
ARM® Firmware Suite
Version 1.4

Reference Guide
Copyright © 1999-2002 ARM Limited. All rights reserved.
ARM DUI 0102F

ARM Firmware Suite
Reference Guide

Copyright © 1999-2002 ARM Limited. All rights reserved.

Release Information

Proprietary Notice

Words and logos marked with ® or ™ are registered trademarks or trademarks owned by ARM Limited. Other
brands and names mentioned herein may be the trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document
may be adapted or reproduced in any material form except with the prior written permission of the copyright
holder.

The product described in this document is subject to continuous developments and improvements. All
particulars of the product and its use contained in this document are given by ARM in good faith. However,
all warranties implied or expressed, including but not limited to implied warranties of merchantability, or
fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM Limited shall not be liable
for any loss or damage arising from the use of any information in this document, or any error or omission in
such information, or any incorrect use of the product.

Change History

Date Issue Change

September 1999 A New document (internal release)

September 1999 B First release

February 2000 C Second release

October 2000 D Third release

March 2001 E Fourth release

March 2002 F Fifth release
ii Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

Contents
ARM Firmware Suite Reference Guide

Preface
About this document .. viii
Further reading .. xi
Feedback ... xiii

Chapter 1 Introduction to the ARM Firmware Suite
1.1 About the ARM Firmware Suite ... 1-2
1.2 AFS directories and files ... 1-3

Chapter 2 µHAL Application Programming Interfaces
2.1 About the µHAL APIs .. 2-2
2.2 Simple API memory functions ... 2-4
2.3 Simple API interrupt functions ... 2-8
2.4 Simple API MMU and cache functions .. 2-11
2.5 Simple API timer functions .. 2-13
2.6 Simple API support functions .. 2-19
2.7 Simple API LED control functions ... 2-21
2.8 Serial input/output functions, definitions, and macros 2-25
2.9 Extended API initialization functions ... 2-31
2.10 Extended API interrupt handling functions .. 2-33
2.11 Extended API software interrupt (SWI) function .. 2-38
2.12 Extended API MMU and cache functions .. 2-39
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. iii

Contents
2.13 Extended API processor execution mode functions 2-43
2.14 Extended API timer functions ... 2-46
2.15 Extended API coprocessor access functions ... 2-49
2.16 Library support functions .. 2-51

Chapter 3 ARM Boot Monitor
3.1 About the boot monitor ... 3-2
3.2 Common commands for the boot monitor .. 3-4
3.3 Rebuilding the boot monitor .. 3-12

Chapter 4 Operating Systems and µHAL
4.1 About porting operating systems .. 4-2
4.2 Simple operating systems .. 4-3
4.3 Complex operating system ... 4-11

Chapter 5 Angel
5.1 About Angel .. 5-2
5.2 µHAL-based Angel ... 5-9
5.3 Building a µHAL-based Angel ... 5-11
5.4 Source file descriptions .. 5-13
5.5 Device drivers ... 5-22
5.6 Developing applications with Angel .. 5-26
5.7 Angel in operation ... 5-33
5.8 Angel communications architecture .. 5-46

Chapter 6 Flash Library Specification
6.1 About the flash library ... 6-2
6.2 About flash management .. 6-4
6.3 ARM flash library specifications .. 6-5
6.4 Functions listed by type .. 6-14
6.5 Flash library functions ... 6-19
6.6 File processing functions .. 6-35
6.7 SIB functions .. 6-40
6.8 Using the library .. 6-47

Chapter 7 Using the ARM Flash Utilities
7.1 About the AFU .. 7-2
7.2 Starting the AFU ... 7-3
7.3 AFU commands .. 7-4
7.4 The Boot Flash Utility ... 7-20
7.5 BootFU commands ... 7-22

Chapter 8 PCI Management Library
8.1 About PCI ... 8-2
8.2 PCI configuration .. 8-4
8.3 The PCI library .. 8-8
iv Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

Contents
8.4 PCI library functions and definitions .. 8-14
8.5 About µHAL PCI extensions ... 8-16
8.6 µHAL PCI function descriptions .. 8-17
8.7 Example PCI device driver .. 8-23

Chapter 9 Using the DHCP Utility
9.1 DHCP overview ... 9-2
9.2 Using DHCP .. 9-3
9.3 Configuration files ... 9-4

Chapter 10 Chaining Library
10.1 About exception chaining .. 10-2
10.2 The SWI interface ... 10-3
10.3 Chain structure .. 10-8
10.4 Owners and users ... 10-9
10.5 Rebuilding the chaining library .. 10-14

Chapter 11 Libraries and Support Code
11.1 Library naming .. 11-2
11.2 Rebuilding libraries ... 11-3
11.3 Support for VFP .. 11-5
11.4 Support for the ADS C library .. 11-13

Appendix A ARM Firmware Suite on Integrator
A.1 About Integrator .. A-2
A.2 Integrator-specific commands for boot monitor ... A-6
A.3 Using the boot monitor on Integrator .. A-19
A.4 The ProgCards Utility .. A-24
A.5 Using ProgCards ... A-27
A.6 Angel on Integrator ... A-33
A.7 PCI initialization on Integrator (Integrator/AP only) A-35

Appendix B ARM Firmware Suite on Prospector
B.1 About Prospector .. B-2
B.2 Prospector-specific commands for boot monitor ... B-3
B.3 Using boot monitor on Prospector ... B-6
B.4 Angel on Prospector ... B-10

Appendix C ARM Firmware Suite on the Intel IQ80310 and IQ80321
C.1 About the IQ80310 development kit ... C-2
C.2 About the IQ80321 development kit ... C-3
C.3 IQ-specific commands for boot monitor ... C-4
C.4 Using boot monitor on the Intel IQ systems ... C-7
C.5 Angel on the Intel IQ systems .. C-10
C.6 Flash recovery ... C-11
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. v

Contents
Appendix D ARM Firmware Suite on the ARM Evaluator-7T
D.1 About Evaluator-7T ... D-2
D.2 Evaluator-7T-specific commands for boot monitor D-3
D.3 Using boot monitor on the Evaluator-7T ... D-6
D.4 Angel on the Evaluator-7T .. D-8
D.5 Manufacturing image .. D-9

Appendix E ARM Firmware Suite on the Agilent AAED-2000
E.1 About AAED-2000 .. E-2
E.2 AAED-2000-specific commands for boot monitor E-3
E.3 Using boot monitor on AAED-2000 .. E-6
E.4 Angel on the AAED-2000 ... E-9

Appendix F API Quick Reference
F.1 µHAL ... F-2
F.2 Flash APIs .. F-8
F.3 PCI APIs ... F-13

Glossary
vi Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

Preface

This preface introduces the ARM Firmware Suite and its reference documentation. It
contains the following sections:

• About this document on page viii

• Further reading on page xi

• Feedback on page xiii.
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. vii

Preface
About this document

This book provides a guide on how to setup and use the ARM Firmware Suite. It
describes its major components and features, and how to use them to develop
applications for ARM-based hardware platforms.

Intended audience

This book is written for hardware and software developers to aid the development of
ARM-based products and applications. It assumes that you are familiar with ARM
architectures and have an understanding of computer hardware.

A simplified guide to running the demonstration applications is provided in the ARM
Firmware Suite User Guide. See ARM publications on page xi for additional guides that
describe other ARM products in detail.

Using this book

This document is organized into the following chapters:

Chapter 1 Introduction to the ARM Firmware Suite

Read this chapter for a brief introduction to the ARM Firmware Suite
(AFS). A more detailed introduction is provided in the ARM Firmware
Suite User Guide.

Chapter 2 µHAL Application Programming Interfaces

Read this chapter for information about the µHAL applications
programming interface including parameter types and functions.

Chapter 3 ARM Boot Monitor

Read this chapter for a description of the boot monitor and its
command-line interface.

Chapter 4 Operating Systems and µHAL

Read this chapter for a description how operating systems are ported to a
platform which has µHAL ported to it.

Chapter 5 Angel

Read this chapter for a description of the Angel debug monitor and AFS.

Chapter 6 Flash Library Specification

Read this chapter for reference information about the flash library, flash
management, and the firmware flash library functions.
viii Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

Preface
Chapter 7 Using the ARM Flash Utilities

Read this chapter for information about using the ARM Flash Utility
(AFU) and Boot Flash Utility (BootFU).

Chapter 8 PCI Management Library

Read this chapter for information about PCI management. This chapter
describes how PCI resources are initialized and managed, and describes
the PCI management functions.

Chapter 9 Using the DHCP Utility

Read this chapter for information on using the remote-booting system.

Chapter 10 Chaining Library

Read this chapter for a description of the chaining library.

Chapter 11 Libraries and Support Code

Read this chapter for a description of support code used in AFS.

Appendix A ARM Firmware Suite on Integrator

Read this appendix for a description of the Integrator boards and the
board-specific features of AFS

Appendix B ARM Firmware Suite on Prospector

Read this appendix for a description of the Prospector boards and the
board-specific features of AFS.

Appendix C ARM Firmware Suite on the Intel IQ80310 and IQ80321

Read this appendix for a description of the Intel XScale board and the
board-specific features of AFS.

Appendix D ARM Firmware Suite on the ARM Evaluator-7T

Read this appendix for a description of the ARM Evaluator-7T Board and
the board-specific features of AFS.

Appendix E ARM Firmware Suite on the Agilent AAED-2000

Read this appendix for a description of the Agilent AAED-2000 board
and the board-specific features of AFS.

Appendix F API Quick Reference

Read this appendix for an overview of all of the APIs used in AFS.
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. ix

Preface
Typographical conventions

The following typographical conventions are used in this book:

typewriter Denotes text that can be entered at the keyboard, such as commands, file
and program names, and source code.

typewriter Denotes a permitted abbreviation for a command or option. The
underlined text can be entered instead of the whole command or option
name.

typewriter italic

Denotes arguments to commands and functions where the argument is to
be replaced by a specific value

italic Highlights important notes, introduces special terminology, denotes
cross-references, and citations.

bold Highlights interface elements, such as menu names. Also used for
emphasis in descriptive lists and for ARM processor signal names.

typewriter bold

Denotes language keywords when used outside example code.
x Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

Preface
Further reading

This section lists publications from ARM and third parties that provide additional
information about developing on ARM processors.

ARM publications

The following publication provides a simplified guide to running the demonstration
applications:

• ARM Firmware Suite User Guide (ARM DUI 0136).

The following publications provide information about ARM Integrator products:

• ARM Integrator/CM920T User Guide (ARM DDI 0097)

• ARM Integrator/CM940T User Guide (ARM DDI 0125)

• ARM Integrator/CM720T User Guide (ARM DDI 0126)

• ARM Integrator/CM740T User Guide (ARM DDI 0124)

• ARM Integrator/CM7TDMI User Guide (ARM DDI 0126)

• ARM Integrator/SP User Guide (ARM DUI 0099)

• ARM Integrator/AP User Guide (ARM DUI 0098).

The following publication provides information about ARM Prospector products:

• ARM Prospector/P1100 User Guide (ARM DUI 122).

The following publications provide information about ARM hardware and software
debugging tools:

• ARM RMHost User Guide (ARM DUI 0137)

• ARM RMTarget Integration Guide (ARM DUI 0142)

• Multi-ICE User Guide (ARM DUI 0048).

The following publication provides reference information about ARM architecture:

• AMBA Specification (ARM IHI 0011).
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. xi

Preface
The following publications provide information about the ARM Developer Suite:

• ADS Getting Started (ARM DUI 0064)

• ADS Tools Guide (ARM DUI 0067)

• ADS Debuggers Guide (ARM DUI 0066)

• ADS Debug Target Guide (ARM DUI 0058)

• ADS Developer Guide (ARM DUI 0056)

• ADS CodeWarrior IDE Guide (ARM DUI 0065).

Further information can be obtained from the ARM web site at:

http://www.arm.com

Other publications

The following publication provides reference information about ARM architecture:

• ARM Architecture Reference, David Seal, Addison Wesley, ISBN 0-201-73719-1

• ARM System-On-Chip Architecture, Steve Furber, Addison Wesley, ISBN
0-201-67519-6.

