters

— Clock generator.

The architecture of the PCI subsystem is illustrated in Figure 5-1.
5-2 Copyright © 1999-2001. All rights reserved. ARM DUI 0098B



PCI Subsystem 
Figure 5-1 PCI subsystem

5.1.2 PCI subsystem access types

The PCI subsystem supports several access types:

• reads and writes by system bus initiators to local PCI bus targets

• reads and writes by system bus initiators to CompactPCI bus targets

• reads and writes by PCI expansion bus initiators to system bus targets

• reads and writes by PCI expansion bus initiators to CompactPCI bus targets

• reads and writes by PCI expansion bus initiators to PCI expansion bus targets

• reads and writes by CompactPCI bus initiators to system bus targets

• reads and writes by CompactPCI bus initiators to PCI expansion bus targets

• reads and writes by CompactPCI bus initiators to CompactPCI bus targets.

5.1.3 PCI bridges

The function of a bridge is pass valid accesses in both directions between the bus nearest 
to the initiator and the bus nearest to the target. The system to local bus bridge (within 
the system controller FPGA) provides the host (or primary) bus for the V360EPC 
bridge. The system-local bus bridge recognizes addresses in the range 0x40000000 to 
0x7FFFFFFF as being intended for a target within the PCI address space of the Integrator 
memory map, and passes accesses within this region through to the host-PCI bridge 
without address translation.

System controller
FPGA

System-local
bus

Bridge

V360EPC
local bus

PCI Expansion bus

5-slot
arbiter

8-slot
arbiter

V360EPC
PCI-Host

bridge
controller

Intel 21152
PCI-PCI
bridge

controller

S
lo

t 1

S
lo

t 2

S
lo

t 3

CompactPCI
bus

System
bus
ARM DUI 0098B Copyright © 1999-2001. All rights reserved. 5-3



PCI Subsystem 
The V360EPC host-to-PCI bridge passes valid accesses from the local bus through to 
its secondary bus, in this case the PCI expansion bus. The PCI to PCI bridge, in turn, 
passes accesses intended for its secondary bus side through to the CompactPCI. This 
process is repeated as required on other CompactPCI boards until the target device is 
finally reached, and the process operates in reverse for accesses from PCI initiators.

Some bridges are capable of being programmed to perform address translation or to 
restrict the types of PCI access types available. 

The mapping of system bus addresses to PCI address space is defined within registers 
in the V360EPC by the resident firmware during system initialization. This mapping is 
shown in Figure 5-4 (see Local bus to PCI windows on page 5-10).

Figure 5-2 System bus to PCI space mapping

5.1.4 PCI bus arbitration

The PCI subsystem provides three separate arbiters. These are for the:

• local bus

• PCI expansion bus

• CompactPCI bus. 

PCI config

V360EPC registers

Reserved

PCI IO

PCI
memory

PCI
memory

0x40000000

0x50000000

0x60000000

0x61000000

0x62000000

0x6200FFFF

System bus
addresses

256MB

512MB

528MB

544MB

544.06MB
5-4 Copyright © 1999-2001. All rights reserved. ARM DUI 0098B



PCI Subsystem 
The local bus arbiter is part of the system controller FPGA.

The PCI expansion bus has a 5-slot arbiter that controls accesses by the two bridges at 
either end of the PCI expansion bus and devices plugged into the PCI expansion slots.

The CompactPCI interface has a separate 8-slot arbiter to provide arbitration for the 
CompactPCI bus.
ARM DUI 0098B Copyright © 1999-2001. All rights reserved. 5-5



PCI Subsystem 
5.2 System to local bus bridge operation

The system bus to local bus bridge supports read and write accesses in both directions, 
as shown in Figure 5-3.

Figure 5-3 System to local bus bridge transactions

Depending on the direction of transfer, these fall into two general types:

Inbound transactions 

Inbound transactions are those performed by the V360EPC on behalf of 
initiators on its PCI expansion bus side. The system to local bus bridge 
captures addresses generated by the V360EPC and passes them through 
to the system bus with no address translation. 

Outbound transactions 

Outbound transactions are those performed by initiators on the system 
bus to targets on the PCI expansion bus or CompactPCI bus. Accesses in 
the range 0x40000000 to 0x7FFFFFFF from the system bus are passed 
through to the local bus without translation.

Caution
 The V360EPC must not be programmed to generate local bus addresses in the range 
0x40000000 - 0x7FFFFFFF because the operation of the system is unpredictable.

Write transactions in both directions are supported by write FIFOs. These are described 
in detail below.

FIFO

FIFO

Inbound read

Outbound read

Inbound write

Outbound write

V360EPC
local bus

System
bus
5-6 Copyright © 1999-2001. All rights reserved. ARM DUI 0098B



PCI Subsystem 
5.2.1 Inbound transactions

The V360EPC is configured to operate its local bus interface in Am29K bus mode. This 
uses word-aligned addresses and four byte lane strobes, allowing easy internal 
translation to and from PCI cycle types. The AMBA system bus specifies transfer sizes 
of byte, halfword or word and uses byte addresses that are transfer-size aligned. 

The system to local bus bridge handles inbound transactions as follows:

• A local bus write or read that can be translated to a single AMBA data transfer is 
performed as a single system bus transfer of the selected size.

• A local bus write that cannot be performed as a single AMBA data transfer is 
translated into two write cycles. For example, a 3-byte transfer is performed as 
two data transfers, of 1 byte followed by 1 halfword. These are made indivisible 
on the system bus by using the AMBA bus locking mechanism.

• A local bus read that specifies a pattern of byte lanes that cannot be translated to 
a single AMBA data transfer is performed as a word transfer and the V360EPC 
discards the unwanted data.

5.2.2 Outbound transactions

All normal AMBA transactions (as used on the system bus) can be translated to 
corresponding single local bus cycles.

The local bus does not provide a bus locking facility. Locked transactions, such as the 
data read and data write of an ARM SWAP instruction, are only indivisible on the 
system bus. They can be separated on the PCI bus by transactions performed by other 
PCI bus masters. This can affect how a system with multiple PCI masters performs 
inter-processor communication. To avoid the effects of this limitation on Integrator 
system with multiple core modules, do not store inter-processor communication 
semaphores in PCI memory space.

5.2.3 Write FIFOs

The local bus bridge incorporates FIFOs to support write transactions in both directions. 
Both FIFOs operate in a similar way as follows: 

Writes If there is space in the FIFO for the write transaction, the write is stored 
in the FIFO that supports transfers in that direction. The write transaction 
is completed on the initiating bus with no additional wait states. 

When there are writes stored in the FIFO, the bridge issues a request to 
perform the write on the target bus. Writes are carried out in the order 
they are stored.
ARM DUI 0098B Copyright © 1999-2001. All rights reserved. 5-7



PCI Subsystem 
Reads Read transactions are not buffered in the FIFOs. For each direction, a read 
transaction is suspended until the write transactions already stored in the 
corresponding write FIFO have been completed. This ensures that the 
order of transactions on the initiating bus is maintained on the target bus.

5.2.4 Local bus arbitration

The local bus bridge provides arbitration between inbound transactions and outbound 
transactions. It prevents deadlocks by using wait and retract signals and by assigning a 
higher priority to inbound transactions.

Inbound transaction responses are as follows:

• Write transactions receive a WAIT response until the FIFO has space available. 

• Read transactions receive a WAIT response until the FIFO is empty, and until the 
corresponding read has completed on the system bus and the data is available.

Outbound transaction responses are as follows:

• Write transactions complete on the system bus with no WAIT states, providing the 
FIFO has space available. If the FIFO is full, they receive a RETRACT response 
and the cycle must be retried. 

• Read transactions receive a RETRACT response unless the FIFO is empty. In this 
case they receive a WAIT until the corresponding read transfer has completed on 
the local bus and the data is available. 

After a RETRACT response, if no other bus masters require the system bus, then the 
original master can immediately retry the transaction. The transaction can complete as 
soon as the FIFO and conditions on the local bus permit.
5-8 Copyright © 1999-2001. All rights reserved. ARM DUI 0098B



PCI Subsystem 
5.3 V360EPC PCI to Host Bridge operation

This sections provides an overview of the operation of the V360EPC. For a more 
detailed description, see the V360EPC User Manual.

The basic function of the V360EPC is to forward memory accesses in both directions 
between the local bus interface and the on-board PCI bus, as shown Figure 5-4.

Figure 5-4 PCI to host bridge

The V360EPC provides windows through which accesses are made from one side of the 
bridge to the other. This is supported by the following features:

FIFOs These buffer write transactions in both directions, avoiding delays due to 
arbitration or traffic on the destination bus. Read cycles can be 
programmed to take precedence over queued writes.

Speculative prefetch 

The V360EPC can use speculative read transfers on the target bus in 
anticipation that subsequent cycles on the initiating bus are likely to 
request data from the same target bus locations. This feature should only 
be used with a thorough understanding of the effects on the system.

DMA controller 

The DMA controller can be programmed to move blocks of data from 
one bus to the other. It supports chaining, automatically loading 
sequences of DMA descriptors.

Mailboxes Mailboxes can be programmed to generate interrupts when accessed. 
This can be used to for handshaking between processors on Integrator 
core modules and processors on the PCI bus.

Outbound FIFO

Inbound FIFO

PCI expansion
bus

Local
bus

Address
translation
windows

Address
translation
windows

Optional
prefetch

Optional
prefetch
ARM DUI 0098B Copyright © 1999-2001. All rights reserved. 5-9



PCI Subsystem 
5.3.1 Local bus to PCI windows

The local bus side of the V360EPC provides three windows through which accesses can 
be made by system bus masters to the PCI expansion bus and CompactPCI. Each 
window is defined by its base address and its size in the host address space. A map 
register is used to define the starting location of each window in the PCI address space. 
A fourth window defines where the V360EPC internal registers appear in the system 
bus memory map but does not generate accesses on the PCI expansion bus side.

In the Integrator/AP, the default values are programmed by the ARM Firmware Suite as 
shown in Table 5-1.

Note

 The mapping of windows 0 and 1 must be changed to allow access to device registers 
when PCI configuration cycles are required (see Configuration cycles on page 5-12).

In the following, the contents of some of the V360EPC control registers are shown as 
they would be displayed by the boot monitor, with additional comment describing the 
effects of the programmed value.

Window 0

Window 0 provides a large window in the Integrator memory map to PCI memory 
address space. Addresses from 0x40000000 to 0x4FFFFFFF (or 0x5FFFFFFF) are mapped 
linearly with no translation between system bus and PCI bus. Accesses through the 
window generate PCI memory read (type 6) and memory write (type 7) cycles.

[0x62000054] LB_BASE0 : 0x40000081 
; Local Bus start address 0x40000000, 
; size 256MB

[0x6200005E] LB_MAP0 : 0x4006 
; maps to PCI address of 0x40000000,
; normal cycles

Table 5-1 PCI outbound access windows

Window PCI space Size PCI address System bus address

0 Memory 256MB 0x40000000 to 0x4FFFFFFF 0x40000000 to 0x4FFFFFFF

1 Memory 256MB 0x50000000 to 0x5FFFFFFF 0x50000000 to 0x5FFFFFFF

2 I/O 16MB 0x000000 to 0xFFFFFF 0x60000000 to 0x60FFFFFF

Registers - 64KB - 0x62000000 to 0x6200FFFF
5-10 Copyright © 1999-2001. All rights reserved. ARM DUI 0098B



PCI Subsystem 
Window 1

Window 1 provides a second large window from system bus address space to PCI 
memory address space. Addresses from 0x50000000 to 0x5FFFFFFF are mapped linearly 
with no translation between system bus and PCI bus. Accesses through the window 
generate standard PCI memory read (type 6) and memory write (type 7) cycles. 
Prefetches can be used in this window from PCI addresses.

[0x62000058] LB_BASE1 : 0x50000081 
; Local Bus start address 0x50000000, 
; size 256MB

[0x62000062] LB_MAP1 : 0x5006 
; maps to PCI address of 0x540000000,
; normal cycles

Window 2

Window 2 provides a smaller window from system bus memory space to PCI I/O space. 
Addresses from 0x60000000 to 0x60FFFFFF are mapped to PCI I/O addresses 0x000000 to 
0xFFFFFF. Accesses through the window generate PCI I/O read (type 2) and I/O write 
(type 3) cycles.

[0x62000064] LB_BASE2 : 0x6001 
; Local bus start address 0x60000000, 
; size 16MB

[0x62000066] LB_MAP2 : 0x0000 
; maps to PCI address of 0x00000000, 
; I/O cycles

Register window

This window is used to identify where the V360EPC internal registers appear in the 
system bus address map. Addresses from 0x62000000 to 0x6200FFFF are mapped to the 
internal register space. These do not generate any cycles on the PCI bus. 

[0x6200006E] LB_IO_BASE : 0x6200
; Local bus start address 0x62000000, 
; size 64K

Caution

 When initializing the system, the first access to the V360EPC after reset must be a write 
to the LB_IO_BASE register.
ARM DUI 0098B Copyright © 1999-2001. All rights reserved. 5-11



PCI Subsystem 
5.3.2 Configuration cycles

Configuration cycles are used to access the registers in a particular device, such as an 
Ethernet controller, in order to initialize the device or to change its operational 
characteristics or state. 

Access to device registers is gained by re-using window 1. The window is remapped to 
address 0x61000000 to 0x61FFFFFF and to use of PCI Configuration read (type 10) and 
write (type 11) cycles. However, before remapping window 1, you must remap window 
0 to ensure that application software can access the address space normally assigned to 
window 1 while window 1 is re-used for configuration cycles.

In other words, you must follow a strict sequence of steps to remap windows 0 and 1 
before configuration cycles begin and then map them after configuration cycles are 
completed. 

Note

 The ARM Firmware suite provides a set of functions for performing PCI configuration 
cycles. See the ARM Firmware Suite Reference Guide.

The sequence of steps is:

1. Map window 0 to access the address space 0x40000000 to 0x5FFFFFFF.

2. Map window 1 to provide access to the required registers.

3. Perform the required register accesses.

4. Map window 1 back to 0x50000000 to 0x5FFFFFFF.

5. Map window 0 back to 0x40000000 to 0x4FFFFFFF.

For example:

[0x62000054] LB_BASE0 : 0x40000091 
; Local Bus start address 0x40000000, 
; size 512MB

[0x6200005E] LB_MAP0 : 0x4006
; maps to PCI address of 0x40000000, 
; normal cycles

[0x62000058] LB_BASE : 0x61000041
; Local Bus start address 0x61000000, 
; size 16MB

[0x62000062] LB_MAP1 : 0x800A 
; maps to PCI type 0 config cycle 
; to device 20
5-12 Copyright © 1999-2001. All rights reserved. ARM DUI 0098B



PCI Subsystem 
5.3.3 PCI to local bus windows

The PCI bus side of the V360EPC provides two windows through which accesses can 
be made from PCI bus initiators to the Integrator system bus. Each window is assigned 
a base address to define where it starts in PCI address space and a size to define how 
much space it occupies. Map registers define the corresponding starting location in the 
Integrator memory map.

A third window provides access to the V360EPC internal registers from the PCI bus.

In the Integrator system, the default values programmed by the ARM Firmware Suite 
are shown in Table 5-2. 

Window 0

Window 0 provides a large window from PCI memory address space to system bus 
address space. Addresses from 0x20000000 to 0x3FFFFFFF are mapped linearly with no 
translation between PCI bus and system bus. These addresses correspond to the EBI 
space in the Integrator memory map. The window captures PCI memory cycles (types 
6, 7, C, E, F) but not PCI I/O cycles (types 10 and 11).

[0x62000014] PCI_BASE0 : 0x20000000
; PCI Bus start address 0x20000000, 
; memory cycles

[0x62000040] PCI_MAP0 : 0x20000093 
; maps to System Bus at 0x20000000,
; 512MB, enabled

Window 1

Window 1 provides a second large window from PCI memory address space to system 
bus address space. Addresses from 0x80000000 to 0xBFFFFFFF are mapped linearly, with 
no translation between the PCI bus and system bus. This address range corresponds to 
the core module alias memory space. The window captures PCI memory cycles (types 
6, 7, C, E, F) but not PCI I/O cycles (types 10 and 11).

Table 5-2 PCI inbound access windows

Window PCI space PCI address Local bus address
Integrator 
resource

0 Memory 0x20000000 to 0x3FFFFFFF 0x20000000 to 0x3FFFFFFF External bus interface

1 Memory 0x80000000 to 0xBFFFFFFF 0x80000000 to 0xBFFFFFFF Core module alias 
memory

Registers - disabled by default
ARM DUI 0098B Copyright © 1999-2001. All rights reserved. 5-13



PCI Subsystem 
[0x62000018] PCI_BASE1 : 0x80000000  
; PCI Bus start address 0x80000000,
; memory cycles

[0x62000044] PCI_MAP1 : 0x800000A3  
; maps to System Bus at 0x80000000, 
; 1024MB, enabled

Register window

This window can be used to allow access from the PCI bus to the V360EPC internal 
registers. This is disabled by default.

[0x62000010] PCI_IO_BASE : 0x00000000
; internal registers at PCI memory 
; address 0 but

[0x6200007C] PCI_CFG : 0x3166
; PCI_IO_BASE disabled 
; (and other functions)

Note
 The ARM Firmware Suite provides initialization routines that program registers within 
the V360EPC. See the ARM Firmware Suite Reference Guide.
5-14 Copyright © 1999-2001. All rights reserved. ARM DUI 0098B



PCI Subsystem 
5.4 PCI to PCI bridge operation

The Intel 21152 on the Integrator/AP is a standard part. For a detailed description of its 
operation see the PCI-PCI Bridge Specification and the Intel 21152 User Manual.

The ARM Firmware Suite provides initialization routines that program registers within 
the bridge according to the topology of a particular system. For an example of a program 
that initializes the PCI system see the scanpci program in the PCI component of the 
ARM Firmware Suite.

The basic operation of the device is to forward memory and I/O transactions in either 
direction between the PCI expansion bus and CompactPCI bus when the addresses are 
within ranges that exist on the target side of the bridge.

PCI Configuration transactions are more complex. Certain configuration reads and 
writes propagate through bridges from primary to secondary side until they reach their 
destination bus where they are translated to other Configuration cycles and perform 
their function. This is very much a system dependent operation and is discussed in detail 
in the ARM Firmware Suite Reference Guide.
ARM DUI 0098B Copyright © 1999-2001. All rights reserved. 5-15



PCI Subsystem 
5.5 Initializing the PCI subsystem

 After reset, the state of the PCI subsystem is as follows:

• the system to local bus bridge is disabled

• the V360EPC is reset so that its registers are not visible

• the PCI expansion bus is held in reset by the V360EPC

• the CompactPCI bus is held in reset by the Intel 21152 PCI-PCI Bridge

The ARM Firmware Suite provides initialization routines for the PCI subsystem and 
utilities for working with PCI. It is strongly recommended that the user start with these 
routines and, if changes are needed, use them as the basis for their own code. 

The following is a summary of the important actions that the initialization must carry 
out. For further information see the ARM Firmware Suite Reference Guide.

1. Enable the system to local bus bridge in the system controller by setting the 
PCIEnable bit in the SC_PCI register. 

System bus accesses to the PCI bridge address space (0x40000000 to 0x7FFFFFFF), 
when this bit is 0, terminate with a Bus Error response. On typical core modules, 
a Bus Error response to a read transaction results in the processor taking a data 
abort exception. However, write transactions complete on the core module 
memory bus when that data is posted in the bridge FIFO so the data is just 
discarded.

2. Wait until 230ms after the end of the reset period before accessing the V360EPC 
internal registers. The V360EPC supports the use of a serial configuration PROM 
and the software must wait for the device to detect the absence of this PROM 
before accessing any registers. The required delay is a function of the PCI Clock 
speed but at the lower frequency (25MHz) is 230ms.

3. Your first access to the V360EPC must be to write the address decode register 
(LB_IO_BASE). Typically this is:
(unsigned short *) 0x6200006E = 0x6200;

4. After the other configuration registers are written, release the PCI bus from reset 
by writing to the V360EPC SYSTEM register.
5-16 Copyright © 1999-2001. All rights reserved. ARM DUI 0098B



PCI Subsystem 
5.6 PCI subsystem interrupts

The Integrator interrupt controller includes 8 bits in its source, mask, set and clear 
registers that relate to the PCI sub-system. These are listed in Table 5-3.

5.6.1 PCI Host Bridge interrupts

The V360EPC host bridge contains a number of potential interrupt sources including:

• PCI bus master abort

• PCI bus parity error

• PCI bus system error

• DMA finished

• Spare INTB#, INTC# inputs.

The V360EPC can be programmed so that these conditions generate an interrupt on 
PCILINT. For details of how to program these interrupt sources, see the V360EPC User 
Manual.

The spare INTD# input of the V360EPC is tied to 1 (inactive) on the Integrator/AP.

Table 5-3 PCI interrupts

Bit Name Description

20 PCILBINT System bus-to-V360EPC local bus interface error

19 ENUMINT CompactPCI auxiliary interrupt

18 DEGINT CompactPCI auxiliary interrupt

17 PCILINT PCI host bridge interrupt

16 PCIINT3 Main PCI/CompactPCI interrupts

15 PCIINT2 Main PCI/CompactPCI interrupts

14 PCIINT1 Main PCI/CompactPCI interrupts

13 PCIINT0 Main PCI/CompactPCI interrupts
ARM DUI 0098B Copyright © 1999-2001. All rights reserved. 5-17



PCI Subsystem 
5.6.2 CompactPCI auxiliary interrupts

The CompactPCI bus includes two status signals and two legacy IDE signals that can 
be used to interrupt the host processor. These are: 

DEG# This is a signal from the system power supply unit that gives an early 
warning that the power may soon fail. This is connected to the DEGINT 
interrupt.

ENUM# This is normally used for CompactPCI hot swap systems to signal board 
extraction or insertion. This is connected to the ENUMINT interrupt.

INTP This is provided on the CompactPCI bus for backward compatibility with 
ISA IDE systems, where it was the primary ISA interrupt. It can be used 
as a general purpose interrupt. INTP is active high so it is first inverted. 
It is then connected to the INTB# input of the V360EPC Host Bridge, 
that can be programmed to cause an interrupt on its LINT pin.

INTS This is provided on the CompactPCI bus for backward compatibility with 
ISA IDE systems, where it was the secondary ISA interrupt. It can be 
used as a general purpose interrupt. INTS is active high so it is first 
inverted. It is then connected to the INTC# input of the V360EPC Host 
Bridge, that can be programmed to cause an interrupt on its LINT pin.

For more information about the use of these signals, refer to the CompactPCI 
specification.

5.6.3 System bus to local bus interface timeout interrupt

Under some fault conditions accesses from the system bus to the V360EPC can result 
in an infinite wait state condition. The typical cause of this condition is a data access 
into a part of the address range 0x40000000 to 0x7FFFFFFF that the V360EPC has not been 
programmed to capture. To simplify debugging of such systems the bridge to this local 
bus in the system controller FPGA includes a timeout controller.

If a bus transaction fails to complete on the local bus for more than approximately 1ms 
without a data transfer taking place, the timeout controller aborts the transaction. The 
action taken depends upon the type of transaction that caused the timeout. 

In all cases the timeout controller sets the local bus fault interrupt PCILBINT of the 
interrupt controller. The address for the transaction is stored in the SC_LBFADDR 
register and a fault code is stored in the SC_LBFCODE register. The interrupt is cleared 
by writing a 1 to bit 1 of the SC_PCI register. 
5-18 Copyright © 1999-2001. All rights reserved. ARM DUI 0098B



PCI Subsystem 
Accesses that cause faults frequently occur in bursts. However, the most useful 
debugging information is a record of the first access. Therefore, the local bus fault code 
and local bus fault address registers are only updated if the PCILBINT bit is clear when 
a fault occurs.

The fault codes and action taken are summarized in Table 5-4, and described below.

PCI write to system bus

During PCI write transactions, the data is buffered by one or more FIFOs before it 
reaches the local bus. Therefore, it is no longer possible to issue a Target Abort to the 
PCI initiator because it would have completed the cycle. The data is discarded but the 
fault condition is recorded in the local bus fault registers.