The following publications provide information and guidelines for developing products
for Microsoft Windows CE:

• HARP Enclosure Requirements for Microsoft® Windows® CE 1998 Microsoft
Corporation

• Standard Development Board for Microsoft® Windows® CE 1998 Microsoft
Corporation.

Further information on Microsoft Windows CE is available from the Microsoft web site:

http://www.microsoft.com

The following publication provides information about µC/OS-II:

• MicroC/OS-II, The Real-Time Kernel, Jean Labrosse, R&D Technical Books,
ISBN 0-87930-543-6.
xii Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

Preface
Feedback

Feedback on both AFS and the documentation is welcome.

Feedback on this book

If you have any comments on this book, please send email to errata@arm.com giving:

• the document title

• the document number

• the page number(s) to which your comments apply

• a concise explanation of your comments.

General suggestions for additions and improvements are also welcome.

Feedback on the ARM Firmware Suite

If you have any problems with the ARM Firmware Suite, please contact your supplier.
To help them provide a rapid and useful response, please give:

• details of the release you are using

• details of the platform you are running on, such as the hardware platform,
operating system type and version

• a small standalone sample of code that reproduces the problem

• a clear explanation of what you expected to happen, and what actually happened

• the commands you used, including any command-line options

• sample output illustrating the problem

• the version string of the tool used, including the version number and date.
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. xiii

Preface
xiv Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

Chapter 1
Introduction to the ARM Firmware Suite

This chapter introduces the AFS components and utilities used to develop applications
and operating systems on ARM-based systems. It contains the following sections:

• About the ARM Firmware Suite on page 1-2

• AFS directories and files on page 1-3.

Refer to the ARM Firmware Suite User Guide for a more detailed introduction to AFS.
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 1-1

Introduction to the ARM Firmware Suite
1.1 About the ARM Firmware Suite

AFS provides:

µHAL libraries

µHAL (pronounced Micro-HAL) is the ARM Hardware Abstraction
Layer that is the basis of the AFS. µHAL is a set of low-level functions
that simplify the porting of operating systems and applications.

Flash library

The flash library provides an API for programming and reading flash
memory. The API provides access to individual blocks or words in flash,
and access to images and user data.

Development environment

AFS is an easy-to-use environment for evaluating ARM-based platforms.
The library APIs enable rapid development of applications and device
drivers. Reusable code is provided to help develop applications and
product architectures on a wide range of ARM and third-party
development platforms.

AFS is compatible with the ARM Development Suite (ADS 1.0 or
higher). It supports the Angel debug monitor, Multi-ICE (if the target
board supports it), and third-party debug monitors.

Additional components

Additional components provided with AFS include a boot monitor,
generic applications, and board-specific applications. Use these
components to verify that your development board is working correctly.
You can use the source code for the applications as a starting point for
your own applications.

Additional libraries

AFS supplies libraries for specialized hardware. For example, the
supplied PCI library supports the PCI bus on the Integrator board.

Angel A version of Angel that has been implemented using µHAL is included
with AFS.

µC/OS-II AFS includes a port of µC/OS-II for the ARM architecture using the
µHAL interfaces.
1-2 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

Introduction to the ARM Firmware Suite
1.2 AFS directories and files

This section describes the directories created by the AFS installer. Throughout this book
there are examples of source code provided as part of AFS. The path names used assume
that you installed AFS in the default directory AFSv1_4.

1.2.1 AFS installation layout

The ARM Firmware Suite installs a range of directories below the AFSv1_4 install
directory:

Boards Subdirectories of this directory contain utilities and documentation
relevant to the hardware on supported platforms.

Components This directory contains additional online documentation for AFS.

Demos Subdirectories of this directory contain pre-built executable example
images which can be loaded and run on the appropriate platform.

docs This directory contains the online documentation for AFS.

Examples This directory contains simple example source code and project files.

Images Subdirectories of this directory contain pre-built executable images of the
utilities provided with each platform.

Include This directory contains the header files for AFS on supported platforms.

lib Subdirectories of this directory contain pre-built libraries for the AFS
components that build as libraries.

Source This directory contains the source code for AFS on supported platforms.
Not all modules are provided in source form. See AFS source code
organization.

1.2.2 AFS source code organization

In order to understand the ARM Firmware Suite, it is useful to know how the source
code is organized in the AFSv1_4\Source directory. Each library or module is organized
into generic, processor, and board-specific code. In addition, there are build directories
for each individual board. For example, it is possible to build versions of µHAL for
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 1-3

Introduction to the ARM Firmware Suite
Integrator using a range of processors such as an ARM7TDMI or ARM920T. In these
cases, only the processor-specific code differs. The following subdirectories are
contained in most module directories:

Boards Subdirectories of this directory contain the board-specific code. For
example, the Integrator-specific code for the µHAL library is found in
AFSv1_4\Source\uHAL\Boards\INTEGRATOR. The board-specific code might
be a combination of board definitions (such as the memory layout and the
location of the interrupt controller) and code (such as code to turn the
LEDs on and off).

Build Subdirectories of this directory contain the build files and built images for
each supported board. For example, the ARM720T variant of µHAL for
the Integrator is built within the
AFSv1_4\Source\uHAL\Build\Integrator720T.b subdirectory.

h This directory contains available routine definitions and
board-independent and processor-independent definitions.

Sources This directory contains the board-independent module code. The
directory itself contains no board-specific or processor-specific software,
although parts of it may be conditionally compiled for either standalone
or semihosted usage.

Source directories for some of the more complex modules, µHAL for example, contain
additional subdirectories:

docs This directory contains additional documentation for the module.

Processors This directory contains processor-specific code. Most processor-specific
code is involved with memory management unit and cache support.

tools This directory contains build tools such as, for example, a Perl script that
translates assembler-definition files into C-definition files.
1-4 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

Chapter 2
µHAL Application Programming Interfaces

This chapter describes the simple and extended APIs to µHAL. It contains the following
sections:

• About the µHAL APIs on page 2-2

• Simple API memory functions on page 2-4

• Simple API interrupt functions on page 2-8

• Simple API MMU and cache functions on page 2-11

• Simple API timer functions on page 2-13

• Simple API support functions on page 2-19

• Simple API LED control functions on page 2-21

• Serial input/output functions, definitions, and macros on page 2-25

• Extended API initialization functions on page 2-31

• Extended API interrupt handling functions on page 2-33

• Extended API software interrupt (SWI) function on page 2-38

• Extended API MMU and cache functions on page 2-39

• Extended API processor execution mode functions on page 2-43

• Extended API timer functions on page 2-46

• Extended API coprocessor access functions on page 2-49

• Library support functions on page 2-51.
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 2-1

µHAL Application Programming Interfaces
2.1 About the µHAL APIs

This section provides an overview of the general APIs provided by µHAL. See µHAL
PCI function descriptions on page 8-17 for a description of PCI functions contained in
µHAL.

2.1.1 µHAL-specific function types

µHAL uses three function types that are abstracted to make interface routines easier to
use. These are described in Table 2-1.

For example, with the uHALr_RequestTimer() declaration:

int uHALr_RequestTimer(PrHandler handler,
 const unsigned char *devname)

an interrupt handler can be declared as:

void TickTimer(unsigned int interrupt)

and registered with µHAL using:

uHALr_RequestSystemTimer(TickTimer, "test");

Table 2-1 Parameter types

Description Syntax

A pointer to a function with no argument. The
function does not return a value.

typedef void (*PrVoid)(void);

A pointer to a function with one integer
argument. The function does not return a value.

typedef void (*PrHandler)(unsigned int);

A pointer to a function with no argument. The
function returns a PrVoid pointer to a function.

typedef PrVoid (*PrPrVoid)(void);
2-2 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

µHAL Application Programming Interfaces
2.1.2 Simple and extended API functions

Using the µHAL simple API does not require an understanding of how µHAL works, or
of the ARM architecture. Using the µHAL extended API requires an understanding of
how µHAL functions. All functions and type definitions are contained in
AFSv1_4\Source\uHAL\h\uhal.h and AFSv1_4\Source\uHAL\h\cdefs.h.

Note
 You can find several demonstration programs that use this interface in the uHALDemos
subdirectory of the AFS installation. The code examples used in this section are taken
from these demonstration programs.

2.1.3 Rebuilding the µHAL library

Use the project files or makefiles to rebuild the Library.

PC project files

You can build the library using ADS 1.0 (or higher) CodeWarrior project files (.mcp).

Unix makefile

The CD has a makefile for use in a Unix environment.

There is a makefile for rebuilding the library for a single development board and
processor combination. For example, if you installed to \AFSv1_4 use
\AFSv1_4\Source\uHAL\Build\Integrator940T.b\makefile to rebuild the library for the
Integrator board with an ARM940T processor.

You must maintain the hierarchy of the CD directories created by the installer. The
makefile defines ROOT as the root of the build tree and is required by the make program.
The directory TOOLS contains build tools of various kinds.
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 2-3

µHAL Application Programming Interfaces
2.2 Simple API memory functions

This section describes the set of functions that are used to find free memory in the
system, and to allocate and free heap storage. Free memory is memory that is not used
by µHAL itself or a debug agent. Prototypes for all of these functions are available in
AFSv1_4\Source\uHAL\h\uhal.h.

The memory functions are:

• uHALr_StartOfRam()

• uHALr_EndOfFreeRam()

• uHALr_EndOfRam() on page 2-5

• uHALr_HeapAvailable() on page 2-5

• uHALr_InitHeap() on page 2-5

• uHALr_malloc() on page 2-5

• uHALr_free() on page 2-6.

There is an example of a program that allocates and de-allocates heap storage in
Example of heap allocation and de-allocation on page 2-7.

2.2.1 uHALr_StartOfRam()

This function returns the address of the first free uninitialized RAM location.

Syntax

void *uHALr_StartOfRam(void)

Return value

Returns the address of the first available RAM location.

2.2.2 uHALr_EndOfFreeRam()

This function returns the address of the last available RAM location.

Syntax

void *uHALr_EndOfFreeRam(void)

Return value

Returns the address of the last available RAM location.
2-4 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

µHAL Application Programming Interfaces
2.2.3 uHALr_EndOfRam()

This function returns the address of the last RAM location.

Syntax

void *uHALr_EndOfRam(void)

Return value

Returns the address of last RAM location.

2.2.4 uHALr_HeapAvailable()

This function returns a flag to indicate whether this port of the µHAL library includes
support for heap management.

Syntax

int uHALr_HeapAvailable(void)

Return value

Returns one of the following:

1 If the heap management functions are included in the library.

0 If heap management functions are not included.

2.2.5 uHALr_InitHeap()

This function initializes the heap. It must be called before any memory allocation or
de-allocation is attempted.

Syntax

void uHALr_InitHeap(void)

2.2.6 uHALr_malloc()

This function allocates contiguous storage from the heap.

Syntax

void *uHALr_malloc(unsigned int size)
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 2-5

µHAL Application Programming Interfaces
where:

size is the number of bytes of memory required.

Return value

Returns

0 If size is 0.

-1 If the memory cannot be allocated.

pointer If successful, a pointer to the allocated memory is returned.

2.2.7 uHALr_free()

This routine frees previously allocated memory pointed at by memPtr.

Syntax

void uHALr_free(void *memPtr)

where:

memPtr Is a pointer to the heap memory to be freed. This value must not be –1. If
the value is 0, the function returns without taking any action.
2-6 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

µHAL Application Programming Interfaces
2.2.8 Example of heap allocation and de-allocation

Example 2-1 shows an example of a program that allocates and de-allocates heap
storage. You can find a similar program in uHALDemos\Sources\heap.c.