See also registers SC_PCI, SC_LBFADDR and SC_LBFCODE.

System bus write to PCI

System bus write cycles are completed when the data is posted into the bridge FIFO. 
Therefore, it is not useful to issue a Bus Error response to the system bus master because 
the processor will have advanced in its program. In this case the data is discarded and 
the next transaction in the FIFO commences on the local bus.

PCI read from system bus

V360EPC read cycles are terminated by forcing the RDY signal active. This may only 
be passed back to the PCI bus as a cycle termination, without being flagged as an error 
condition to the PCI bus initiator receiving the data. The local bus fault interrupt is 
available as the indication that this error condition has occurred. The system bus 
arbitration algorithm assigns higher priority to inbound transactions from PCI so the 

Table 5-4 System bus fault codes

Fault code Initiator Transaction type Action

xxxx x00x V360EPC PCI write to system bus Data discarded

xxxx x01x System bus master Write to PCI Data discarded

xxxx x10x V360EPC PCI read from system bus Read cycle terminated

xxxx x11x System bus master Read from PCI System Bus Error (and hence Data 
Abort exception)
ARM DUI 0098B Copyright © 1999-2001. All rights reserved. 5-19



PCI Subsystem 
V360EPC local bus time-outs are only caused by these transactions under exceptional 
fault conditions. For example, if a faulty system bus slave causes bus congestion by 
issuing thousands of WAIT states without a RETRACT response.

System bus read from PCI

System bus read cycles are terminated with a Bus Error response to the bus master. On 
typical core modules, this causes the processor to take a Data Abort exception. 

5.6.4 PCI IDSEL and interrupt assignments

PCI Configuration transactions require a physical address. This address identifies the 
bus, device, and function. In a bus with expansion slots, the device number identifies the 
physical connector position. The device in a given slot is selected by activating its 
IDSEL signal. On both the CompactPCI bus and the PCI expansion bus, the IDSEL 
signals are driven by PCI address lines (AD31 - AD11). 

PCI devices assert interrupts on any of the four lines INTA, INTB, INTC and INTD. The 
PCI specification describes how these lines are rotated from one slot to the next in order 
to share the interrupt load between the four PCI interrupt channels of the system 
interrupt controller.

PCI expansion bus

The PCI expansion bus the Integrator/AP on contains two bridges and up to three 
additional devices plugged into the expansion slots. The bridge devices can be the 
targets of configuration cycles but do not generate PCI interrupts. The IDSEL and 
interrupt assignments for the PCI expansion bus are shown in Table 5-5.

Table 5-5 PCI IDSEL and interrupt assignments for the PCI expansion bus

PCI Device Interrupt

IDSEL Name INTA INTB INTC INTD

AD24 V360EPC host bridge

AD23 PCI slot 1 PCIINT3 PCIINT0 PCIINT1 PCIINT2

AD22 PCI slot 2 PCIINT2 PCIINT3 PCIINT0 PCIINT1

AD21 PCI slot 3 PCIINT1 PCIINT2 PCIINT3 PCIINT0

AD20 Intel 21152 PCI-PCI bridge, primary side
5-20 Copyright © 1999-2001. All rights reserved. ARM DUI 0098B



PCI Subsystem 
CompactPCI bus

The Integrator is a CompactPCI system controller board so is plugged into the system 
slot (slot 1) of a CompactPCI bus. The mapping of CompactPCI slot to IDSEL numbers 
are shown in Table 5-6.

The Integrator/AP features open collector buffers that wire-OR the CompactPCI 
interrupt signals onto the PCI expansion bus interrupt signals. The IDSEL of the 
Intel21152 PCI-PCI Bridge avoids any rotation in the mapping between the interrupt 
signals on these two buses.

Interrupt signal assignments

Table 5-7 shows the assignment of the CompactPCI and PCI expansion bus interrupt 
signals and the system interrupt controller.

Table 5-6 PCI IDSEL and interrupt assignments for the CompactPCI bus

PCI Device Interrupt

IDSEL Name INTA INTB INTC INTD

AD31 CompactPCI slot 2 PCIINT3 PCIINT0 PCIINT1 PCIINT2

AD30 CompactPCI slot 3 PCIINT2 PCIINT3 PCIINT0 PCIINT1

AD29 CompactPCI slot 4 PCIINT1 PCIINT2 PCIINT3 PCIINT0

AD28 CompactPCI slot 5 PCIINT0 PCIINT1 PCIINT2 PCIINT3

AD27 CompactPCI slot 6 PCIINT3 PCIINT0 PCIINT1 PCIINT2

AD26 CompactPCI slot 7 PCIINT2 PCIINT3 PCIINT0 PCIINT1

AD25 CompactPCI slot 8 PCIINT1 PCIINT2 PCIINT3 PCIINT0

AD24 No device present because the Intel21152 PCI-PCI bridge has no secondary IDSEL

Table 5-7 PCI bus interrupt signal to interrupt controller assignment

CompactPCI PCI expansion bus Interrupt controller 

CP_nIntA P_nIntA PCIINT0

CP_nIntB P_nIntB PCIINT1

CP_nIntC P_nIntC PCIINT2

CP_nIntD P_nIntD PCIINT3
ARM DUI 0098B Copyright © 1999-2001. All rights reserved. 5-21



PCI Subsystem 
PCI interrupt connector pin assignments

Devices in PCI Expansion and CompactPCI slots connect their local interrupts to the 
connector pins as shown in Table 5-8.

Table 5-8 Interrupt to connector pin assignment

Interrupt
Connector pin

Expansion slot CompactPCI

INTA# A6 A3

INTB# B7 B3

INTC# A7 C3

INTD# B8 E3
5-22 Copyright © 1999-2001. All rights reserved. ARM DUI 0098B



Appendix A 
Connector Pinouts

This appendix describes the Integrator/AP interface connectors and signal connections. 
It contains the following sections:

• Inter-module connectors HDRA and EXPA on page A-2

• Core module connector HDRB on page A-5

• Logic module connector EXPB on page A-8

• Expansion module connector EXPM on page A-11

• Serial interface connectors on page A-14

• Keyboard and mouse connectors on page A-15.
ARM DUI 0098B Copyright © 1999-2001. All rights reserved. A-1



Connector Pinouts 
A.1 Inter-module connectors HDRA and EXPA

Figure A-1 shows the pin numbering of the connector HDRA and EXPA. Both 
connectors have a similar pinout. 

Figure A-1 Connector pin numbering

101

A2

GND

GND

D0

D1

D2

GND

GND

D3

A5

D4

D5

GND

GND

D6

A8

D7

D8

GND

GND

D9

A11

D10

D11

A14

GND

GND

D12

D13

D14

GND

GND

D15

A17

D16

D17

GND

GND

D18

A20

D19

D20

GND

GND

D21

A23

D22

D23

A0

A1

A3

A4

A6

A7

A9

A10

A12

A13

A15

A16

A18

A19

A21

A22

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

A26

GND

GND

D24

D25

D26

GND

GND

D27

A29

D28

D29

GND

GND

D30

B0

D31

C0

GND

GND

C1

B3

C2

C3

B6

GND

GND

C4

C5

C6

GND

GND

C7

B9

C8

C9

GND

GND

C10

B12

C11

C12

GND

GND

C13

B15

C14

C15

A24

A25

A27

A28

A30

A31

B1

B2

B4

B5

B7

B8

B10

B11

B13

B14

B18

GND

GND

C16

C17

C18

GND

GND

C19

B21

C20

C21

GND

GND

C22

B24

C23

C24

GND

GND

C25

B27

C26

C27

B30

GND

GND

C28

C29

C30

GND

GND

C31

3V3

3V3

12V

3V3

3V3

12V

3V3

3V3

12V

3V3

3V3

12V

3V3

3V3

12V

B16

B17

B19

B20

B22

B23

B25

B26

B28

B29

B31

5V

5V

5V

5V

5V

3V3

3V3

12V

5V

3V3

5V 3V3

12V

102

114

113

112

111

110

109

108

107

106

105

104

103

115

116

128

127

126

125

124

123

122

121

120

119

118

117

129

130

142

141

140

139

138

137

136

135

134

133

132

131

143

144

156

155

154

153

152

151

150

149

148

147

146

145

157

158

159

160

161

173

172

171

170

169

168

167

166

165

164

163

162

174

175

176

177

178

190

189

188

187

186

185

184

183

182

181

180

179

191

192

193

194

195

200

199

198

197

196

Samtec TOLC series

Pin numbers for 200-way plug,
viewed from above board

1

2

3

102

101

103
A-2 Copyright © 1999-2001. All rights reserved. ARM DUI 0098B



Connector Pinouts 
The signals on the pins labeled A[31:0], B[31:0], C[31:0], and D[31:0] for are listed in 
Table A-1. A more in depth description of these buses in provided in System bus on 
page 3-3. 

Table A-1 Bus bit assignment

Pin label AHB signal name ASB signal name Description

A[31:0] HADDR[31:0] BA[31:0] System address bus

B[31:0] Not used Not used -

C[31:22] Not used Not used -

C[21:16] HSPLIT[5:0] Not used Split transaction.

Split transactions are a feature of AHB, but not of 
ASB. For full details of the split and retry 
responses refer to the AMBA Specification. When 
a slave issues a split response the arbiter notes the 
current master and does not grant it again until the 
slave drives one of the signals HSPLIT[5:0] 
HIGH to indicate that the transaction can continue.

Core modules treat a split response as a retry 
response and do not generate split responses 
themselves. For this reason these pins on a core 
module are currently not used.

C15 HMASTLOCK BLOK Locked transaction.

BLOK on ASB is a shared signal driven by the 
current master to indicate a locked transaction. 

HMASTLOCK on AHB is driven by the arbiter 
to indicate that a locked transaction is in progress. 
Masters indicate a locked transaction using the 
HLOCK signals. These are connected 
point-to-point between the master and the arbiter.

The HLOCK signals are implemented on the 
HDRB/EXPB connectors to provide one per 
master (that is, there is one master per module).

C14 HRESP1 BLAST Slave response

C13 HRESP0 BERROR Slave response

C12 HREADY BWAIT Slave wait response

C11 HWRITE BWRITE Write transaction

C10 HPROT2 Not used Transaction protection type
ARM DUI 0098B Copyright © 1999-2001. All rights reserved. A-3



Connector Pinouts 
C[9:8] HPROT[1:0] BPROT[1:0] Transaction protection type

C[7:5] HBURST[2:0] Not used Transaction burst size

C4 HPROT[3] Not used Transaction protection type

C[3:2] HSIZE[1:0] BSIZE[1:0] Transaction width

The AHB specification defines a 3-bit bus for 
HSIZE, but 2 bits is sufficient to describe transfers 
of up to 64-bits wide which is why a 2-bit bus is 
sufficient on Integrator.

C[1:0] HTRAN[1:0] BTRAN[1:0] Transaction type

D[31:0] HDATA[31:0] BD[31:0] System data bus

Table A-1 Bus bit assignment  (continued)

Pin label AHB signal name ASB signal name Description
A-4 Copyright © 1999-2001. All rights reserved. ARM DUI 0098B



Connector Pinouts 
A.2 Core module connector HDRB

Figure A-2 shows the pin numbers of the connector HDRB.

Figure A-2 HDRB pin numbering

Table A-3 describes the signals on the pins labeled E[31:0], F[31:0], and G[16:0] for 
AMBA AHB system bus.

61

E2

GND

GND

F0

F1

F2

GND

GND

F3

E5

F4

F5

GND

GND

F6

E8

F7

F8

GND

GND

F9

E11

F10

F11

E14

GND

GND

F12

F13

F14

GND

GND

F15

E17

F16

F17

GND

GND

F18

E20

F19

F20

GND

GND

F21

E23

F22

F23

E0

E1

E3

E4

E6

E7

E9

E10

E12

E13

E15

E16

E18

E19

E21

E22

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

E26

GND

GND

F24

F25

F26

GND

GND

F27

E29

F28

F29

GND

GND

F30

G0

F31

G8

GND

GND

G9

G3

G10

G11

G6

GND

GND

G12

G13

G14

GND

G16

G15

3V3

-12V

12V

3V3

-12V

12V

3V3

-12V

12V

E24

E25

E27

E28

E30

E31

G1

G2

G4

G5

G7

5V

5V

5V

62

74

73

72

71

70

69

68

67

66

65

64

63

75

76

88

87

86

85

84

83

82

81

80

79

78

77

89

90

102

101

100

99

98

97

96

95

94

93

92

91

103

104

116

115

114

113

112

151

150

109

108

107

106

105

117

118

119

120
ARM DUI 0098B Copyright © 1999-2001. All rights reserved. A-5



Connector Pinouts 
Table A-2 HDRB signal description

Pin label AHB signal Name ASB signal name Description

E[31:28] HCLK[3:0] BCLK[3:0] System clock to the core module. 