Example 2-1 Allocating and de-allocating heap storage

#include "uhal.h"
int main (int argc, int *argv[])

{
 int i ;

void *memP ;
uHALr_printf("*** HEAP Allocation/Deallocation ***\n") ;
uHALr_InitHeap() ; // init
for (i = 0 ; i < 16 ; i++) { // allocate and free some memory

uHALr_printf("malloc'ing 0x%X bytes...", i * 16) ;
memP = uHALr_malloc(i * 16) ;
uHALr_printf("@ 0x%X\n", memP) ;

 uHALr_free(memP) ;
 }
 return (OK);
}

ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 2-7

µHAL Application Programming Interfaces
2.3 Simple API interrupt functions

µHAL assumes that interrupts occur using IRQs. These routines allow you to:

• install a generic interrupt handler

• request control of a particular interrupt

• enable and disable that interrupt.

Your application can install different interrupt handlers for different interrupts, or install
a single handler for many interrupts.

When an interrupt occurs, µHAL traps it and calls the appropriate handler routine,
passing it the number of the interrupt that occurred.

Note
 µHAL does not provide any support to the application for finding the source of
interrupts. It is the responsibility of the board-specific code to map the programmable
interrupt controller format to and from a 32-bit quantity.

The interrupt functions are:

• uHALr_InitInterrupts()

• uHALr_RequestInterrupt() on page 2-9

• uHALr_FreeInterrupt() on page 2-9

• uHALr_EnableInterrupt() on page 2-10

• uHALr_DisableInterrupt() on page 2-10.

2.3.1 uHALr_InitInterrupts()

This function is called once on startup by the application. It initializes the µHAL
internal interrupt structures. This must be called before installing a new IRQ handler.

Syntax

void uHALr_InitInterrupts(void)
2-8 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

µHAL Application Programming Interfaces
2.3.2 uHALr_RequestInterrupt()

This function assigns a high-level handler routine to the specified interrupt. It sets up
the internal structures, but does not activate the interrupt.

Syntax

int uHALr_RequestInterrupt(unsigned int intNum, PrHandler handler, const
unsigned char *devname)

where:

intNum Is the number of the interrupt to be processed.

handler Is a pointer to the routine that processes the interrupt.

devname Is a pointer to a string identifying the function of the interrupt.

Return value

Returns one of the following:

0 If successful.

-1 If intNum is unknown or already assigned.

2.3.3 uHALr_FreeInterrupt()

This function removes the high-level handler from the specified interrupt.

Note
 An application must always call uHALr_DisableInterrupt() before calling this routine.
Call uHALr_FreeInterrupt() before changing the routine associated with an interrupt.

Syntax

int uHALr_FreeInterrupt(unsigned int intNum)

where:

intNum Is the number of the interrupt to be freed.

Return value

Returns one of the following:

0 If successful.

-1 If intNum is unknown, reserved, or not allocated.
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 2-9

µHAL Application Programming Interfaces
2.3.4 uHALr_EnableInterrupt()

This function enables the specified interrupt. On many ARM-based systems, this is a
two-step process. It enables an on-board interrupt controller, and then it enables the
interrupt mask on the processor.

Syntax

void uHALr_EnableInterrupt(unsigned int intNum)

where:

intNum Is the number of the interrupt to be enabled.

2.3.5 uHALr_DisableInterrupt()

This function disables the specified interrupt. On many ARM-based systems, interrupts
are enabled and disabled at two stages:

• an on-board controller

• the interrupt mask on the processor.

The uHALr_DisableInterrupt() function disables the interrupt on the interrupt controller
and does not affect masking by the processor.

Syntax

void uHALr_DisableInterrupt(unsigned int intNum)

where:

intNum Is the number of the interrupt to be disabled. The routine has no effect if
the number is not in the range of valid interrupts.
2-10 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

µHAL Application Programming Interfaces
2.4 Simple API MMU and cache functions

On processors that support it, µHAL allows an application to:

• Turn virtual memory on and off using the Memory Management Unit (MMU).
(On systems that use the MMU to remap read-only memory at address 0, the
MMU cannot be disabled.)

• Enable and disable the caches.

These functions are:

• uHALr_ResetMMU()

• uHALr_InitMMU()

• uHALr_EnableCache() on page 2-12

• uHALr_DisableCache() on page 2-12.

Memory management and cache code example on page 2-12 includes an example of a
basic cache manipulation program.

2.4.1 uHALr_ResetMMU()

This function safely resets the MMU (and caches) to a fully disabled state (all OFF),
irrespective of the state they were originally in. If the MMU cannot be disabled, this
function has no effect.

Syntax

void uHALr_ResetMMU(void)

2.4.2 uHALr_InitMMU()

This function initializes the MMU to a default one-to-one mapping. This mapping also
defines the types of access allowed to each area according to execution mode. For
example, flash can be written in Supervisor mode, but not User mode.

Syntax

void uHALr_InitMMU(int mode)

where:

mode Is any combination of the MMU mode flags and cache bit flags,
EnableMMU, IC_ON, DC_ON, and WB_ON. See also uHALir_WriteCacheMode()
on page 2-42.
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 2-11

µHAL Application Programming Interfaces
2.4.3 uHALr_EnableCache()

This function provides a way to enable all caches that are supported by the processor.

Syntax

void uHALr_EnableCache(void)

2.4.4 uHALr_DisableCache()

This function disables all caches that are supported by the processor.

Syntax

void uHALr_DisableCache(void)

2.4.5 Memory management and cache code example

Example 2-2 is an example of a simple cache manipulation program. A similar program
is in uHALDemos\Sources\simple-caches.c.

Example 2-2 MMU and cache

 #include "uhal.h"
 #include "mmu_h.h"
 int main (int argc, int *argv[]) {

uHALr_printf("Simple Cache Usage [v1.0]\n") ;// who are we?
uHALr_printf("Resetting caches...") ; // Reset the caches to a known state
uHALr_ResetMMU() ;
uHALr_printf("done\n") ;
uHALr_printf("Enabling the MMU and all caches...") ;// Init MMU to all on
uHALr_InitMMU(IC_ON | DC_ON | WB_ON | EnableMMU) ;
uHALr_printf("done\n") ;
uHALr_printf("Disabling all caches...") ; // Disable the caches

 uHALr_DisableCache() ;
uHALr_printf("done\n") ;

 // Finally, enable all of the caches
uHALr_printf("Enabling all caches...") ;
uHALr_EnableCache() ;
uHALr_printf("done\n") ;
return (OK);// go home

}

2-12 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

µHAL Application Programming Interfaces
2.5 Simple API timer functions

µHAL provides a set of routines that allow an application to use a timer as a system or
operating system timer. This is the simplest way to use timers in µHAL.

µHAL also provides generic timer access routines that give more direct access, although
with a little more complexity, to the timers in the system.

The timer functions are:

• uHALr_CountTimers()

• uHALr_InitTimers()

• uHALr_RequestSystemTimer() on page 2-14

• uHALr_InstallSystemTimer() on page 2-14

• uHALr_RequestTimer() on page 2-15

• uHALr_InstallTimer() on page 2-16

• uHALr_FreeTimer() on page 2-16

• uHALr_GetTimerInterval() on page 2-16

• uHALr_SetTimerInterval() on page 2-17

• uHALr_GetTimerState() on page 2-17

• uHALr_SetTimerState() on page 2-18

• uHALr_EnableTimer() on page 2-18

• uHALir_GetSystemTimer() on page 2-48.

System timer programming example on page 2-15 shows how to use a system timer.

2.5.1 uHALr_CountTimers()

This function returns the number of timers that are supported by the target.

Syntax

unsigned int uHALr_CountTimers(void)

Return value

Returns the number of timers supported by the target.

2.5.2 uHALr_InitTimers()

This function must be called before any other timer function. This function:

• Initializes the µHAL internal interrupt structures.
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 2-13

µHAL Application Programming Interfaces
• Resets all timers to a known state. (It sets the internal delays to a predefined value
and sets all timers off.)

If this function is compiled for use with a debug agent, such as Angel, the timer
associated with the debug agent is not reset and is locked to prevent access from within
µHAL.

Note
 For the timer interrupt handler to be correctly installed, the application must ensure that
uHALr_InitInterrupts() has been called before this function call.

Syntax

void uHALr_InitTimers(void)

2.5.3 uHALr_RequestSystemTimer()

This function installs a handler for the system timer, sets up the internal structures, and
stops (and does not restart) the timer. By default, the system timer is set to tick once
every millisecond.

Syntax

int uHALr_RequestSystemTimer(PrHandler handler, const unsigned char *devname)

where:

handler Is a pointer to the routine that will process the interrupt.

devname Is a pointer to a string identifying the function of the interrupt.

Return value

Returns one of the following:

0 If successful.

-1 If the IRQ is already assigned.

2.5.4 uHALr_InstallSystemTimer()

This function starts the timer and enables the interrupt associated with it.

Syntax

void uHALr_InstallSystemTimer(void)
2-14 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

µHAL Application Programming Interfaces
2.5.5 System timer programming example

The program in Example 2-3 demonstrates how a system timer is used.

Example 2-3 System timer example

#include "uhal.h"
// High-level routine called by IRQ Trap Handler when the timer interrupts
static int OSTick = 0 ;
void TickTimer(unsigned int irq){

OSTick++ ;
}

int main (int argc, int *argv[]) {
int i, j ;

uHALr_printf("System Timer\n") ; // who are we?
uHALr_InitInterrupts() ; // Install new trap handlers and soft vectors
uHALr_InitTimers() ; // initialize the timers
OSTick = 0 ; // initialize the tick count
uHALr_printf("Timer init\n") ;
if (uHALr_RequestSystemTimer(TickTimer,(const unsigned char*)"test")<= 0)

uHALr_printf("Timer/IRQ busy\n") ;

 // Start system timer & enable the interrupt
uHALr_InstallSystemTimer() ;
// loop flashing a led and giving out the tick count
for (j = 0; ; j++) {

if (j & 1)
uHALr_SetLED(1) ;

else
uHALr_ResetLED(1) ;

uHALr_printf("Tick is %x\n", OSTick) ;
for (i = 0 ; i < 1000000 ; i++) ;

}
return (OK);

}

2.5.6 uHALr_RequestTimer()

This function gets the next available timer and installs a handler. On return, the timer is
initialized but not running.

Syntax

int uHALr_RequestTimer(PrHandler handler, const unsigned char *devname)
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 2-15

µHAL Application Programming Interfaces
where:

handler Is a pointer to the routine that will process the interrupt.

devname Is a pointer to a string identifying the function of the interrupt.

Return value

Returns one of the following:

timer If successful, the timer number is returned.

-1 If the timer is unknown or already assigned.

2.5.7 uHALr_InstallTimer()

This function starts the specified timer by enabling the timer and the associated
interrupt.

void uHALr_InstallTimer(unsigned int timer)

where:

timer Is the timer to be started.

2.5.8 uHALr_FreeTimer()

This function disables the specified timer, frees the interrupt, and updates the internal
structure.

Syntax

int uHALr_FreeTimer(unsigned int timer)

where:

timer Is the number of the timer to be freed.

Return value

Returns one of the following:

0 If successful.

-1 If the timer is unknown.

2.5.9 uHALr_GetTimerInterval()

This function gets the interval, in microseconds, for the specified timer.
2-16 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

µHAL Application Programming Interfaces
Syntax

int uHALr_GetTimerInterval(unsigned int timer)

where:

timer Is the number of the timer for which the interval is requested.

Return value

Returns one of the following:

interval If successful (return value in microseconds).

-1 If the timer is not found.

2.5.10 uHALr_SetTimerInterval()

This function sets the interval, in microseconds, for the specified timer.

Syntax

int uHALr_SetTimerInterval(unsigned int timer, unsigned int interval)

where:

timer Is the timer number for which the interval is to be set.

interval Is the number of microseconds between events.

Return value

Returns one of the following:

0 If the timer is found.

-1 If the timer is not found.

2.5.11 uHALr_GetTimerState()

This function gets the current state of the specified timer.

Syntax

int uHALr_GetTimerState(unsigned int timer)

where:

timer Is the timer number for which the state is requested.
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 2-17

µHAL Application Programming Interfaces
Return value

Returns one of the following:

state If the timer is found, the current state is one of:

T_FREE Available.

T_ONESHOT Single-shot timer (in use).

T_INTERVAL Repeating timer (in use).

T_LOCKED Not available for use by µHAL.

-1 If the timer is not found.

2.5.12 uHALr_SetTimerState()

This function sets the timer state.

Syntax

int uHALr_SetTimerState(unsigned int timer, enum uHALe_TimerState state)

where:

timer Is the timer number for which the state is being set.

state Is a valid timer state which is one of:

T_ONESHOT Single-shot timer (in use).

T_INTERVAL Repeating timer (in use).

Return value

Returns one of the following:

0 If the timer is found.

-1 If the timer is not found.

2.5.13 uHALr_EnableTimer()

This function reloads the interval and enables the specified timer.

Syntax

void uHALr_EnableTimer(unsigned int timer)

where:

timer Is the timer to be enabled.
2-18 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

µHAL Application Programming Interfaces
2.6 Simple API support functions

In addition to the general routines, µHAL provides implementations of a number of
standard C library routines. The support functions include:

• uHALr_memset()

• uHALr_memcmp()

• uHALr_memcpy() on page 2-20

• uHALr_strlen() on page 2-20.

2.6.1 uHALr_memset()

This function places character c into the first n characters of s, and returns s.

Syntax

void *uHALr_memset(char *s, int c, int n)

where:

s Is the start address of memory to be set.

c Is the character to be copied into memory.

n Is the number of memory locations to be used.

Return value

Returns s.

2.6.2 uHALr_memcmp()

This function compares the first n characters of cs with ct.

Syntax

int uHALr_memcmp(char *cs, char *ct, int n)

where:

cs Is the start of memory locations to be compared.

ct Is the start of memory locations to be compared against.

n Is the number of memory locations to be compared.
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 2-19

µHAL Application Programming Interfaces
Return value

Returns one of the following:

1 If cs>ct.

0 If cs=ct.

-1 If cs<ct.

2.6.3 uHALr_memcpy()

This function copies n characters from ct to s.

Syntax

void * uHALr_memcpy(char *s, char *ct, int n)

where:

s Is a pointer to the destination memory locations.

ct Is a pointer to the source memory locations.

n Is the number of memory locations to be copied.

Return value

Returns the address of the first location copied to.

2.6.4 uHALr_strlen()

This function returns the length of s.

Syntax

int uHALr_strlen(const char *s)

where:

s Is a pointer to a zero-terminated string.

Return value

This function returns the size, in bytes, of s.
2-20 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

µHAL Application Programming Interfaces
2.7 Simple API LED control functions

µHAL provides a set of simple routines for accessing any LEDs in the system. The LED
control functions are:

• uHALr_CountLEDs() on page 2-22

• uHALr_InitLEDs() on page 2-22

• uHALr_ResetLED() on page 2-22

• uHALr_SetLED() on page 2-23

• uHALr_ReadLED() on page 2-23

• uHALr_WriteLED() on page 2-23.

An example of a simple LED flashing program is provided in LED control code
example on page 2-24.

2.7.1 LED states and addresses

The µHAL LED code is generic and manages any LEDs that can be accessed at different
addresses on different boards. Logic 1 can indicate either ON or OFF.

The LED code in the module AFSv1_4\Source\uHAL\Sources\led.c keeps the LED
addresses (or homes) in the uHALiv_LedHomes array.

The set of pointers to LEDs is initialized to be the contents of uHAL_LED_OFFSETS. The
addresses, pointers, and the number of LEDs (uHAL_NUM_OF_LEDS), are defined in the
board-specific definition files platform.s and platform.h. The platform definitions for
the generic Integrator platform, for example, are in
AFSv1_4\Source\uHAL\Boards\INTEGRATOR.

For some systems, the platform files contain different addresses for different LEDs. The
LED code also keeps a set of masks, one per LED, in the uHALiv_LedMasks array. This is
set to the contents of UHAL_LED_MASKS.

When reading the state of the LEDs, the LED code does the following:

1. Reads the LED register using its home address.

2. ANDs the value read with the mask for this LED.

3. Compares the result with the board-specific literal uHAL_LED_ON. Some LEDs
report 0 as on.

A board-specific LED write function, uHALr_WriteLED() in board.c, is used to write to
the LEDs.
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 2-21

µHAL Application Programming Interfaces
2.7.2 uHALr_CountLEDs()

This function returns the number of LEDs available to the µHAL application.

Syntax

unsigned int uHALr_CountLEDs(void)

Return value

Returns the number of LEDs:

0 If there are no LEDs.

count If there are LEDs.

2.7.3 uHALr_InitLEDs()

This function initializes the LEDs in the system to OFF.

Syntax

unsigned int uHALr_InitLEDs(void)

Return value

Returns the number of LEDs.

2.7.4 uHALr_ResetLED()

This function turns the specified LED off.

Syntax

void uHALr_ResetLED(unsigned int led)

where:

led Is the specified LED number.
2-22 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

µHAL Application Programming Interfaces
2.7.5 uHALr_SetLED()

This function turns the specified LED on.

Syntax

void uHALr_SetLED(unsigned int led)

where:

led Is the specified LED number.

2.7.6 uHALr_ReadLED()

This function returns the state of the specified LED.

Syntax

int uHALr_ReadLED(unsigned int led)

where:

led Is the specified LED number.

Return value

Returns one of the following:

TRUE If the LED state is on.

FALSE If the LED state is off.

-1 If the LED number specified is invalid.

TRUE is defined as 1 and FALSE is defined as 0.

2.7.7 uHALr_WriteLED()

This function writes a value to the specified LED.

Syntax

int uHALr_WriteLED(unsigned int led, unsigned int state)
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 2-23

µHAL Application Programming Interfaces
where:

led Is the specified LED number.

state Is the desired LED state:

TRUE to turn the led on (1).

FALSE to turn the led off (0).

Return value

Returns one of the following:

0 If successful.

-1 If the LED number specified is invalid.

2.7.8 LED control code example

Example 2-4 is a fragment of the simple LED flashing program. A similar program is
in uHALDemos\Sources\led.c).

Example 2-4 LED flashing program

#include "uhal.h"
int main (int argc, int *argv[])
{

unsigned int count, max, on ;
unsigned int wait, i, j ;
count = uHALr_InitLEDs() ;
max = (1 << count) ;
while(1) {

for (i = 0 ; i < max ; i++) {
/* which LEDs are on? */
on = (max - 1) & i ;
for (j = 0; j < count ; j++)

if (on & (i << j)
uHALr_SetLED(j + 1);

else
uHALResetLED (j + 1);

/* wait a while */
for (wait = 0 ; wait < 1000000 ; wait++) ;

}
}
return (OK);

}

2-24 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

µHAL Application Programming Interfaces
2.8 Serial input/output functions, definitions, and macros

If there is a serial port, µHAL provides access for the application by using a series of
polled calls. In the case of a semihosted application, µHAL makes SWI calls to the
underlying debug agent to process the requests.

The simple serial I/O functions are:

• uHALr_ResetPort()

• uHALr_getchar()

• uHALr_putchar() on page 2-26

• uHALr_printf() on page 2-26.

A basic character I/O program example is provided in:

• Serial input/output code example on page 2-26.

The one extended serial function is:

• uHALir_InitSerial() on page 2-26.

2.8.1 uHALr_ResetPort()

This function resets the port defined for stdin/stdout to the board default state.

Syntax

void uHALr_ResetPort(void)

2.8.2 uHALr_getchar()

This function waits for a character from the default port. When compiled as a
semihosted application, this function uses the SWI handler provided by the debug agent
to get the character from the host console.

Syntax

unsigned int uHALr_getchar(void)

Return value

Returns the unsigned int containing the character read from the serial port.
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 2-25

µHAL Application Programming Interfaces
2.8.3 uHALr_putchar()

This function sends the given character to the default port. When compiled as a
semihosted application, this function uses the SWI handler provided by the debug agent
to send the character to the host console.

Syntax

void uHALr_putchar(unsigned char c)

where:

c Is the character to be sent to the serial port.

2.8.4 uHALr_printf()

This function converts, formats, and writes the arguments to the standard output.

Syntax

void uHALr_printf(char *format, ...)

where:

format is a pointer to the start of the zero-terminated formatting string. You can
insert any number of these parameters into the format string. The known
format types are:

%i, %c, %s, %d, %u, %o, %x, and %X

... is a variable list of arguments to print.

2.8.5 uHALir_InitSerial()

This extended API function initializes the specified port to the specified baud rate.

Syntax

void uHALr_InitSerial(unsigned int port, unsigned int baudRate)

where:

port Is the base address of the serial port to be initialized.

baudRate Is the platform-specific value used to set the data transfer rate.

2.8.6 Serial input/output code example

Example 2-5 on page 2-27 shows a program performing simple character I/O.
2-26 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

µHAL Application Programming Interfaces
Example 2-5 Simple character I/O

#include "uhal.h"
extern void print_header(void);
char * test_name = "Input/Output Tests\n";
char * test_ver = "Program Version 1.0\n";
extern void print_end (void);
static int yesno(char *question, int preferred) {
 int c ;
 uHALr_printf(question) ; // ask the question
 if (preferred)
 uHALr_printf("[Yn]? ") ;
 else
 uHALr_printf("[Ny]? ") ;
 c = uHALr_getchar() ; // get the answer and interpret it
 uHALr_putchar(c) ;
 if (c == '\n') return preferred ;
 uHALr_putchar('\n') ;
 return ((c == 'y')||(c == 'Y')) ;
}

int main (int argc, int *argv[]) {
 int i ;
 char buf[80] ;
 U8 c ;
 print_header(); // who are we?
 uHALr_printf("Please enter a string terminated by C/R\n") ;
 uHALr_printf("IO> ") ; // Ask for some characters (don't forget to echo)
 for (i = 0 ; i < sizeof(buf) ; i++) {
 c = uHALr_getchar() ;
 uHALr_putchar(c) ;
 if ((c == '\n') || (c == '\r')) {
 uHALr_putchar('\n') ;
 break ;
 }
 } // ask the user if they saw it correctly
 if (yesno("Were the characters echoed to screen properly", 1) == 1)
 uHALr_printf("Successful!\n") ;
 else
 uHALr_printf("Failed!\n") ;
 print_end ();
 return (OK);
}

ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 2-27

µHAL Application Programming Interfaces
2.8.7 Serial input output board-specific definitions and macros

If µHAL is built to run as a semihosted application, all input and output is handled by
the debug agent, for example Angel. In standalone mode, µHAL provides minimal
serial input and output support, enough to reset the defined serial port and to handle
polled input and output.

The board-specific definition files, platform.s and platform.h, describe the COM ports
for a system and their usage. Example 2-6 shows the COM port definitions for an
SA-1100 Prospector board.

Example 2-6 COM port definitions

 #define HOST_COMPORT UART3_BASE /* define so that it only ever uses one port */
 #define OS_COMPORT HOST_COMPORT /* Default port to talk to host via debugger
*/

where:

HOST_COMPORT Is the COM port used to communicate with a debug host using the Angel
debug monitor.

OS_COMPORT Is the COM port used by an operating system or µHAL application.

On the Prospector board, these are defined to be the same so that a semihosted µHAL
application uses semihosting for serial input and output. Because the Prospector board
has two COM ports, you can use separate ports to prove that your application works
using a real serial port. The board must supply a COM port-specific reset function,
uHALir_InitSerial(). You can find this in the board-specific board.c module.

Note

 If you are using Multi-ICE with a semihosted application, the COM port is still
reserved. Change the definition in platform.h to free the port.
2-28 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

µHAL Application Programming Interfaces
The µHAL COM port input and output code uses several macros (defined in the
board-specific definition files) to perform polled character input and output. The code
is in the module AFSv1_4\Source\uHAL\Sources\iolib.c.

These macros are:

• GET_CHAR

• GET_STATUS

• RX_DATA

• TX_READY

• PUT_CHAR.
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 2-29

µHAL Application Programming Interfaces
These macros support the µHAL input/output functions such as uHALr_PutChar().
Example 2-7 shows macros for the Prospector.