E[27:24] nPPRES[3:0] nPPRES[3:0] Core module present.

Each core module ties nPPRES[0] LOW and 
leaves nPPRES[3:1] open circuit. These signals 
rotate as they move up or down the stack so that 
there is a connection between each module and 
one of these signals at the system controller on the 
motherboard.

E[23:20] nIRQ[3:0] nIRQ[3:0] Interrupt request to processor.

E[19:16] nFIQ[3:0] nFIQ[3:0] Fast interrupt requests to processor.

E[15:12] ID[3:0] ID[3:0] Core module stack position indicator.

E[11:8] HLOCK[3:0] Reserved System bus lock from processor.

E[7:4] HGRANT[3:0] AGNT[3:0] System bus grant to processor.

E[3:0] HBUSREQ[3:0] AREQ[3:0] System bus request from processor.

F[31:0] - - Not connected.

G16 nRTCKEN nRTCKEN RTCK AND gate enable.

G[15:14] CFGSEL[1:0] CFGSEL[1:0] FPGA configuration select.

G13 nCFGEN nCFGEN Sets motherboard into configuration mode.

G12 nSRST nSRST Multi-ICE reset (open collector).

G11 FPGADONE FPGADONE Indicates when FPGA configuration is complete.

G10 RTCK RTCK Returned JTAG test clock.

G9 nSYSRST nSYSRST Buffered system reset.

G8 nTRST nTRST JTAG reset.

G7 TDO TDO JTAG test data out.

G6 TDI TDI JTAG test data in.

G5 TMS TMS JTAG test mode select.
A-6 Copyright © 1999-2001. All rights reserved. ARM DUI 0098B



Connector Pinouts 
G4 TCK TCK JTAG test clock.

G[3:1] HMAST[2:0] MASTER[2:0] 
(implemented though 
not strictly ASB)

Master ID. Binary encoding of the master 
currently performing a transfer on the bus. 
Corresponds to the module ID and to the 
HBUSREQ and HGRANT line numbers.

G0 nMBDET nMBDET Motherboard detect. This signal is tied LOW on 
the AP.

When a module is attached to the motherboard, it 
detects that nMBDET is LOW and routes TDI 
and TCK down to the motherboard where they are 
looped back onto TD0 and RTCK. Also, core 
modules pass addresses above 0x11000000 on to the 
system bus where they are decoded by the 
motherboard or by other modules.

When a module is used standalone, it detects that 
nMBDET is HIGH and provides loop backs for 
the JTAG signals itself so that the scan chain is 
intact. Accesses to addresses above 0x11000000 
produce a bus error or abort.

Table A-2 HDRB signal description (continued)

Pin label AHB signal Name ASB signal name Description
ARM DUI 0098B Copyright © 1999-2001. All rights reserved. A-7



Connector Pinouts 
A.3 Logic module connector EXPB

Figure A-3 shows the pin numbers of the EXPB plug.

Figure A-3 EXPB socket pin numbering

Table A-3 describes the signals on the pins labeled F[31:0], H[31:0], J[15:0], and 
GPIO[31:0].

61

H2

GND

GND

GPIO0

GPIO1

GPIO2

GND

GND

GPIO3

H5

GPIO4

GPIO5

GND

GND

GPIO6

H8

GPIO7

GPIO8

GND

GND

GPIO9

H11

GPIO10

GPIO11

H14

GND

GND

GPIO12

GPIO13

GPIO14

GND

GND

GPIO15

H17

GPIO16

GPIO17

GND

GND

GPIO18

H20

GPIO19

GPIO20

GND

GND

GPIO21

H23

GPIO22

GPIO23

H0

H1

H3

H4

H6

H7

H9

H10

H12

H13

H15

H16

H18

H19

H21

H22

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

H26

GND

GND

GPIO24

GPIO25

GPIO26

GND

GND

GPIO27

H29

GPIO28

GPIO29

GND

GND

GPIO30

J0

GPIO31

J8

GND

GND

J9

J3

J10

J11

J6

GND

GND

J12

J13

J14

GND

J16

J15

3V3

-12V

12V

3V3

-12V

12V

3V3

-12V

12V

H24

H25

H27

H28

H30

H31

J1

J2

J4

J5

J7

5V

5V

5V

62

74

73

72

71

70

69

68

67

66

65

64

63

75

76

88

87

86

85

84

83

82

81

80

79

78

77

89

90

102

101

100

99

98

97

96

95

94

93

92

91

103

104

116

115

114

113

112

111

110

109

108

107

106

105

117

118

119

120
A-8 Copyright © 1999-2001. All rights reserved. ARM DUI 0098B



Connector Pinouts 
Table A-3 EXPB signal description

Pin label AHB signal name ASB signal name Description

H[31:28] HCLK[7:4] BCLK[7:4] System clock to each logic module.

H[27:24] nEPRES[3:0] nEPRES[3:0] Logic module present. 

Each logic module ties nEPRES[0] LOW and 
leaves nEPRES[3:1] open circuit. These signals 
rotate as they move up or down the stack so that 
there is a connection between each module and 
one of these signals at the system controller on 
the motherboard.

H[23:20] nIRQSRC[3:0] nIRQSRC[3:0] Interrupt request from logic module 3, 2, 1, and 
0 respectively.

H[19:16] - - Not connected

H[15:12] ID[3:0] ID[3:0] Logic module stack position indicator.

H[11:8] HLOCK[1:4] - System bus lock from processor 3, 2, 1, and 0 
respectively (not used in ASB). These signals 
rotate in the opposite direction to those on the 
HDRB connector. That is, H11 connects to 
SLOCK1 and H8 connects to SLOCK4.

H[7:4] HGNT[1:4] AGNT[1:4] System bus grant.

H[3:0] HBUSREQ[1:4] AREQ[1:4] System bus request.

J16 nRTCKEN nRTCKEN RTCK AND gate enable.

J[15:14] CFGSEL[1:0] CFGSEL[1:0] FPGA configuration select.

J13 nCFGEN nCFGEN Sets motherboard into configuration mode.

J12 nSRST nSRST Multi-ICE reset (open collector).

J11 FPGADONE FPGADONE Indicates when FPGA configuration is complete 
(open collector).

J10 RTCK RTCK Returned JTAG test clock.

J9 nSYSRST nSYSRST Buffered system reset.

J8 nTRST nTRST JTAG reset.

J7 TDO TDO JTAG test data out.

J6 TDI TDI JTAG test data in.
ARM DUI 0098B Copyright © 1999-2001. All rights reserved. A-9



Connector Pinouts 
J5 TMS TMS JTAG test mode select.

J4 TCK TCK JTAG test clock.

J[3:1] HMASTER[2:0] MASTER[2:0] 
(implemented though 
not strictly ASB)

Master ID. Binary encoding of the master 
currently performing a transfer on the bus. 
Corresponds to the module ID and to the 
HBUSREQ and HGRANT line numbers.

J0 nMBDET nMBDET Motherboard detect pin. See Table A-2 on 
page A-6

GPIO[31:0] - - These connect to the GPIO pins on the FPGA 
and are available for your own applications.

Table A-3 EXPB signal description  (continued)

Pin label AHB signal name ASB signal name Description
A-10 Copyright © 1999-2001. All rights reserved. ARM DUI 0098B



Connector Pinouts 
A.4 Expansion module connector EXPM

Figure A-4 shows the pin numbers of the connector EXPM.

Figure A-4 EXPM pin numbering

Table A-4 describes the signals on the EXPM pins.

61

MA2

GND

GND

MD0

MD1

MD2

GND

GND

MD3

MA5

MD4

MD5

GND

GND

MD6

MA8

MD7

MD8

GND

GND

MD9

MA11

MD10

MD11

MA14

GND

GND

MD12

MD13

MD14

GND

GND

MD15

MA17

MD16

MD17

GND

GND

MD18

MA20

MD19

MD20

GND

GND

MD21

MA23

MD22

MD23

MA0

MA1

MA3

MA4

MA6

MA7

MA9

MA10

MA12

MA13

MA15

MA16

MA18

MA19

MA21

MA22

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

FLWP

GND

GND

MD24

MD25

MD26

GND

GND

MD27

nBANK5

MD28

MD29

GND

GND

MD30

nMCS0

MD31

nMWR0

GND

GND

nMWR1

nMCS3

nMWR2

nMWR3

nXCS0

GND

GND

nMOE

MRDY

nSYSRST

GND

GND

N/C

3V3

3V3

12V

3V3

3V3

12V

3V3

3V3

12V

MA24

MA25

FLVPP

nBANK4

nBANK6

nBANK7

nMCS1

nMSC2

EBIEN

MCS0EN

MEMCLK

5V

5V

5V

62

74

73

72

71

70

69

68

67

66

65

64

63

75

76

88

87

86

85

84

83

82

81

80

79

78

77

89

90

102

101

100

99

98

97

96

95

94

93

92

91

103

104

116

115

114

113

112

111

110

109

108

107

106

105

117

118

119

120

Table A-4 EXPM signal description

Name Description

MA[25:0] Memory address bus

MD[31:0] Memory data bus

nMCS[3:0] Memory chip select:
nMCS0 = ROM
nMCS1 = flash
nMCS2 = SSRAM
nMCS3 = spare
ARM DUI 0098B Copyright © 1999-2001. All rights reserved. A-11



Connector Pinouts 
nMOE Memory output enable (active LOW)

nMWR[3:0] Memory write strobe (active LOW):
nMWR0 = MD[7:0]
nMWR1 = MD[15:8]
nMWR2 = MD[23:16]
nMWR3 = MD[31:24]

MCS0EN nMCS0 enable

If MCS0EN is HIGH nMCS0 is driven as usual.

If MCS0EN is LOW nXCS0 is driven instead.

This allows the Integrator/AP to boot from an alternative 
device. For, example if you build your own memory board you 
can boot from your own 8-bit wide EPROM or flash device 
rather than the normal boot ROM.

A 10K pullup resistor on the AP defaults this signal HIGH.

There is a 32-pin DIL socket provided on the Integrator/AM 
Analyzer Module for this purpose. It also allows an EPROM 
emulator to be used.

Caution
 Make sure the emulator drives 3V3 signal levels as 5V may 
damage the other memory devices on the AP. 

nXCS0 Expansion chip select 0. This active LOW signal is used to 
boot from an alternative device on an expansion card. It can 
only be used when MCS0EN is LOW.

MEMCLK Memory clock. This signal is provided for synchronous 
memory devices or peripherals with a static memory interface 
that require a clock. 

MRDY Memory ready.

This signal allows expansion peripherals to wait the system 
bus. If any of nMCS[3:0] signals is LOW and the interface has 
been programmed for asynchronous operation, the EBI waits 
the system bus when MRDY is driven LOW.

MRDY is read on the rising edge of HCLK or the falling edge 
of BCLK. 

There is a 1K pullup resistor on the AP which defaults this 
signal high.

Table A-4 EXPM signal description (continued)

Name Description
A-12 Copyright © 1999-2001. All rights reserved. ARM DUI 0098B



Connector Pinouts 
nFLWP Flash write protect.

FLVPP Flash Vpp enable.

nBANK[7:4] Memory bank selects for nMCS1. Can be used to expand 
flash.

EBIEN EBI enable. Drive LOW to tristate the following signals:

MA[25:0]

nMCS[3:0]
nMWR[3:0]
nMOE

nVCS0
nFLWP
MEMCLK

MD[3:0].

nSYSRST2 Buffered system reset

Table A-4 EXPM signal description (continued)

Name Description
ARM DUI 0098B Copyright © 1999-2001. All rights reserved. A-13



Connector Pinouts 
A.5 Serial interface connectors

The pinout of the serial ports is shown in Figure A-5 and Table A-5.