Example 2-7 Prospector usage of serial input/output macros

/* This board uses the SA-1100 UART3 as stdio */
 #define UART3_BASE 0x80050000

/* UART primitives */
 #define PUT_CHAR(p, c) ((*(volatile unsigned int *)

(p + UTDR)) = c)
 #define GET_STATUS(p) (*(volatile unsigned int *)(p + UTSR1))
 #define GET_CHAR(p) (*(volatile unsigned int *)(p + UTDR))
 #define RX_DATA(s) (s & UTSR1_RNE)
 #define TX_READY(s) ((s & UTSR1_TNF) != 0)
 #define RX_ENABLE 0x09
 #define TX_ENABLE 0x12
 #define TX_BUSY(s) (s & UTSR1_TBY)
 #define READ_INTERRUPT (p)(*(volatile unsigned int *)

(p + UTSR0))
 #define RX_INTERRUPT 2
 #define TX_INTERRUPT 1

/* UART regs/values */
 #define UTCR0 0x00
 #define UTCR1 0x04
 #define UTCR2 0x08
 #define UTCR3 0x0C
 #define UTDR 0x14
 #define UTSR0 0x1C
 #define UTSR1 0x20

/* Line status bits. */
 #define UTSR1_TBY 1 /* transmitter busy flag */
 #define UTSR1_RNE 2 /* receiver not empty (LSR_DR) */
 #define UTSR1_TNF 4 /* transmit fifo non full */
 #define UTSR1_PRE 8 /* parity read error (LSR_PE) */
 #define UTSR1_FRE 16 /* framing error (LSR_FE) */
 #define UTSR1_ROR 32 /* receive fifo overrun (LSR_OE) */
 #define UTSR0_TFS 1 /* transmit fifo service request */
 #define UTSR0_RFS 2 /* receive fifo service request */
 #define UTSR0_RID 4 /* receiver idle */
 #define UTSR0_RBB 8 /* receiver begin of break */
 #define UTSR0_REB 16 /* receiver end of break */
 #define UTSR0_EIF 32 /* error in fifo */
2-30 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

µHAL Application Programming Interfaces
2.9 Extended API initialization functions

The entry point to an ARM program is defined by either the -entry option of armlink or
the assembler ENTRY directive. µHAL attaches this directive to the routine __main in
AFSboot.s (This is a platform-specific file, so for Integrator it is
AFSv1_4\Source\uHAL\Boards\INTEGRATOR\AFSboot.s). µHAL places the exception
vectors at the start of the image so that the application functions correctly from RAM
or ROM at address 0. When used in a system with static memory at address 0, the
default vectors in AFSboot.s must be changed to correspond to the ones actually used in
the high-level application.

All ARM processors execute their first instruction at address 0. In many systems,
however, this address contains volatile RAM. Implementations that assert the HIVECS
input pin to start CPU execution from an address other than 0 are not supported by
µHAL. Each system must implement a mechanism to allow static memory, such as flash
or ROM, to overlay this RAM so the program can start.

The startup procedure is:

1. Switch the memory map back to its normal layout by using the GOTO_ROM macro in
the target specific target.s file.

2. Initialize the memory systems (if necessary) and determine the amount of RAM
in the system.

3. If the application is compiled standalone, copy the exception vectors from static
memory to RAM, starting at address 0.

4. Set up the stacks for the different processor modes and initialize the predefined
data areas for the high-level application.

5. Initialize the rest of the system, including MMU, cache, serial ports, interrupts,
and timers.

Some applications might hide this completely within the boot-up section. Others set up
only the required functions from within the application.

The initialization functions are:

• uHALir_InitTargetMem() on page 2-32

• uHALir_InitBSSMemory() on page 2-32

• uHALir_PlatformInit() on page 2-32.
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 2-31

µHAL Application Programming Interfaces
2.9.1 uHALir_InitTargetMem()

This function checks and initializes the memory system and then returns the address of
the top of available memory. This function does not corrupt memory if it is already
initialized.

Note
 This routine cannot be called from C because it assumes there is no stack and that
registers do not have to be preserved.

Syntax

void *uHALir_InitTargetMem(void)

Return value

Returns Top of Memory +1 (in bytes) and stores it in uHALiv_TopOfMemory.

2.9.2 uHALir_InitBSSMemory()

This function is called from boot-up to initialize all memory used by C and any
predefined assembler data areas. All predefined RAM data areas, except for MMU data
tables, are initialized to zero.

Note

 This routine overwrites any variables declared within the application.

Syntax

void uHALir_InitBSSMemory(void)

2.9.3 uHALir_PlatformInit()

This function initializes any platform-specific systems that must be setup before control
is passed to the application.

Syntax

void uHALir_PlatformInit(void)
2-32 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

µHAL Application Programming Interfaces
2.10 Extended API interrupt handling functions

The ARM processor has IRQ and FIQ interrupts. µHAL avoids using FIQs, leaving
them available to the debugger and/or user application.

How µHAL initializes interrupts depends on the mode you have built it to execute in:

• For standalone applications, the full set of vectors (contained in AFSboot.s) is
usually copied to memory at physical address 0x00000000. AFSboot.s is a
platform-specific file, so for Integrator it is
AFSv1_4\Source\uHAL\Boards\INTEGRATOR\AFSboot.s)

• For semihosted applications, µHAL installs an interrupt handler when the
application requests one. This vector contains the address of
uHALir_IRQProcess(), a dummy IRQ handler.

When IRQs are installed (using uHALr_InitInterrupts()), µHAL installs a pointer to the
default trap handling function uHALr_TrapIRQ() (in irqtrap.s) into the exception vector
at offset 0x18.

When an interrupt occurs, uHALr_TrapIRQ() saves all the registers in an
ATPCS-compliant manner and, optionally, calls several handler routines to actually
handle the IRQ. These handlers are called:

• after the context has been saved on the IRQ stack

• after the source of the interrupt has been determined

• at the end of the interrupt, just before the PC is restored from lr.

These routine addresses are stored in uHALp_StartIRQ, uHALp_HandleIRQ, and
uHALp_FinishIRQ, respectively. The interrupt exception vector is modified using
uHALir_NewVector().

The interrupt handler functions are:

• uHALir_TrapIRQ() on page 2-34

• uHALir_NewVector() on page 2-34

• uHALir_NewIRQ() on page 2-35

• uHALir_DefineIRQ() on page 2-35

• uHALir_DispatchIRQ() on page 2-36

• uHALir_UnexpectedIRQ() on page 2-37.
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 2-33

µHAL Application Programming Interfaces
2.10.1 uHALir_TrapIRQ()

This function:

1. Saves all the registers in an ATPCS-compliant manner.

2. Calls a StartIRQ() function, if defined.

3. Reads the interrupt mask and calls the high-level handler HandleIRQ().

4. Calls a FinishIRQ() function, if defined.

5. Jumps to a returned value as an address to finish IRQ processing, if FinishIRQ()
returns this value.

You can specify your own handler to use instead of the default trap handler by directly
calling this low-level interrupt installer (found in
AFSv1_4\Source\uHAL\sources\irqlib.s). The application must completely handle its
own interrupts. µHAL itself calls this routine from uHALr_InitIRQ() to install the
low-level trap handler uHALr_TrapIRQ() and the high-level IRQ dispatcher
uHALr_DispatchIRQ().

Note
 This function is intended as an IRQ handler and not a user-called function.

Syntax

void uHALir_TrapIRQ(void)

2.10.2 uHALir_NewVector()

This function replaces the specified exception vector with the given routine pointer.

Note

 This routine is not ATPCS-compliant as it can be called before stacks and memory are
defined. The function must be called in Supervisor mode.

Syntax

int uHALir_NewVector(void *Vector, PrVoid LowLevel)

where:

Vector Is the address of the vector to be replaced.

LowLevel Is a pointer to the low-level exception handler.
2-34 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

µHAL Application Programming Interfaces
Return values

The register contents on return are:

r0 The status:

• 0 if the new exception vector could not be written

• 1 if the old exception was an LDR PC instruction

• 2 otherwise.

r1 The address of the new vector, branch, or NULL.

r2 The address of the old vector, branch, or NULL.

2.10.3 uHALir_NewIRQ()

This function installs both the high-level and low-level IRQ routines. To install the
low-level routine, its address is copied to the vector array used by the exception vectors.

Assuming that the application chooses to use the default trap handler, µHAL allows the
application to specify handlers for the start and end of each interrupt, in addition to
allowing it to actually handle the interrupt. For simple interrupts, only the IRQ handler
is needed. However, some operating systems ported to µHAL make use of the start and
finish handlers to aid context switching (typically done at the end of timer interrupt
handling). Use this function to define any of these three interrupt handlers.

Syntax

PrVoid uHALir_NewIRQ(PrHandler HighLevel, PrVoid LowLevel)

where:

HighLevel is a pointer to the high-level routine that processes interrupts. By default,
this is uHALr_DispatchIRQ().

LowLevel is a pointer to the low-level routine. This routine must switch out of IRQ
mode and restore correct operation of the application upon completion. If
this pointer is zero, the default routine uHALr_TrapIRQ() is installed.

Note

 If the function fails to install the routines, the return value is 0. A non-zero value
indicates success.

2.10.4 uHALir_DefineIRQ()

This function allows some or all of the functionality of the low-level IRQ handler to be
defined. If zero is passed as the pointer contents, no action is taken for that parameter.
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 2-35

µHAL Application Programming Interfaces
This is the default interrupt dispatcher (found in AFSv1_4\Source\uHAL\Sources\irq.c).
This is passed the interrupt sources as a 32-bit value. How the interrupt sources are
determined is board-specific and the READ_INT macro in target.s is used for this
purpose.

Syntax

void uHALir_DefineIRQ(PrVoid Start, PrPrVoid Finish, PrVoid Trap)

where:

Start Is a pointer to the routine to be executed at the start of every IRQ.

Finish Is a pointer to the routine to be executed at the finish of every IRQ.

Trap Is a pointer to a different low-level IRQ handler. This handler might
function differently than the default operation. The default interrupt
routine is uHALr_TrapIRQ().

Usage

Start and Finish are zero if not required, but if Trap is zero, the current vector is not
overwritten. This routine must be called before the call to uHALr_InitInterrupt().

2.10.5 uHALir_DispatchIRQ()

This is the high-level interrupt handler that scans the IRQ flags to find the interrupt that
caused the exception. The appropriate installed interrupt handler is then called. If no
handler is found, a common unexpected IRQ routine is called.

The interrupts themselves are owned by an interrupt handler. The µHAL code in
AFSv1_4\Source\uHAL\Sources\irq.c maintains the uHALv_IRQVector array of uHALis_IRQ
structs that describe the handler for each interrupt source.

The format of the data structure is:

struct uHALis_IRQ {
PrHandler handler ; /* Routine for */

 /* specific interrupt */
unsigned int flags ;
unsigned int mask ;
const unsigned char *name ; /* Debug, owner id */
struct uHALis_IRQ *next ; /* Useful for shared */

/* interrupts */
};
2-36 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

µHAL Application Programming Interfaces
There are NR_IRQS elements. NR_IRQS is defined in the board-specific platform.s and
platform.h files. µHAL applications install interrupt handlers using the
uHALr_RequestInterrupt() function described on page 2-9. The application enables the
interrupt by calling uHALr_EnableInterrupt().

This function unmasks this particular interrupt by calling the board-specific
uHALir_UnmaskIrq() function, in AFSv1_4\Source\uHAL\Boards\board_name\board.c, and
enables IRQs in the processor by calling uHALir_EnableInt(), found in
AFSv1_4\Source\uHAL\Sources\irqlib.s.

When the interrupt occurs, uHALr_DispatchIRQ() calls the interrupt handler for every
pending bit set in the interrupt flags. To enable an application to have one interrupt
handler for several interrupts, the interrupt number is passed to the interrupt handler. If
an interrupt occurs and there is no installed interrupt handler, the unexpected interrupt
handler is called. See uHALir_UnexpectedIRQ().