Figure A-5 Serial interface connector pinout

Note
 The serial interfaces signals operate at RS232 signal levels.

Table A-5 Serial interface signal descriptions

Pin Signal Type Function

1 DCD Input Data carrier detect

2 Rx Input Receive

3 Tx Output Transmit

4 DTR Output Data terminal ready

5 GND - Ground

6 DSR Input Data set ready

7 RTS Output Ready to send

8 CTS Input Clear to send

9 RI - not connected on Integrator

1 2
6 7 8 9

3 4 5
A-14 Copyright © 1999-2001. All rights reserved. ARM DUI 0098B



Connector Pinouts 
A.6 Keyboard and mouse connectors

The pinout of the KMI connectors is shown in Figure A-6.

Figure A-6 KMI connector pinouts

Table A-6 shows signals on the KMI connectors.

12

34

56

Table A-6 Mouse and keyboard port signal descriptions

Pin
Keyboard (Lower) Mouse (Top)

Signal Function Signal Function

1 KDATA Keyboard data MDATA Mouse Data

2 N/C Not connected N/C Not connected

3 GND Ground GND Ground

4 5V 5V 5V 5V

5 KCLCK Keyboard clock MCLCK Mouse clock

6 N/C Not connected N/C Not connected
ARM DUI 0098B Copyright © 1999-2001. All rights reserved. A-15



Connector Pinouts 
A-16 Copyright © 1999-2001. All rights reserved. ARM DUI 0098B



Appendix B 
Specifications

This appendix contains the specifications for the Integrator/AP. It contains the following 
sections:

• Mechanical details on page B-2

• Electrical specification on page B-3

• Timing specification on page B-4.
ARM DUI 0098B Copyright © 1999-2001. All rights reserved. B-1



Specifications 
B.1 Mechanical details

The Integrator/AP is a PC ATX motherboard designed to be to be installed in a PC ATX 
housing. It can also be installed in a CompactPCI card cage or used as a bench-top 
system. Figure B-1shows the mechanical outline of the board.

Figure B-1 Board outline

OFF

1 2 3 4

300.00 (ATX Motherboard Length)

160.00 (Eurocard Width)

233.35 (6U
 E

urocard H
eight)

AT
X

 C
as

e

B-2 Copyright © 1999-2001. All rights reserved. ARM DUI 0098B



Specifications 
B.2 Electrical specification

Table B-1 shows the core module electrical characteristics for the system bus interface.

The Integrator/AP and core modules uses 3.3V and 5V. The +12V and –12V inputs can 
be supplied if required by a logic or expansion module.

The measurements are typical for LVCMOS inputs and LVTTL outputs.

Table B-1 Electrical characteristics

Symbol Description Min Max Unit

3V3 Supply voltage (interface signals) 3.1 3.5 V

5V Supply voltage 4.75 5.25 V

+12V Supply voltage 11.5 12.5 V

– 12V Supply voltage –11.5 –12.5 V

VIH High level input voltage 2.0 3.6 V

VIL Low level input voltage 0 0.8 V

VOH High level output voltage 2.4 - V

VOL Low level output voltage - 0.4 V

CIN Input capacitance - 20 pF
ARM DUI 0098B Copyright © 1999-2001. All rights reserved. B-3



Specifications 
B.3 Timing specification

This section is a reference for designers adding modules on to an Integrator system. The 
timing information presented here is representative only. Specific modules and FPGA 
revisions will deviate from these numbers, but they provide some guidance when 
constraining FPGA designs.

The following sections detail the timing parameters for a typical ASB and AHB 
modules and motherboards. 

B.3.1 Integrator timing parameters and the AMBA Specification

The parameters listed are those specified in the AMBA Specification with the following 
important differences:

• only output valid and input setup times are quoted

• the required input hold time (Tih) is always less than or equal to 0ns

• the output hold time (Toh) is always greater than 2ns.

Each version and revision of the FPGA has subtly different timing. The figures are those 
you can expect under nominal conditions and should be used as a guideline when 
designing you own motherboards and modules. The figures have been rounded to 
simplify timing analysis and constraints. 

B.3.2 AHB system bus timing parameters

Table B-2 shows the clock and reset timing parameters.

Table B-2 Clock and reset parameters

Parameter Description Time (ns) Notes

Tclk HCLK minimum clock period 30 Representative of worst case maximum 
frequency

Tisrst HRESETn deasserted setup time before 
HCLK

15 Applies to modules only

Tovrst HRESETn deasserted valid time before 
HCLK

15 Applies only to the module or motherboard 
implementing the reset source
B-4 Copyright © 1999-2001. All rights reserved. ARM DUI 0098B



Specifications 
Table B-3 shows the AHB slave input parameters.

Table B-4 shows the AHB slave output parameters.

Table B-3 AHB slave input parameters

Parameter Description Time (ns) Notes

Tissel HSELx setup time before HCLK n/a HSELx are internally generated, not visible 
at the pins

Tistr Transfer type setup time before HCLK 5 -

Tisa HADDR[31:0] setup time before HCLK 10 -

Tisctl HWRITE, HSIZE[2:0] and 
HBURST[2:0] control signal setup time 
before HCLK

5 -

Tiswd Write data setup time before HCLK 5 -

Tisrdy Ready setup time before HCLK 5 -

Tismst Master number setup time before HCLK 
(SPLIT-capable only)

n/a Applies to modules with split capable slaves 
only

Tismlck Master locked setup time before HCLK 
(SPLIT-capable only)

n/a Applies to modules with split capable slaves 
only

Table B-4 AHB slave output parameters

Parameter Description Time (ns) Notes

Tovrsp Response valid time after HCLK 15 -

Tovrd Data valid time after HCLK 15 -

Tovrdy Ready valid time after HCLK 15 -

Tovsplt Split valid time after HCLK 
(SPLIT-capable only)

n/a Applies to modules with split capable slaves 
only
ARM DUI 0098B Copyright © 1999-2001. All rights reserved. B-5



Specifications 
Table B-5 shows the bus master input timing parameters.

Table B-6 shows bus master output timing parameters.

Table B-7 shows the AHB arbiter input parameters. Applies only to the module or 
motherboard implementing the arbiter

Table B-5 Bus master input timing parameters

Parameter Description Time (ns) Notes

Tisgnt HGRANTx setup time before HCLK 5 Modules implementing masters only

Tisrdy Ready setup time before HCLK 5 -

Tisrsp Response setup time before HCLK 5 -

Tisrd Read data setup time before HCLK 5

Table B-6 Bus master output timing parameters

Parameter Description Time (ns) Notes

Tovtr Transfer type valid time after HCLK 15 -

Tova Address valid time after HCLK 15 -

Tovctl Control signal valid time after HCLK 15 -

Tovwd Write data valid time after HCLK 15 -

Tovreq Request valid time after HCLK 15 Modules implementing masters only

Tovlck Lock valid time after HCLK 15 Modules implementing masters only

Table B-7 AHB arbiter input parameters

Parameter Description Time (ns) Notes

Tisrdy Ready setup time before HCLK 5 -

Tisrsp Response setup time before HCLK 5 -

Tisreq Request setup time before HCLK 10 -

Tislck Lock setup time before HCLK 10 -
B-6 Copyright © 1999-2001. All rights reserved. ARM DUI 0098B



Specifications 
Table B-8 shows the AHB arbiter output parameters. Applies only to the module or 
motherboard implementing the arbiter

B.3.3 ASB system bus timing parameters

Table B-9 shows the clock and reset parameters.

Tissplt Split setup time before HCLK 10 -

Tistr Transfer type setup time before HCLK 5 -

Tisctl Control signal setup time before HCLK 5 -

Table B-7 AHB arbiter input parameters

Parameter Description Time (ns) Notes

Table B-8 AHB arbiter output parameters

Parameter Description Time (ns) Notes 

Tovgnt Grant valid time after HCLK 15 -

Tovmst Master number valid time after HCLK 15 -

Tovmlck Master locked valid time after HCLK 15 -

Table B-9 Clock and reset parameters

Parameter Description Time (ns) Notes

Tclk BCLK minimum clock period 40 Representative of worst case maximum 
frequency

Tclkl BCLK LOW time 20 -

Tclkh BCLK HIGH time 20 -

Tisnres BnRES deasserted setup to rising BCLK 15 Applies to modules only

Tovnres BnRES deasserted valid after rising 
BCLK

15 Applies only to the module or motherboard 
implementing the reset source
ARM DUI 0098B Copyright © 1999-2001. All rights reserved. B-7



Specifications 
Table B-10 shows the ASB slave input parameters. Applies only to the module or 
motherboard implementing the arbiter.

Table B-11 shows the ASB slave output parameters. 

Table B-12 shows the bus master input timing parameters

Table B-10 ASB slave input parameters

Parameter Description Time (ns) Notes

Tisdsel DSEL setup to falling BCLK n/a DSEL is internally generated, not visible at 
the pins

Tisa BA[31:0] setup to falling BCLK 10 Path through decoder is up to 30ns

Tisctl BWRITE and BSIZE[1:0] setup to 
falling BCLK

10 -

Tisdw For write transfers, BD[31:0] setup to 
falling BCLK

10 -

Table B-11 ASB slave output parameters

Parameter Description Time (ns) Notes

Tovresp BWAIT, BERROR and BLAST valid 
after falling BCLK

10 -

Tovdr For read transfers, BD[31:0] valid after 
rising BCLK

30 -

Table B-12 Bus master input parameters

Parameter Description Time (ns)

Tisresp BWAIT, BERROR and BLAST setup to 
rising BCLK

15 -

Tisdr For read transfers, BD[31:0] setup to 
falling BCLK

10 -

Tisagnt AGNT setup to rising BCLK 10 Modules implementing masters only
B-8 Copyright © 1999-2001. All rights reserved. ARM DUI 0098B



Specifications 
Table B-13 shows the bus master output timing parameters.

Table B-14 shows the ASB decoder input parameters.

Table B-15 ASB decoder output parameters.

Table B-13 Bus master output parameters

Parameter Description Time (ns) Notes

Tovtr BTRAN valid after rising BCLK 10 -

Tova BA[31:0] valid after rising BCLK, all 
transfer types

10 -

Tovctl BWRITE, BSIZE[1:0] and BPROT[1:0] 
valid after rising BCLK, all transfer types

10 -

Tovdw BD[31:0] valid after rising BCLK, all 
transfer types 

30 -

Tovlok BLOK valid after rising BCLK 10 -

Tovareq AREQ valid after rising BCLK 10 -

Table B-14 ASB decoder input parameters

Parameter Description Time (ns) Notes

Tistr BTRAN setup to falling BCLK 10 -

Tisresp BWAIT, BERROR and BLAST setup to 
rising BCLK

15 -

Table B-15 ASB decoder output parameters

Parameter Description Time (ns) Notes

Tovresp BWAIT, BERROR and BLAST valid 
after falling BCLK

10 -

Tovdsel DSEL valid after rising BCLK n/a DSEL is internally generated, not visible at 
the pins
ARM DUI 0098B Copyright © 1999-2001. All rights reserved. B-9



Specifications 
Table B-16 shows the ASB arbiter input parameters. Applies only to the module or 
motherboard implementing the arbiter. 

Table B-17 ASB arbiter output parameters. Applies only to the module or motherboard 
implementing the arbiter. 

Table B-18 shows the ASB arbiter combinatorial parameters.

B.3.4 Notes on FPGA timing analysis

The system bus on all Integrator boards is routed between FPGAs. These FPGAs are 
routed with timing constraints shown in AHB system bus timing parameters on page B-4 
and ASB system bus timing parameters on page B-7. The exact performance of a system 
depends on the timing parameters of the motherboard and all modules in the system. 
Some allowance is needed for clock skew, routing delays and number of modules (that 
is, loading).

Not all FPGAs meet the ideal timing parameters, because of the complexity of the 
design or routing congestion within the device. For this reason the PLL clock generators 
on Integrator default to a safe low value that all modules can achieve. 

A detailed timing analysis involves calculating the input/output delays between 
modules for all parameters. In general, a simpler approach is to increase the operating 
frequency until the system becomes unstable. The maximum stable operating frequency 
for your board combination is likely to be a few MHz lower.