Syntax

void uHALir_DispatchIRQ(unsigned int irqflags)

where:

irqflags Is the pending interrupt or interrupts.

Note

 This function is intended as an IRQ handler and not a user-called function.

2.10.6 uHALir_UnexpectedIRQ()

This function prints a debug message and some status information when an interrupt is
received for which no handler has been installed.

The function can be adapted to disable the interrupt by adding a call to
uHALr_DisableIRQ().

Syntax

void uHALir_UnexpectedIRQ(unsigned int irq)

where:

irq Is the number of the interrupt that triggered unexpectedly.
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 2-37

µHAL Application Programming Interfaces
2.11 Extended API software interrupt (SWI) function

A Software Interrupt Instruction (SWI) provides a means for a program running in User
mode to request privileged operations that must be run in Supervisor mode. The only
SWI currently handled by µHAL is SWI_EnterOS. This SWI switches into Supervisor
mode. All other SWIs, and the behavior of µHAL with these SWIs, are undefined.

Note

 When running µHAL under a debug agent, such as Angel, the SWI exception vector is
not overwritten. It is the debug agent that executes the SWI handler. Also, character
input/output is handled by the debug agent rather than being directly sent to or received
from the serial port.

2.11.1 uHALir_TrapSWI()

This function handles SWI exceptions. The only SWI currently decoded is SWI_EnterOS.
This SWI returns back to the initial context in Supervisor mode.

Note

 Because the SWI call writes the return address into the link register (written as lr or r14),
the link register must be protected. This is part of the µHAL support code, and it is not
intended to be called by user programs.

Syntax

void uHALir_TrapSWI(void)
2-38 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

µHAL Application Programming Interfaces
2.12 Extended API MMU and cache functions

Memory management is a complex issue. Refer to the ARM Architecture Reference
Manual and the reference manual for your core for more details.

µHAL provides two basic routines to reset the MMU to its power-on state (that is,
disabled) and to initialize a one-to-one mapping, as described in Simple API MMU and
cache functions on page 2-11.

Safe, finer control of the MMU is also provided by the processor-specific functions
described below. The common shell of these functions is contained in the mmu.s or
cache.c modules, for example, AFSv1_4\Source\uHAL\Processors\mmu.s. The unique
features of each processor are implemented using macros, for example,
Processors\ARM720T\mmu720T.s. The functions are designed to operate safely, stay in
SVC mode, and maintain cache coherency. In order to correctly clean a cache, the code
might require board-specific information on which addresses it can use. In the function
descriptions, ICache refers to instruction cache and DCache refers to data cache.

The cache management functions are:

• uHALir_EnableICache()

• uHALir_DisableICache() on page 2-40

• uHALir_EnableDCache() on page 2-40

• uHALir_DisableDCache() on page 2-40

• uHALir_CleanCache() on page 2-40

• uHALir_CleanDCache() on page 2-41

• uHALir_CleanDCacheEntry() on page 2-41

• uHALir_EnableWriteBuffer() on page 2-41

• uHALir_DisableWriteBuffer() on page 2-41

• uHALir_ReadCacheMode() on page 2-42

• uHALir_WriteCacheMode() on page 2-42.

2.12.1 uHALir_EnableICache()

This function enables the ICache only. If the processor does not support a separate
ICache, the cache is enabled for both instructions and data. If the processor has no
caches, no action is taken.

Syntax

void uHALir_EnableICache(void)
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 2-39

µHAL Application Programming Interfaces
2.12.2 uHALir_DisableICache()

This function disables the ICache only. If the processor has a combined DCache and
ICache, then it is disabled. If the processor has no caches, no action is taken.

Syntax

void uHALir_DisableICache(void)

2.12.3 uHALir_EnableDCache()

This function enables the DCache only. If the processor has a combined DCache and
ICache, then it is enabled. If the processor has no caches, no action is taken.

Syntax

void uHALir_EnableDCache(void)

2.12.4 uHALir_DisableDCache()

This function disables the DCache only. If the processor has a combined DCache and
ICache, then it is disabled. If the processor has no caches, no action is taken.

Syntax

void uHALir_DisableDCache(void)

2.12.5 uHALir_CleanCache()

This function synchronizes cached data back to main memory and flushes the cache. If
the processor has separate Instruction and Data caches, the DCache is cleaned and the
ICache is flushed. If the processor has no caches, no action is taken.

Syntax

void uHALir_CleanCache(void)
2-40 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

µHAL Application Programming Interfaces
2.12.6 uHALir_CleanDCache()

This function cleans the DCache. If the processor has a combined DCache and ICache,
then it is cleaned. If the processor has no caches, no action is taken.

Syntax

void uHALir_CleanDCache(void)

2.12.7 uHALir_CleanDCacheEntry()

This function cleans the DCache entry for the specified address. If the processor does
not support cleaning of individual DCache entries, the whole DCache is cleaned. If the
processor does not support a separate DCache, the combined DCache and ICache is
cleaned. If the processor has no caches, no action is taken.

Syntax

void uHALir_CleanDCacheEntry(void *address)

where:

address Is the location to be synchronized with memory.

2.12.8 uHALir_EnableWriteBuffer()

This function enables the write buffer. If the processor does not support a write buffer,
the operation is zero.

Syntax

void uHALir_EnableWriteBuffer(void)

2.12.9 uHALir_DisableWriteBuffer()

This function disables the write buffer. If the processor does not support a write buffer,
no action is taken.

Syntax

void uHALir_DisableWriteBuffer(void)
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 2-41

µHAL Application Programming Interfaces
2.12.10 uHALir_ReadCacheMode()

This function reads the current MMU and cache modes from the coprocessor register.

Syntax

unsigned int uHALir_ReadCacheMode(void)

Return value

Returns the current mode of the cache and MMU. All bits from the coprocessor read are
reset except the bits that refer to cache and MMU mode. See
uHALir_WriteCacheMode() for an example of using the flags.

2.12.11 uHALir_WriteCacheMode()

This function updates the processor MMU and cache state.

Syntax

void uHALir_WriteCacheMode(unsigned int mode)

where:

mode Is any combination of the MMU mode flags and cache bit flags:

EnableMMU Enables the MMU.

IC_ON Turns the ICache on.

DC_ON Turns the DCache on.

WB_ON Turns the Write Buffer on.

Example

The following code enables all caching:

void uHALr_EnableCache(void)
{
 intmode = uHALir_ReadCacheMode() ;
 uHALir_WriteCacheMode(mode | (IC_ON + DC_ON + WB_ON)) ;
}

2-42 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

µHAL Application Programming Interfaces
2.13 Extended API processor execution mode functions

The ARM architecture (version 4 and later) has seven processor modes (as described in
the ARM Architecture Reference Manual). Supervisor, System, and User modes apply
to normal program execution.

These modes differ in priority, access to registers, memory, and peripherals. System and
User modes use the same stack and registers. Application code often executes in the
non-privileged User mode and cannot directly change the interrupt bits in the CPSR.

The processor execution mode functions (in AFSv1_4\Source\uHAL\Sources\cpumode.s)
allows you to read and change the current mode. When switching processor mode, the
application must protect the original SPSR, especially when in an interrupt, so that
functionality can be fully unwound.

The processor execution mode functions are:

• uHALir_EnterSvcMode()

• uHALir_ExitSvcMode() on page 2-44

• uHALir_EnterLockedSvcMode() on page 2-44

• uHALir_ReadMode() on page 2-44

• uHALir_WriteMode() on page 2-45.

2.13.1 uHALir_EnterSvcMode()

This function switches the mode to Supervisor mode, irrespective of the current mode.
It masks some considerations regarding SWI_EnterOS. The calling routine must save the
returned value to be passed to uHALir_ExitSVCMode().

Note
 You must take care to balance stacks according to processor mode.

Syntax

unsigned int uHALir_EnterSvcMode(void)

Return value

Returns SPSR, the initial saved processor mode (used to restore the mode by
uHALir_ExitSVCMode()).
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 2-43

µHAL Application Programming Interfaces
2.13.2 uHALir_ExitSvcMode()

This function restores the mode back to the original mode. It switches back to the
original processor mode before the call to uHALir_EnterSVCMode(), and restores the
original SPSR that was saved by the calling routine.

Syntax

void uHALir_ExitSvcMode(unsigned int spsr)

where:

spsr is the original SPSR.

2.13.3 uHALir_EnterLockedSvcMode()

This function switches into Supervisor mode and disables IRQ interrupts. It masks
some of the considerations regarding SWI_EnterOS.

Note
 You must take care to balance stacks according to processor mode.

Syntax

unsigned int uHALir_EnterLockedSvcMode(void)

Return value

Returns the original SPSR.

2.13.4 uHALir_ReadMode()

This function reads the current execution mode.

Syntax

unsigned int uHALir_ReadMode(void)

Return value

Returns the Current Program Status Register (CPSR).
2-44 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

µHAL Application Programming Interfaces
2.13.5 uHALir_WriteMode()

This function changes the current execution mode.

Note
 The processor must already be in a privileged mode (not in User mode).

Syntax

void uHALir_WriteMode(unsigned int cpsr)

where:

cpsr is the new CPSR.
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 2-45

µHAL Application Programming Interfaces
2.14 Extended API timer functions

The timer code is held in the module AFSv1_4\Source\uHAL\Sources\timer.c. It stores
information about the timers in the system in the uHALiv_TimerStatus vector. This is an
array of uHALis_Timer data structures that must have the format shown in Example 2-8.

Example 2-8 uHALis_Timer structure

/* Enum to describe timer: free, one-shot, on-going interval or locked-out */
enum uHALe_TimerState { T_FREE, T_ONESHOT, T_INTERVAL, T_LOCKED } ;

struct uHALis_Timer {
unsigned int irq ; /* IRQ number */
enum uHALe_TimerState state ;
unsigned int period ; /* Period between triggers */
PrHandler handler; /* User Routine */
const unsigned char *name; /* Debug, owner id */
PrHandler ClearInterruptRtn; /* User Routine */
int hw_interval:1;
struct uHALis_Timer *next;

} ;

µHAL also maintains a second vector, uHALiv_TimerVectors. This contains the interrupt
number for each timer. uHALiv_TimerVectors is initialized to the value of TIMER_VECTORS.
This, along with MAX_TIMER, HOST_TIMER, and OS_TIMER, is defined in the board-specific
platform.h and platform.s files:

• MAX_TIMER is the number of timers in the system.

• HOST_TIMER is the timer being used by the debug agent (for example, Angel).

• OS_TIMER is the timer that supports the system timer.

When the timer subsystem is initialized by uHALr_InitTimers(), it sets up the contents
of the uHALiv_TimerStatus vector. If there is a HOST_TIMER defined, that timer state
becomes T_LOCKED. Otherwise, it is set to T_FREE. By default, the timer length is set to
one millisecond. This value is also defined in platform.h and platform.s (as the literal
mSEC_1). At initialization time, a free timer is disabled by calling the board-specific
uHALir_PlatformDisableTimer() function in board.c.

After the application uses a uHALr_RequestTimer() call to assign a particular timer, it can
read and alter the timer state and interval. However, the application cannot alter the
maximum length of time that a timer can run for. This is defined by MAX_PERIOD.
2-46 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

µHAL Application Programming Interfaces
µHAL timers depend on the µHAL interrupt handling system to operate. When a timer
is initialized by the application calling uHALr_InstallTimer(), the µHAL timer
subsystem assigns the IRQ to the timer interrupt handler (uHALir_TimeHandler()) and
enables the timer so that it can start running. The enabling of the timer is done by the
board-specific uHALir_PlatformEnableTimer() function in board.c.

The timer handler is responsible for handling the timer interrupts as they occur:

1. The handler is passed the IRQ of the interrupting timer, and uses this to determine
the timer that has expired.

2. After the handler has discovered which timer has expired, it calls the handler
function for that timer.

3. If the timer was a single-shot timer (its state is T_ONESHOT), the timer is
automatically freed by calling uHALr_FreeTimer(). Otherwise, the timer is left to
run.