Table B-16 ASB arbiter input parameters

Parameter Description Time (ns) Notes

Tisareq AREQ setup to falling BCLK 10 -

Tisresp BWAIT setup to rising BCLK 10 -

Table B-17 ASB arbiter output parameters

Parameter Description Time (ns) Notes

Tovagnt AGNT valid after falling BCLK 10 -

Table B-18 ASB arbiter combinatorial parameters

Parameter Description Time (ns) Notes

Tlokagnt Delay from valid BLOK to valid AGNT n/a Not applicable, arbiter samples all inputs
B-10 Copyright © 1999-2001. All rights reserved. ARM DUI 0098B



Specifications 
ARM processors and core module FPGAs do not dissipate large amounts of heat. 
However, to be sure of stable operation, run the test program for a few minutes. 
Experiments show that the FPGAs, when operating at maximum system bus frequency, 
slowly increase in temperature, but that the maximum is typically less than 35°C.
ARM DUI 0098B Copyright © 1999-2001. All rights reserved. B-11



Specifications 
B-12 Copyright © 1999-2001. All rights reserved. ARM DUI 0098B



Appendix C 
Interfacing to the System Bus

This appendix contains information about interfacing to the system bus on the 
Integrator/AP. It contains the following sections:

• About the system bus on page C-2

• Interfacing with the ASB system bus on page C-3

• Interfacing to the AHB system bus on page C-5.
ARM DUI 0098B Copyright © 1999-2001. All rights reserved. C-1



Interfacing to the System Bus 
C.1 About the system bus 

All bus interfaces on Integrator are implemented in PLDs and FPGAs. This means that 
the bus type can be any one of a number of different standards. To date ASB and AHB 
versions of the Integrator system bus have been produced. Any piece of Integrator 
hardware may conform to one or more system bus standards, and boards can be 
upgraded in the field without any component or board modification using the progcards 
utility.

C.1.1 ASB and AHB

The system bus connects modules to the motherboard and can be either ASB or AHB, 
as dictated by the configuration of the system controller FPGA on the motherboard. The 
FPGA can have only one configuration at a time. The motherboard signals the correct 
bus protocol to core and logic modules using two static signals CFGSEL[1:0]. These 
signals are driven by the CPCI arbiter PLD with the encoding shown in Table C-1.

Note
 If you change the system controller configuration, you must reprogram the CPCI arbiter 
at the same time so that the correct bus protocol is signaled. System controller 
configurations later than Revision A Build 49 (ASB) or Revision B Build 7 (AHB) 
indicate bus type by displaying an S or H on the alphanumeric display at power on. 

C.1.2 Address decoding

The Integrator implements a distributed address decoding scheme. This means that each 
core or logic module must decode its own area of memory. A central decoder in the 
system controller FPGA responds with a bus error response on all areas of the address 
space that are not occupied by peripherals. This response is disabled when a core or 
logic module is fitted. It is important, when adding modules, to ensure that the 
expansion logic implements a decoder and responds to all memory accesses in the 
appropriate memory region.

Table C-1 CFGSEL[1:0] encoding

CFGSEL[1:0] Description

00 Little endian ASB

01 Reserved

10 Little endian AHB

11 Reserved
C-2 Copyright © 1999-2001. All rights reserved. ARM DUI 0098B



Interfacing to the System Bus 
C.2 Interfacing with the ASB system bus

The section contains the information to design modules or boards that interface with an 
Integrator using an ASB system bus.

C.2.1 DSEL generation

ASB slaves receive their select signal DSEL from the ASB decoder. However, because 
the Integrator uses a distributed address decoding scheme, there are no DSEL lines from 
the system controller to core or logic modules. Local DSEL signals must be produced 
on each logic module. For position independent modules (modules that can be fitted in 
any position in a stack) the ID bits must be factored into the decoder logic. This is fully 
described in the Logic Module User Guide. Examples are supplied with the logic 
modules.

The DSEL signal is only driven when there is an active transaction and the address is 
correctly decoded. This means that there is no need for ASB slaves to take account of 
the BTRAN[1:0] signals. This is in contrast to AHB where the select line HSEL is a 
combinatorial decode of address HADDR only.

C.2.2 Timing analysis and critical paths

Static timing analysis of ASB systems is often difficult because of the tristate 
implementation and the existence of combinatorial and false paths. In addition, both 
edges of the clock are used to sample signals and timing on certain signals changes 
during bus handover cycles. A thorough understanding of the ASB specification is 
required to do a detailed timing analysis. However there are usually some critical paths 
that can be optimized for best performance. 

The general approach on Integrator has been to provide programmable clock generators 
so that maximum operating frequency can be achieved. 

It is not always easy to establish the maximum frequency by looking at the individual 
timing parameters. Different modules are implemented with different FPGAs and so 
absolute maximum system bus frequency may vary depending on the type and number 
of modules fitted.

Critical path 1: BA decode and DSEL generation

ASB masters generate the address BA from the rising edge of the clock BCLK. The 
decoder must generate DSEL. This is sampled by slaves on the falling edge of BCLK. 
so that there is a single clock phase for address generation and decode. In a board 
implementation this includes 2 ON/OFF chip transitions. 
ARM DUI 0098B Copyright © 1999-2001. All rights reserved. C-3



Interfacing to the System Bus 
For fastest operation, the clock to output time on the master and the address path 
through the decoder must be carefully controlled. The analysis is complicated by the 
fact that BTRAN is only valid about the falling edge of BCLK and so must be passed 
through a transparent latch. Static timing tools are generally not very good at analyzing 
paths through transparent latches, and there is a combinatorial path from BTRAN to 
DSEL.

During arbitration handover cycles, the address BA is generated from the falling edge 
of BCLK rather than the rising edge. It is, therefore, not possible to generate BA from 
a register in an FPGA input/output block (IOB) because there is always a multiplexor 
between registers and the device output. Minimizing the delay through this multiplexor 
is key to a fast system.

Critical path 2: BWAIT/BERROR/BLAST generation and setup to master

The decoder and all ASB slaves generate the response signals BWAIT, BERROR and 
BLAST. The responses from each slave and the decoder inside a FPGA must be 
multiplexed together to generate the external signal that is routed to other FPGAs on the 
system bus. ASB slaves generate their response after detecting DSEL on the falling 
edge of BCLK. The response is sampled by a master on the rising edge of the clock. 
Therefore, there is a single clock phase for response generation and setup to the master. 
Minimizing the delay through the multiplexor, and reducing the input setup time is key 
to a fast system.

Critical path 3: Tristate enables

The motherboard and modules communicate using a a tristate bus. This means that it is 
important to be able to enable and disable output buffers quickly. The logic controlling 
the tristate enable is often on the critical path, particularly for the transaction BTRAN 
and response (BWAIT, BERROR, and BLAST) signals. When designing systems, 
ensure that the tristate enable signal is driven directly from a register (some FPGAs have 
a tristate enable register in the IOB), although for ASB this is not always possible 
because some signals must only be turned on for a clock phase.

ASB prevents bus clash or contention by ensuring a phase of handover between masters. 
To improve speed it might be possible to accept some degree of contention to get more 
setup time or simplify the output enable logic. This would be a violation of the ASB 
specification so care must be taken. The consequence of contention is an increase in 
power consumption (therefore temperature), but not physical damage. This is because 
Field-Effect Transistors (FETs) have a gain that reduces with temperature, which means 
they do not suffer the thermal-runaway destruction of bipolar devices.
C-4 Copyright © 1999-2001. All rights reserved. ARM DUI 0098B



Interfacing to the System Bus 
C.3 Interfacing to the AHB system bus

The section contains the information to design modules or boards that interface with an 
Integrator using an AHB system bus.

C.3.1 HSEL generation

AHB slaves receive their select signal HSEL from the AHB decoder. However, because 
the Integrator uses a distributed address decoding scheme, there are no HSEL lines 
from the system controller to core or logic modules. Local HSEL signals must be 
produced on each logic module. For position independent modules (modules that can 
be fitted in any position in a stack) the ID bits need to be factored into the decoder logic. 
This is fully described in the Logic Module User Guide.

The HSEL signal is a combinatorial decode of address HADDR only. This means that 
each slave must also take account of the transaction type HTRANS[1:0]. This is in 
contrast to ASB where the decoder manages the transaction type and generates an 
appropriate select line DSEL.

C.3.2 Timing analysis and critical paths

Static timing analysis of AHB systems is easier than ASB due to the fact that it is a 
single clock edge design and no transparent latches are required. The AHB specification 
favours an interconnection scheme based on unidirectional busses and multiplexors 
rather than tristate busses. Within a single FPGA this means that there are fewer false 
paths and timing constraints can often be reduced to a simple period constraint on the 
clock.

There is a full clock cycle to generate and decode all signals, which means that critical 
paths based do not occur on AHB. This means that, typically, an AHB implementation 
runs faster than the equivalent ASB implementation, although there is increased 
complexity due to the increased level of pipelining on the bus.

The Integrator system implements a version of AHB based on tristate busses at the 
FPGA interconnection level.

Critical path 1: Tristate enables and contention

The motherboard and modules communicate using a a tristate bus. This means that it is 
important to be able to enable and disable FPGA output buffers quickly. The logic 
controlling the tristate enable is often on the critical path, particularly for the address 
HADDR, transaction HTRANS[1:0] and response HREADY, HRESP[1:0] signals. 
When designing systems ensure that the tristate enable signal is driven directly from a 
register (some FPGAs have a tristate enable register in the IOB).
ARM DUI 0098B Copyright © 1999-2001. All rights reserved. C-5



Interfacing to the System Bus 
ASB prevents bus clashes or contention by ensuring a phase of handover between 
masters, but AHB does not. This results in some degree of bus contention because 
different modules turn their tristate enables ON and OFF at different speeds. The 
consequence of contention is an increase in power consumption (and, therefore, 
temperature), but not physical damage. This is because FETs have a gain that reduces 
with temperature, which means they do not suffer the thermal-runaway destruction of 
bipolar devices. It is possible to reduce the contention by ensuring that modules turn ON 
slowly and OFF quickly, but this then reduces the maximum speed, which might not be 
desirable

C.3.3 Tristate AHB implementation

A unidirectional bus topology based on multiplexors works for subsystems contained in 
a single device. However, FPGAs with very high numbers of input/output pins are 
needed to implement unidirectional buses at the board level. It difficult to implement a 
system that allows additional modules to be attached because the size of the 
multiplexors is not known. For this reason the Integrator system implements a 
bidirectional tristate version of AHB buses at the FPGA interconnection level.

C.3.4 Tristate enable control

The VHDL code segments shown in Example C-1 describe how to drive the AHB 
signals tristate for use on Integrator platform boards.

Example C-1  Tristate enable control

Integrator System Bus uses tristate multiplexing

  -- Combined HGRANT signal for all internal masters
  HGRANTi <= HGRANT(0);  -- OR HGRANT(1) OR HGRANT(2) ...