The timer functions are:

• uHALir_TimeHandler()

• uHALir_DisableTimer() on page 2-48

• uHALir_GetTimerInterrupt() on page 2-48.

2.14.1 uHALir_TimeHandler()

This is a high-level function that:

1. Determines which timer caused the interrupt.

2. Calls its handler.

3. Determines if the timer should be cancelled or re-enabled.

Syntax

void uHALir_TimeHandler(unsigned int irqflags)

where:

irqflags Is the currently pending interrupt.

Note

 This is not a user-callable function.
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 2-47

µHAL Application Programming Interfaces
2.14.2 uHALir_DisableTimer()

This function disables the specified timer.

An application typically frees the timer when it has finished with it. µHAL also allows
the timer to be disabled. In this case, the timer subsystem calls the platform-specific
uHALir_PlatformDisableTimer() function in board.c.

Syntax

void uHALir_DisableTimer(unsigned int timer)

where:

timer Is the timer to be disabled.

2.14.3 uHALir_GetTimerInterrupt()

This function allows the application to determine the correct interrupt for the specified
timer. Different target systems can assign different interrupts to the timer.

Syntax

int uHALir_GetTimerInterrupt(unsigned int timer)

where:

timer Is the timer number for which the interval is requested.

Return value

Returns one of the following:

interrupt If the timer is found, the interrupt number is returned.

-1 If the timer is not found.

2.14.4 uHALir_GetSystemTimer()

This function returns the timer number defined as the system timer.

Syntax

unsigned int uHALir_GetSystemTimer(void)

Return value

Returns the number of the IRQ for the system timer.
2-48 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

µHAL Application Programming Interfaces
2.15 Extended API coprocessor access functions

These routines allow access to some of the registers in the MMU coprocessor. This
allows the processor ID to be read, and the MMU/cache configuration to be read and
modified.

The coprocessor access functions are:

• uHALir_CpuIdRead()

• uHALir_CpuControlRead()

• uHALir_CpuControlWrite() on page 2-50.

2.15.1 uHALir_CpuIdRead()

This function reads the processor ID. Reading from CP15, r0 returns an architecture and
implementation-defined identification from the processor. If there is no cache, MMU,
or write buffer, this routine returns a value equivalent to ARM7.

Syntax

unsigned int uHALir_CpuIdRead(void)

Return value

Returns the CPU type as read from the register.

2.15.2 uHALir_CpuControlRead()

This function reads from the appropriate coprocessor register to read the current state
of the MMU and caches. If there is no cache, MMU, or write buffer, this routine returns
0 (all disabled).

Syntax

unsigned int uHALir_CpuControlRead(void)

Return value

Returns the MMU/cache control state as read from the register.
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 2-49

µHAL Application Programming Interfaces
2.15.3 uHALir_CpuControlWrite()

This function writes to the appropriate coprocessor register to set the state of the MMU
and caches. If there is no cache, MMU, or write buffer, this routine has no effect.

Syntax

void uHALir_CpuControlWrite(unsigned int controlState)

where:

controlState

Is the desired implementation-specific value for this register.
2-50 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

µHAL Application Programming Interfaces
2.16 Library support functions

You can write µHAL applications that run on multiple platforms when linked with the
appropriate libraries. These routines allow the application to initialize the library and to
determine whether the system supports:

• PCI

• MMU or MPU

• cache

• unified or separate data and instruction caches (DCache and ICache).

The library functions are:

• uHALr_LibraryInit()

• uHALir_MMUSupported() on page 2-52

• uHALir_MPUSupported() on page 2-52

• uHALir_CacheSupported() on page 2-52

• uHALir_CheckUnifiedCache() on page 2-53.

Note

 For information about the PCI library query function uHALr_PCIHost (), see µHAL PCI
function descriptions on page 8-17.

2.16.1 uHALr_LibraryInit()

This function performs system-specific initialization of µHAL when an application is
linked to another library, such as the ADS C runtime library.

Syntax

void uHALr_LibraryInit(void)
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 2-51

µHAL Application Programming Interfaces
2.16.2 uHALir_MMUSupported()

This function tests the µHAL library for MMU support.

Syntax

int uHALir_MMUSupported(void)

Return value

Returns one of the following:

1 If the library has been built for MMU access.

0 If the library has no MMU support.

2.16.3 uHALir_MPUSupported()

This function tests the µHAL library for MPU support.

Syntax

int uHALir_MPUSupported(void)

Return value

Returns one of the following:

1 If the library has been built for MPU access.

0 If the library has no MPU support.

2.16.4 uHALir_CacheSupported()

This function tests the µHAL library for cache support.

Syntax

int uHALir_CacheSupported(void)

Return value

Returns one of the following:

1 If the library has been built for cache access.

0 If the library has no cache support.
2-52 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

µHAL Application Programming Interfaces
2.16.5 uHALir_CheckUnifiedCache()

This function tests the µHAL library for unified cache support.

Syntax

int uHALir_CheckUnifiedCache(void)

Return value

Returns one of the following:

1 If the library has been built for unified cache access.

0 If the library has separate DCache and ICache support.
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 2-53

µHAL Application Programming Interfaces
2-54 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

Chapter 3
ARM Boot Monitor

This chapter describes the boot monitor supplied with AFS. It contains the following
sections:

• About the boot monitor on page 3-2

• Common commands for the boot monitor on page 3-4

• Rebuilding the boot monitor on page 3-12.

See Chapter 6 Flash Library Specification and Chapter 7 Using the ARM Flash Utilities
for additional information about images in flash memory.
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 3-1

ARM Boot Monitor
3.1 About the boot monitor

The boot monitor is a ROM-based monitor that communicates with a host computer
using simple commands over a serial port. The boot monitor conforms to the Microsoft
Standard Development Board Requirements for Windows CE Specification. The
requirements of the Microsoft Harp Specification have been extended by the ARM boot
monitor to aid development of new hardware. In particular, new system-specific
commands have been added.

The boot monitor is a µHAL application. It uses the µHAL library to initialize the
system when it runs.

3.1.1 Hardware accesses

The boot monitor accesses hardware using library calls to µHAL and other firmware
libraries. This makes it generic and easily portable to platforms that support µHAL.

The boot monitor uses the following firmware libraries:

µHAL For memory initialization, heap, serial interface, timers and LEDs.

PCI For systems that support PCI, such as the Integrator.

Flash For programming images into flash and when using System Information
Blocks (SIB).

3.1.2 Setting up a serial connection

To communicate with the boot monitor on the development board, you require a
terminal emulator that can send raw ASCII data files (for example, Windows
HyperTerminal). Connect a null modem cable to the serial port on the development
board. For most boards, the terminal emulator must have the following settings:

Baud rate 38400

Data bits 8

Parity None

Stop bits 1

Flow control Xon/Xoff.
3-2 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

ARM Boot Monitor
Note

 Refer to the appendices and hardware manuals for platform-specific details for your
board. For example:

• Some boards operate at a higher Baud rate. The Intel IQ80310, for example,
communicates at 115200 Baud.

• If your development board has more than one serial port, refer to the hardware
manual to identify the one used with boot monitor.

• The ARM development boards have switches that select whether the boot monitor
or an image in flash memory is started on reset. Refer to the documentation for
your board to identify the switch settings that enable the boot monitor.

Refer to the AFS User Guide for examples of loading an image.

3.1.3 Boot monitor functions

The boot monitor supplies a base set of functions that are common across all boards.
These functions:

• download images using the serial line into system memory or flash memory

• read and display words in memory

• erase system flash memory

• use the µHAL library to test all of the features available

• identify the board (including hardware and software revisions).

Board-specific extensions to the boot monitor

The boot monitor allows this functionality to be extended with board-specific
commands and self-tests. Refer to the appendices for information on the boot monitor
commands specific to your platform.
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 3-3

ARM Boot Monitor
3.2 Common commands for the boot monitor

The command interpreter accepts user commands and carries out actions to complete
the commands. Table 3-1 lists the basic commands for the boot monitor. Commands are
accepted in uppercase or lowercase. The commands required as part of the Microsoft
HARP/SDB specification are marked Yes.

Table 3-1 Boot monitor commands

Command Required Action

B number Yes Set the baud rate for the serial line to number. See B, Set
baud rate on page 3-5.

BI number No Sets the default image number to boot. See BI, Set default
flash boot image number on page 3-5.

D address Yes Read and display eight 32-bit words starting from address.
(Specify address in hex format.) See D, Display system
memory on page 3-6.

E Yes Erase all of the application flash and return the prompt
when complete. See E, Erase application flash on
page 3-6.

H or ? No Display help. See H or ?, Display help on page 3-7.

I Yes Print out board information, including identifying the
board, its hardware, and software revision. See I, Identify
the system on page 3-7.

L Yes Run the Motorola S-record loader. Subsequent serial data
is interpreted in the standard S-record format and written
to flash. See L, Load S-records into flash on page 3-7.

M No Download an image into RAM. Subsequent data is
interpreted as S-record format. See M, Download an image
into RAM on page 3-8.

T Yes Run system self tests. See T, System self tests on page 3-9.

V No Validate flash, including the system information blocks.
See V, Validate flash on page 3-10.

X command No Enter board-specific command mode and execute
command. See X, Enter board-specific command mode on
page 3-11.
3-4 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

ARM Boot Monitor
Note

 There are additional, or modified, commands specific for individual boards. See the
relevant appendix (for example, Integrator-specific commands for boot monitor on
page A-6) for command details.

If the boot monitor is used on a system that requires the MMU to be active, such as the
Prospector P1100, any attempt to read from or write to an invalid address causes a data
exception and the boot monitor resets.

3.2.1 B, Set baud rate

This command is used to set the baud rate for the serial line used by the boot monitor.
For example:

boot Monitor > b 115400

The baud rate changes immediately after the reply is sent. You must reconfigure your
terminal emulator to use the new baud rate in order to send new commands.

The flow control and stop bits are not reconfigurable. See Setting up a serial connection
on page 3-2 for other serial port settings.

3.2.2 BI, Set default flash boot image number

This command sets the default flash boot image to the image number specified. This
modifies the boot monitor SIB. Entering the command without specifying an image
number returns the number of the currently selected boot image. The image number is
the logical image number, and is not based on the order of the images in flash.

Use the ARM Flash Utility to load multiple images into flash. See AFU commands on
page 7-4.

Examples of this command are shown in Example 3-1.

Example 3-1 Set default boot image

boot Monitor > bi
Current Boot Image = 0
boot Monitor > bi 1
Current Boot Image = 0
New Boot Image = 1
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 3-5

ARM Boot Monitor
3.2.3 D, Display system memory

This command displays eight 32-bit words of system memory at the address given. An
example of this command is shown in Example 3-2.

Example 3-2 Display system memory

boot Monitor > d 0x24000000
Displaying memory at 0x24000000
0x24000000: 0xE59FF018
0x24000004: 0xE59FF018
0x24000008: 0xE59FF018
0x2400000C: 0xE59FF018
0x24000010: 0xE59FF018
0x24000014: 0xE59FF018
0x24000018: 0xE59FF018
0x2400001C: 0xE59FF018

3.2.4 E, Erase application flash

This command erases all of the application flash, including all of the SIBs. You are
prompted to confirm that you want to proceed or cancel the command. After the flash
has been erased, the boot monitor SIB is recreated. The boot monitor SIB is changed to
run image number zero on reset. An example is shown in Example 3-3.

Example 3-3 Erase system flash

boot Monitor > e
Erase all of the system flash
Are you sure that you want to do this[Ny]? y
Erasing all flash

................................

................................

................................

................................

................................

................................

................................

................................

Initializing Boot Monitor System Information Block
3-6 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

ARM Boot Monitor
3.2.5 H or ?, Display help

This command lists the full set of commands for this mode, as listed in Table 3-1 on
page 3-4.

3.2.6 I, Identify the system

This command identifies the system on which the boot monitor is installed. It prints a
message similar to that shown in Example 3-4.