  -- Registered versions of the HGRANT signals are used to control the master address
  -- multiplexors because the HGRANT signals are valid in the ARBITRATION phase
  -- and the multiplexed outputs are needed in the ADDRESS phase (which follows
  -- it one HREADY later).

  p_MasterEnable : process(HCLK, HRESETn, HGRANTi)
  begin
    if ((HRESETn = '0') and (HGRANTi = '0')) then
      AhbMasterEn <= '0';
    elsif rising_edge(HCLK) then
      if ((HREADY = '1') or (HRESETn = '0')) then
        AhbMasterEn <= HGRANTi;
      end if;
    end if;
C-6 Copyright © 1999-2001. All rights reserved. ARM DUI 0098B



Interfacing to the System Bus 
  end process;

  -- Master outputs
  -- Internal signals from the master to slave multiplexor are suffixed i 
  HTRANS <= HTRANSi when (AhbMasterEn = '1') else (others => 'Z');
  HBURST <= HBURSTi when (AhbMasterEn = '1') else (others => 'Z');
  HWRITE <= HWRITEi when (AhbMasterEn = '1') else 'Z';
  HADDR  <= HADDRi  when (AhbMasterEn = '1') else (others => 'Z');
  HSIZE  <= HSIZEi  when (AhbMasterEn = '1') else (others => 'Z');
  HPROT  <= HPROTi  when (AhbMasterEn = '1') else (others => 'Z');

  p_SlaveEnable : process(HCLK, HRESETn, HSELall)
  begin
    if ((HRESETn = '0') and (HSELall = '0')) then    
      AhbSlaveEn <='0';
    elsif rising_edge(HCLK) then
      if ((HREADY = '1') or (HRESETn = '0')) then
        -- HSELall is the logical OR of all internal HSEL signals
        AhbSlaveEn <= HSELall;
      end if;
    end if;
  end process;

  -- Slave responses
  -- Internal signals from the slave to master multiplexor are suffixed i 
  HRESP  <= HRESPi  when (AhbSlaveEn = '1') else (others => 'Z'); 
  HREADY <= HREADYi when (AhbSlaveEn = '1') else 'Z';

  p_HDataEnable : process(HCLK, HRESETn)
  begin
    if (HRESETn = '0') then
      HDMasterEn <= '0';
      HDSlaveEn  <='0';
    elsif rising_edge(HCLK) then
      if (HREADY = '1') then
        HDMasterEn <= AhbMasterEn and HWRITE;
        HDSlaveEn  <= HSELall and not HWRITE;
      end if;
    end if;
  end process;

  -- Master and slave data
  -- HRDATAslave is the internal slave read data bus
  -- HRDATAmaster is the internal master write data bus
  HDATAOUT <= HWDATAmaster when (HDMasterEn = '1') else HRDATAslave;
  HDEn     <= HDMasterEn or HDSlaveEn;
  HDATA    <= HDATAOUT when (HDEn = '1') else (others => 'Z');
ARM DUI 0098B Copyright © 1999-2001. All rights reserved. C-7



Interfacing to the System Bus 
C-8 Copyright © 1999-2001. All rights reserved. ARM DUI 0098B



Index

The items in this index are listed in alphabetical order, with symbols and numerics appearing at the end. The 
references given are to page numbers.
A
Access types, PCI subsystem   5-3
Address decode   C-2
Address decode, logic modules   4-4
Advanced peripheral bus   1-6
AHB timing parameters   B-4
AHSB interfacing   C-5
Alias memory region   4-5
Alphanumeric characters   4-25, 4-27
Alphanumeric display   1-6

control   4-25
segment designation   4-26

AMBA transactions   5-7
Am29K bus mode   5-7
Arbitration

counters   3-9
local bus   3-7, 5-8
PCI bus   5-4
system bus   3-2
timeout register   4-15

Architecture, interrupt controller   3-19
Architecture,PCI subsystem   5-2

ARM email address   xviii
ARM Firmware Suite   5-16
ARM SWAP instruction   5-7
ASB bridge   1-6
ASB interfacing   C-3
ASB timing parameters   B-7
Assembled Integrator system   2-3
ATX PC power supply   2-7
ATX power OK   3-13

B
Baud rate divisor   4-45, 4-46
Baud rates divisors, typical   4-46
Baud rate, programming   3-26, 3-27, 

4-46
Bench power supply   2-7
Block diagrams

counter/timer   3-22
interrupt controller   3-19
PCI subsystem   5-3
RTC   3-24

serial interface   3-26
system   1-5

Boot monitor, using   2-10
Boot ROM   1-4, 1-7, 2-6, 2-13, 4-9
Boot ROM access   4-9
Boot switch   3-2
Boot switch reader   4-25
Built-in self tests   2-12
Burst indication   4-17
Bus arbitration   3-7
Bus arbitration counters   3-9
Bus arbitration scheme   3-9
Bus arbitration signal assignment   3-8
Bus architecture   3-3
Bus clock, system   3-15, 3-16
Bus interface

expansion   1-8
PCI   1-8
system   1-8

Bus interfaces
external   3-11

Bus master abort, PCI   5-17
Byte enable bits   4-17
ARM DUI 0098B Copyright © 1999-2001. All rights reserved. Index-i



Index
C
Calculating the baud rate divisor   4-46
Calculating the system bus clock 

frequency   3-16
CE Declaration of Conformity   iii
CFGSEL[1:0] signals   3-5
Chip selects, EBI   3-5, 3-11
Clear to send   4-50
CLK24MHZ   3-15
Clock

output divider   3-15
VCO divider   3-15

Clock dividers (ICS525)   3-15
Clock divisor register, KMI   4-54
Clock generator   1-4, 1-7, 3-15
Clock generator, PCI   5-2
Clock rate registers   3-2
Clock speed, control   1-7
Clocks

KMI and timer   3-15
UART   3-15, 3-18

Clock, reference divider   3-15
Code start locations   2-6
CompactPCI auxiliary interrupt   5-17
CompactPCI auxiliary interrupts   5-18
CompactPCI bus   5-4, 5-15, 5-21
CompactPCI bus arbiter   5-2
CompactPCI clock   3-15
CompactPCI clock divider values   3-17
CompactPCI reset   3-12
CompactPCI subsystem clock   3-15
Configurable clock datasheet   xvii
Configuration cycles, PCI   5-12
Connectors

EXPB   4-36, A-8
EXPM   2-4, 4-6
HDRA   2-4
HDRA/ EXPA   A-2
HDRB   2-4, A-5
summary   1-9

Controllers
clock   3-15
interrupt   3-19
keyboard   3-28
mouse   3-28

Core module alias memory   4-4, 4-5
Core module alias memory, PCI address   

5-13

Core module ID   2-5
Core module interface   3-3
Core module memory mapping   4-5
Core module reset   3-12
Core modules   2-3
Core modules, attaching   2-4
Core modules, maximum number   2-4
Counter/timer   1-4

block diagram   3-22
Counter/timer modes

free running   3-23
periodic   3-23

Counter/timer registers   4-23
Counter/timers   1-6, 3-2, 3-22
CPCI power fail   3-13
CPCI reset   3-13
CP_CLK   3-15
CP_FAL signal   3-12
CP_RST signal   3-12
CP_V (I/O) terminal   2-8
CS_CTRL   3-14
Current count value   4-23
Current counter value   4-38
Cycle counter   3-9
Cycle counter programming   3-9
Cycle counter value   4-15

D
Damage prevention   2-5
Data carrier detect   4-50
Data direction, GPIO   4-36
Data ouptut set, GPIO   4-36
Data register output clear, GPIO   4-36
Data set ready   4-50
Data transmitter status, KMI   4-53
Decoder status register   4-14
DEG# signal   5-18
DIP switch register   4-28
DIP switches, setting   2-6
Direction of transfer bits   4-17
Distributed address decode   C-2
DIVX/Y bit   3-17, 4-12
DMA controller, PCI   5-9
DMA finished, PCI   5-17
Document confidentiality status   iii
DONE signal   3-13
Down counter   3-22

DSEL generation   C-3
DTR control   4-13

E
EBI   1-6, 1-7

wait states   4-20
EBI chip selects   3-5, 3-11, 4-6
EBI configuration registers   4-19
EBI memory map   4-6
EBI memory size   4-20
EBI write enable   4-20
EBI_CSR   3-11
Electrical specification   B-3
Enable register, flag   4-18
Enabling UART FIFOs   4-44
ENUM# signal   5-18
EXPA connector   A-2
Expansion bus interface   4-6
Expansion card present bit   4-14
Expansion memory space   3-11
Expansion reset   3-14
EXPB connector   4-36, A-8
EXPM connector   4-6
EXPM signal description   A-11
External bus interface   1-4, 1-8, 3-2, 

3-11

F
Feedback   xviii
FIFOs, PCI host bridge   5-9
FIQ   1-6

controllers   3-20
enable register   4-29
raw status register   4-29
register bit assignments   4-31
register mapping   4-33
status register   4-29

FIQ-to-processor assignment   4-29
Flag registers   4-18
Flash access   4-9
Flash memory   1-4, 1-7, 2-6
Flash memory write protection   1-7
Flash Vpp bit   4-14
Flash write protect bit   4-14
Flash write-protection   1-7
Index-ii Copyright © 1999-2001. All rights reserved. ARM DUI 0098B



Index
FPGA configured   3-13
FPGA DONE signal   3-12
FPGA register map   4-7
FPGA timing analysis   B-10
Free running mode, timer   3-23
Frequency of UART clock   3-18
Front panel reset button   1-7
Functional block diagram, FPGA   3-2

G
General purpose input output   3-2
GPIO   4-36
GPIO controller   1-6
GPIO registers

GPIO_DATACLR   4-37
GPIO_DATAIN   4-37
GPIO_DATAOUT   4-37
GPIO_DATASET   4-37
GPIO_DIRN   4-37

H
Hardware resets   3-12
HDRA connector   2-4, 2-5
HDRA/EXPB connector   A-2
HDRB connector   2-4, 2-5, A-5
HDRB signals   A-5
HSEL generation   C-5

I
ID, core module   2-5
Inbound transaction   5-7
Inbound transactions   5-6
Initial count value   4-23
Initialization sequence, PCI subsystem   

5-16
Initializing the PCI subsystem   5-16
Integrator, assembled   2-3
Intel 21152   5-15
Intel 21152 PCI-PCI Bridge   5-2
Interrupt control   4-29
Interrupt controller   1-4, 1-6, 3-2, 3-19
Interrupt controller block diagram   3-19
Interrupt controller registers   4-29

Interrupt identification register, KMI   
4-54

Interrupts
KMI   3-29
module assigned   3-20
PCI auxilliary   5-17
PCI host bridge   5-17
PCI timeout   5-18
RTC   3-25
UART   3-27
UART modem   4-47
UART receive   4-47
UART receive timeout   4-47
UART transmit   4-47

Interrupts PCI DMA finished   5-17
INTP signal   5-18
INTS signal   5-18
IRQ   1-6

controllers   3-20
enable register   4-29
raw status register   4-29
register bit assignments   4-31
register mapping   4-32
status registers   4-29

IRQ-to-processor assignment   4-29

J
JTAG signals   3-10

K
Keyboard and mouse interface   1-6, 

3-2, 3-28
Keyboard controller   3-28
Keyboard type, selecting   4-52
KMI

enable bit   4-52
interrupts   3-29
overview   3-29

KMI and timer clock   3-15, 3-18
KMI registers   4-51

KMICLKDIV   4-54
KMI_CR   4-52
KMI_IIR   4-54
KMI_STAT   4-53

KMICLKIN signal   3-29

KMIREFCLK signal   3-29

L
LB_IO_BASE   5-16
LB_IO_BASE register   5-11
LED control   1-6, 4-25
LED control register   4-27
LED driver   3-2
LED switch register   2-6
LEDs

locations   1-10
LEDs, functional summary   1-11
LED_ALPHA bit-to-segment mapping   

4-26
LED_ALPHA register   4-25
LED_SWITCHES register   2-6
Line control register, UART   4-44
Local bus arbitration   5-8
Local bus bridge, operation   5-6
Local bus bridge, transactions   5-6
Local bus to PCI windows   5-10
Location of LEDs   1-10
Location of test points   1-12
Lock bit   4-16, 4-22
Lock key   4-16, 4-22
Lock register   4-16, 4-22
Locked transactions   A-3
Logic module address decoding   4-4
Logic module interface   3-3
Logic module interrupts   3-20
Logic module reset   3-12
Logic modules   2-3
Logic modules region   4-4
Logic modules, attaching   2-4
Logic modules, maximum number   2-4
Loopback enable, UART   4-47

M
Mailboxes, PCI   5-9
Match register   4-39
Maximum number of modules   2-4
Mechanical details   B-2
Memory   1-7

flash   2-6
Memory map
ARM DUI 0098B Copyright © 1999-2001. All rights reserved. Index-iii



Index
EBI   4-6
Logic module   4-4

Memory map, system   4-2
Memory size, EBI   4-20
Messages passing between processors, 

example   4-35
Modem interrupt status   4-51
Modem status   3-27
Modem status interrupt enable   4-47
Module-assigned signals   3-5
Modules, combined maximium   2-4
Motherboard bus interface   1-8
Motherboard detect   3-10
Mouse controller   3-28
Multi-ICE   3-14
Multi-ICE reset   3-12, 3-14

N
nPWOK signal   3-12
nRSTSRC5 signal   3-12
nSRST signal   3-14

O
OPDiv   3-16
Organization of manual   xiv
Oscillator divisor register   4-12
Outbound transactions   5-6, 5-7
Output divider   3-15, 3-16

P
Parity bit, KMI   4-53
Parity enable, UART   4-45
Parity select, UART   4-45
PBRST   3-13
PBRST signal   3-12
PCI address, of system bus resources   

5-13
PCI address, system bus access   5-10
PCI backplane   1-7
PCI bridge   3-2
PCI bridges   5-3
PCI bus   1-6
PCI bus arbitration   5-4

PCI bus clock usage   3-18
PCI bus interface   1-4, 1-8
PCI clock generator   5-2
PCI configuration cycles   5-12, 5-15
PCI expansion bus   5-4, 5-5, 5-15, 5-20
PCI host bridge interrupt   5-17
PCI host bridge operation   5-9
PCI IdSel   5-20
PCI local bus fault code register   4-17
PCI local bus fault registers   4-16
PCI read from system bus   5-19
PCI region   4-6
PCI space   5-10
PCI space mapping   5-4
PCI subsystem

access types   5-3
initialization   5-16
overview   5-2
topology   5-2

PCI subsystem interrupts   3-20
PCI to host bridge   5-9
PCI to local bus windows   5-13
PCI to PCI bridge operation   5-15
PCI write to system bus   5-19
Periodic mode, timers   3-23
Peripheral controllers   1-4
Peripheral input/output controllers   1-6
Peripheral register region   4-7
Peripheral registers   4-36
Pinouts

EXPB   A-8
EXPM   A-11
HDRA/EXPA   A-2
HDRB   A-5
keyboard   A-15
mouse   A-15
serial interface   A-14

Power button   1-11
Powering the Integrator/AP   2-8
Preventing damage   2-5
PrimeCell UART   3-2, 3-26
Processor module present bit   4-14
Product status   iii
Programing the transaction counter   3-9
Push-button reset   3-13
P_CLK signal   3-15

R
Read data input pins, GPIO   4-36
Read data ouput pins, GPIO   4-36
Reading the DIP switches   4-28
Real time clock   1-6, 3-2
Real time clock registers   4-38
Real-time clock   3-24
Receive FIFO empty, UART   4-49
Receive FIFO full, UART   4-49
Receive FIFO, UART   3-27
Receive interrupt enable, UART   4-47
Receive interrupt status   4-51
Receive timeout interrupt enable, 

UART   4-47
Receive timeout interrupt status   4-50
Receiver interrupt enable, KMI   4-52
Receiver register status, KMI   4-53
Receiver status, KMI   4-53
Reference divider   3-15
Register naming convention   4-7
Register window, PCI   5-11
Registers

EBI_CSRx   4-20
FIQx_RAWSTAT   4-33
FIQx_STATUS   4-33
GPIO_DATACLR   4-37
GPIO_DATAIN   4-37
GPIO_DATAOUT   4-37
GPIO_DATASET   4-37
GPIO_DIRN   4-37
INT_SOFTCLEAR   4-35
INT_SOFTSET   4-35
IRQx_RAWSTAT   4-32
IRQx_STATUS   4-32
KMI_CLKDIV   4-54
KMI_CR   4-52
KMI_IIR   4-54
KMI_STAT   4-53
LED_ALPHA   4-25
LED_LIGHTS   4-27
LED_SWITCHES   2-6, 4-28
RTC_CR   3-25, 4-40
RTC_DR   3-24, 4-38
RTC_EOI   3-25, 4-39
RTC_LR   3-24, 4-39
RTC_MR   3-25, 4-39
RTC_STAT   3-25, 4-39
SC_ARB   4-15
Index-iv Copyright © 1999-2001. All rights reserved. ARM DUI 0098B



Index
SC_CTRLCLR   4-13
SC_CTRLS   4-13
SC_DEC   4-14
SC_ID   4-11
SC_LBFADDR   4-16
SC_LBFCODE   4-17
SC_LOCK   4-16, 4-22
SC_OSC   3-16, 3-17, 4-12
TIMERx_CLR   3-23, 4-24
TIMERx_CTRL   3-23, 4-24
TIMERx_LOAD   3-23, 4-23
TIMERx_VALUE   3-23, 4-23
UART_CR   4-47
UART_DR   4-42
UART_ECR   4-44
UART_FR   4-48
UART_IIR   4-50
UART_LCRH   4-44
UART_LCRL   3-26, 4-46
UART_LCRM   3-26, 4-45
UART_RSR   3-26, 4-42

Remap   2-13, 4-9
Reset

Core module   3-12
logic module   3-12
signal descriptions   3-13

Reset button   1-11
Reset controller   1-4, 1-7, 3-2, 3-12
Resets   3-14

software   3-14
Resets, hardware   3-12
RETRACT response   5-8
ROM, RAM, and peripheral region   

4-49
Round-robin arbitration   3-9
RTC block diagram   3-24
RTC interrupts   3-25
RTC overview   3-24
RTC registers

RTC_CR   3-25, 4-40
RTC_DR   3-24, 4-38
RTC_EOI   3-25, 4-39
RTC_LR   4-39
RTC_MR   3-25, 4-39
RTC_STAT   3-25, 4-39

RTC_LR register   3-24
RTS control   4-13
Rx interrupt, UART   3-27

S
SC   4-13
SC_LBFADDR register   5-18
SC_LBFCODE register   5-18
SC_OSC   3-15, 3-16
SC_OSC register   3-16, 3-17
SC_PCI register   5-16, 5-18
Serial interface pinout   A-14
Serial interface word length   4-44
Serial interface, block diagram   3-26
Setting the DIL switches   2-6
Setting the system bus clock   3-16
Setting the UART baud rate   3-26, 3-27
Setting up the ARM Integrator/AP   2-2
Signal assignment

bus arbitration   3-8
Signal descriptions

serial interface   A-14
Signal rotation   3-5, 3-20
Software interrupt set register   4-35
Software interrupts   3-20, 4-34
Software reset   1-7, 3-14
Software reset control   4-14
Speculative prefetch, PCI   5-9
Split transactions   A-3
SRAM   1-7
Standby LED   2-8
Status register, flag   4-18
Stop bit select, UART   4-45
Supplying power

ATX PSU   2-7
bench PSU   2-7

Switch reader   1-6
Switch setting, DIL   2-6
SYSCLK divider values   3-16
SYSCLK signal   3-15
System block diagram   1-5
System bus   3-3
System bus address, PCI space   5-10
System bus arbiter   1-4, 1-6, 3-2
System bus architecture   3-3
System bus clock   3-9, 3-15, 3-16
System bus clock frequency, calculating   

3-16
System bus clock usage   3-17
System bus configuration   C-2
System bus fault codes   5-19
System bus interface   1-4, 1-6, 1-8, 3-2

System bus to local bus bridge   5-2
System bus write to PCI   5-19
System controller FPGA   3-2, 3-3, 3-7
System controller FPGA, overview   1-6
System controller interrupts   3-20
System controller registers   4-10

SC_ARB   4-15
SC_CTRLCLR   4-13
SC_CTRLS   4-13
SC_DEC   4-14
SC_ID   4-11
SC_LBFADDR   4-16
SC_LBFCODE   4-17
SC_LOCK   4-16, 4-22
SC_OSC   4-12

System information block   2-12
System memory map   4-2
System reset   3-14
System startup   2-10
System status and control registers   1-4, 

1-7
System-wide FPGA configured   3-13
S_RDW   3-16
S_VDW   3-16, 4-12

T
Test point functions   1-12
Test points   1-12
Timeout interrupt, PCI   5-18
Timer control register   3-22
Timer enable bit   4-24
Timer load register   3-22
Timer mode bit   4-24
Timer modes   3-23

free-running   3-23
periodic   3-23

Timer prescale divisor   4-24
Timer registers

TIMERx_CLR   3-23, 4-24
TIMERx_CTRL   3-23, 4-24
TIMERx_LOAD   3-23, 4-23
TIMERx_VALUE   3-23, 4-23

Timing analysis, AHB   C-5
Timing analysis, ASB   C-3
Timing specification   B-4
Topology of the PCI subsystem   5-2
Transaction counter   3-9
ARM DUI 0098B Copyright © 1999-2001. All rights reserved. Index-v



Index
Transaction counter value   4-15
Transaction width   A-4
Transmit FIFO empty, UART   4-49
Transmit FIFO full, UART   4-49
Transmit FIFO, UART   3-27
Transmit interrupt enable, UART   4-47
Transmit interrupt status, UART   4-51
Transmit register status, KMI   4-53
Transmitter interrupt enable, KMI   4-52
Tristate AHB implementation   C-6
Tristate enable control   C-6
Tx interrupt, UART   3-27

U
UART   3-2, 3-24, 3-25, 3-26
UART busy, status bit   4-49
UART clock   3-15, 3-18
UART enable   4-48
UART FIFO, enabling   4-44
UART interrupts   3-27
UART receive FIFO   3-27
UART registers   4-41

UART_CR   4-47
UART_DR   4-42
UART_ECR   4-44
UART_FR   4-48
UART_IIR   4-50
UART_LCRH   4-44
UART_LCRL   4-46
UART_LCRM   4-45
UART_RSR   4-42

UART transmit FIFO   3-27
UARTCLK   3-18
UARTCLK divider values   3-18
UARTCLK signal   3-15
UARTs   1-6
UARTx DTR control   4-13
UARTx RTS control   4-13
UART, overview   3-26
UART_IIR   4-50
UART_LCRL   4-46
UART_LCRL register   3-26, 3-27
UART_LCRM register   3-26, 3-27
UART_RSR register   3-26
Using Integrator/AP in a CompactPCI 

rack   2-9

Using the software interrupt register   
4-35

V
VCO divider   3-15, 3-16
V360EPC   5-9
V360EPC host bridge controller   4-6
V360EPC internal registers   5-13
V360EPC PCI Host Interface controller   

5-2
V360EPC reset   5-16

W
WAIT response   5-8
Wait states, EBI   4-20
Windows, local bus-PCI   5-10
Write enable

EBI   4-20
Write FIFOs, PCI local bridge   5-7
Write protection, EBI   3-11
Writing characters to alphanumeric 

display   4-25, 4-27
Index-vi Copyright © 1999-2001. All rights reserved. ARM DUI 0098B


	Contents
	List of Tables
	List of Figures
	Preface
	About this document
	Further reading
	Feedback

	Introduction
	1.1 About the Integrator/AP
	1.2 Integrator/AP system features
	1.3 Connectors
	1.4 LEDs
	1.5 Test points

	Setting up the Integrator/AP
	2.1 About setting up the Integrator/AP
	2.2 Installing core modules and logic modules
	2.3 Setting the DIP switches
	2.4 Connecting power
	2.5 Installing the Integrator/AP in a CompactPCI card rack
	2.6 Using the boot monitor

	Hardware Description
	3.1 System controller FPGA
	3.2 System bus
	3.3 External bus interface
	3.4 Reset controller
	3.5 Clock generator
	3.6 Interrupt controller
	3.7 Peripherals

	Programmer’s Reference
	4.1 About the Integrator memory map
	4.2 System memory map regions
	4.3 Accesses to boot ROM and flash
	4.4 System control registers
	4.5 EBI configuration registers
	4.6 Counter/timer registers
	4.7 Alphanumeric display, LED, and DIP switch registers
	4.8 Interrupt controller registers
	4.9 Peripheral registers

	PCI Subsystem
	5.1 About the PCI subsystem
	5.2 System to local bus bridge operation
	5.3 V360EPC PCI to Host Bridge operation
	5.4 PCI to PCI bridge operation
	5.5 Initializing the PCI subsystem
	5.6 PCI subsystem interrupts

	Connector Pinouts
	A.1 Inter-module connectors HDRA and EXPA
	A.2 Core module connector HDRB
	A.3 Logic module connector EXPB
	A.4 Expansion module connector EXPM
	A.5 Serial interface connectors
	A.6 Keyboard and mouse connectors

	Specifications
	B.1 Mechanical details
	B.2 Electrical specification
	B.3 Timing specification

	Interfacing to the System Bus
	C.1 About the system bus
	C.2 Interfacing with the ASB system bus
	C.3 Interfacing to the AHB system bus

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W