Example 3-4 Identify the system

boot Monitor > i
ARM bootPROM [Version 1.4] Rebuilt on January 20 2002 at 12:24:07
Running on a Integrator (Board revision v1.2, ARM720T Processor)
Memory Size is 32M bytes, Flash size is 32M bytes
Copyright (C) ARM Limited 1999. All rights reserved.
Board designed by ARM Limited
Hardware support provided by http://www.arm.com/
For help on the available commands type ? or h

3.2.7 L, Load S-records into flash

This command downloads an image into memory and then programs it into flash. As
part of the programming process it builds an appropriate flash image footer.

By default, the image is written to the location specified by the address in the S-records
and labeled as image number 0. This might overwrite one or more images. When the
image has been successfully written into flash, the boot monitor SIB is updated so that
the default image to boot from flash is image 0.

The downloaded image is given the name BMON Loaded. The original image number 0
and any images wholly or partially overwritten are deleted.

To load a file:

1. Type l at the prompt.

2. Use the Transmit File command of your terminal emulator to send the file. If the
emulator has two file transfer options, use the Send ASCII File option.

Example 3-5 on page 3-8 shows an example of the load S-records into flash command.
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 3-7

ARM Boot Monitor
The boot monitor gives an approximate progress indication by displaying a dot for every
64 received records. If your terminal emulator does not give progress indication as the
file downloads, use the displayed dots as a guide and wait a sufficient time for the file
to download. Press Ctrl+C after the file has finished loading to prompt the boot monitor
to terminate the download and display the number of records downloaded.

The name BMON Loaded is given to any image that is loaded by the boot monitor.

Note
 As with all serial commands, the terminal emulator must use Xon/Xoff flow control. If
you do not have Xon/Xoff flow control enabled, the boot monitor might appear to work
correctly for commands that do not require a large number of bytes to be exchanged, but
then might not work reliably when large files are loaded.

Example 3-5 Load S-records into flash

boot Monitor > l
Load Motorola S-Records into flash
Deleting Image 0

Type Ctrl/C to exit loader.

...

...........................

Downloaded 697 records in 10 seconds.
Overwritten block/s

0
boot Monitor >

3.2.8 M, Download an image into RAM

Use this command to download an image into RAM at addresses specified in the
S-records (the addresses must be valid memory addresses). Once the image has been
downloaded, control of the system is transferred to that image. An example is shown in
Example 3-6 on page 3-9.
3-8 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

ARM Boot Monitor
To load a file:

1. Type m at the prompt.

2. Use the Transmit File command of your terminal emulator to send the file. If the
emulator has two file transfer options, use the Send ASCII File option.

3. Enter Ctrl+C to indicate to the boot monitor that the image has been loaded.

Example 3-6 Download image

Load Motorola S-Record image into memory and execute it
Record addresses must be between 0x00008000 and 0x01FD9DFF.
Type Ctrl/C to exit loader.

3.2.9 T, System self tests

This command starts the system self tests. The system self tests are used to check that
the system is functioning correctly. They make use of the resources that are known to
function reliably. These resources vary between platforms but must include one UART.

The tests include:

• counter/timer checks

• LED checks.

You can extend these tests by board-specific tests. Example 3-7 shows an example of a
default self test.

Example 3-7 System self tests

boot Monitor > t
Generic Tests
Type any character to abort the tests
Initializing self test environment
Timer tests

Running Timer tests
++++++++++
Timer tests successful

LED flashing test
Lighting all 4 LEDs in sequence

Did you see the LEDs flash in sequence[Yn]? y
...performed 2 tests, 0 failures
Board Specific Tests
Type any character to abort the tests
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 3-9

ARM Boot Monitor
Keyboard/mouse tests

Initializing KMI interface
==========================

kmi_handler(3)
kmi_handler(3)
KMI: wrote FF
kmi_handler(4)
kmi_handler(4)
KMI: wrote FF

Port 0: Device unsupported or absent
Port 1: Device unsupported or absent

...performed 1 tests, 0 failures

3.2.10 V, Validate flash

This command validates and displays the contents of the application flash and the SIBs.
It flags any errors that it finds. An example is shown in Example 3-8. The name BMON
Loaded is given to any image that is loaded by the boot monitor.

Example 3-8 Validate flash

boot Monitor > v
There are 256 128Kbyte blocks of flash:

Images found
============
Block Size ImageNo Name Compress
----- ---- ------- ---- --------
 0 1 124 Angel (0x24000000-0x2401FFEC)
 20 5 120 slideshow Y (0x24280000-0x2411FFEC)
 64 1 123 hello (0x24800000-0x2481FFEC)

System Information Blocks
=========================
Address Owner Size Idx Rev
------- ----- ---- --- ---
0x25FE0000 ARM Boot Monitor 312 0 28

boot Monitor >
3-10 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

ARM Boot Monitor
3.2.11 X, Enter board-specific command mode

This mode is used to process board-specific (or extended) commands. If you enter a
single X, the prompt changes to show that you are in the extended mode. The
board-specific menu provides a command that returns you to the normal command
processing mode. To exit board-specific mode, enter an X in extended mode.

You can execute a single board-specific command by entering a command on the same
line as X (with a space in between). Refer to the appendices for details of board-specific
commands.
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 3-11

ARM Boot Monitor
3.3 Rebuilding the boot monitor

Use the project files or makefile, in the bootMonitor subdirectory of the Source directory
for your board to rebuild the boot monitor library.

For example, if you installed to AFSv1_4 use either bootMonitor.mcp or makefile in
AFSv1_4\Source\bootMonitor\Build\Integrator.b to rebuild the library for the Integrator
board.

Note

 A prebuilt version of the latest boot monitor and Angel image is provided in the
AFSv1_4\Images directory.

For general information on makefiles and directory structure, see Rebuilding libraries
on page 11-3.
3-12 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

Chapter 4
Operating Systems and µHAL

This chapter describes how operating systems can run applications on an ARM-based
evaluation board that has previously had µHAL ported to it. It contains the following
sections:

• About porting operating systems on page 4-2

• Simple operating systems on page 4-3

• Complex operating system on page 4-11.
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 4-1

Operating Systems and µHAL
4.1 About porting operating systems

µHAL provides a basic API that enables simple applications to run on a variety of
ARM-based development systems. You can also use it as the basis of a port of an
operating system.

There are two types of operating system that can use µHAL:

• Simple threaded operating systems that run directly out of physical memory. (The
physical memory can have a fixed remapping however.) You can often link simple
operating systems directly to µHAL. The operating system then functions as a
µHAL application. The example of this type of operating system used in this
chapter is µC/OS-II. It runs without further porting effort on any ARM evaluation
board that has had µHAL ported to it. This is why µC/OS-II is often the first
operating system to run on a new ARM-based platform.

• Complex operating systems that utilize virtual memory (possibly using demand
paging mechanisms). You cannot link these more complex operating systems
directly with µHAL but they can reuse parts of µHAL. Reusing µHAL makes
porting simpler than it otherwise might be. An example of this type of operating
system is Linux. Simple operating systems on page 4-3 and Complex operating
system on page 4-11 discuss these two types of operating system.
4-2 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

Operating Systems and µHAL
4.2 Simple operating systems

This section describes how ARM-specific porting code is used to initialize µC/OS-II
and to allow µC/OS-II to carry out context switching.

For a simple operating system to run directly over µHAL, the following conditions must
be met:

• The OS must have a fixed memory map. The memory map must be consistent
with the default map defined by µHAL.

• The OS must use context switching of tasks or threads at the end of an interrupt
(usually a periodic timer) or when it exits from a system call.

• The OS must be capable of being built using the ARM software development
tools.

This type of operating system is isolated from the specific hardware details of the
development platform because it utilizes µHAL code for system initialization, timer,
and interrupt handling. It is the ARM-specific porting code that bridges the gap between
the operating system and µHAL.

4.2.1 About µC/OS-II

µC/OS-II is a portable, ROM-able, pre-emptive, real-time, multitasking kernel that can
manage up to 63 tasks. µC/OS-II is comparable in performance to many commercially
available kernels. The ARM Firmware Suite includes a port of µC/OS-II made to the
ARM architecture using the µHAL interfaces. µC/OS-II provides the following
features:

• creating and managing up to 63 tasks

• creating and managing semaphores

• delaying tasks for a specified number of ticks or amount of time

• locking and unlocking the scheduler

• servicing interrupts

• changing the priority of tasks

• deleting tasks

• suspending and resuming other tasks from within a task

• managing message mailboxes and queues for inter-task communications

• managing fixed-sized memory blocks

• managing a 32-bit system clock.
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 4-3

Operating Systems and µHAL
Note

 If you want to use µC/OS-II within a product or wish to redistribute µC/OS-II you must
seek a license arrangement with Micrium Inc., the owners of µC/OS-II.

You do not have to understand µC/OS-II completely in order to understand the
principles involved. If you want more information on the OS, read Micro-C/OS-II, The
Real-Time Kernel.

4.2.2 Initializing the operating system

The entry point to a simple operating system, as it is for all other µHAL applications, is
the main() routine. Example 4-1 shows this using the ping.c example program in
µC/OS-II.

Example 4-1 Operating system initialization - main()

/* Main function. */
int main(int argc, char **argv)
{
 char Id1 = '1';
 char Id2 = '2';

 /* do target (uHAL based ARM system) initialisation */
 ARMTargetInit();

OSInit(); /* needed by uC/OS */
OSTimeSet(0);

/* create the semaphores */
Sem1 = OSSemCreate(1);
Sem2 = OSSemCreate(1);

/* create the tasks in uC/OS and assign decreasing priority to them */
OSTaskCreate(Task1, (void *)&Id1, (void *)&Stack1[STACKSIZE - 1], 1);
OSTaskCreate(Task2, (void *)&Id2, (void *)&Stack2[STACKSIZE - 1], 2);

 /* Start the (uHAL based ARM system) system running */
 ARMTargetStart();

OSStart();
/* never reached */

}

4-4 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

Operating Systems and µHAL
When the main() routine is called, µHAL has already initialized the system. For
example, address mapping is turned on. The operating system can therefore initialize
itself and start running:

1. The first call from main() is to µHAL-specific routine ARMTargetInit() (in
os_cpu_c.c) to set things up. OSInit(), in the case of µC/OS-II, initializes the
operating system state (for example its priority map).

2. main() creates several threads. Each thread has an area of stack that is initialized
with an initial register set. The initial PC for a task contains the address of the
thread routine (in this case Task1() and Task2() respectively).

3. Finally, main() starts the operating system with calls to the µHAL-specific code
ARMTargetStart() and the µC/OS-II function OSStart(). See Example 4-2 and
Example 4-3 on page 4-6.

ARMTargetStart() starts the system timer. The system timer functions as a periodic
timer and issues an interrupt request every millisecond. When the interrupts
occur, the operating system controls whether or not it requires a context switch.

OSStart() selects the highest priority task that is runnable (in this case Task1) and
runs it by loading its registers from its stack.

Example 4-2 Operating system initialization - ARMTargetInit()

 #define BUILD_DATE "Date: " __DATE__ "\n"

/* Initialize an ARM Target board */
void
ARMTargetInit(void)

{
/* ---- Tell the world who we are ----------------- */
uHALr_printf("uCOS-II Running on a") ;

 #if defined(EBSA285)
uHALr_printf("n EBSA-285 (21285 evaluation board)\n") ;

 #elif defined(BRUTUS)
uHALr_printf(" Brutus (SA-1100 verification platform)\n") ;

 #else
uHALr_printf("%s\n, ucosii_banner") ;

 #endif
uHALr_printf(uHAL_VERSION_STRING);
uHALr_printf("\n") ;
uHALr_printf(BUILD_DATE);
uHALr_printf("\n") ;

 #ifdef DEBUG
uHALr_printf("Initialising target\n");

 #endif
uHALr_ResetMMU(); /* ---- disable the MMU -- */
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 4-5

Operating Systems and µHAL
ARMDisableInt(); /* ---- disable interrupts (IRQs------ */
/* ---- soft vectors ------------------------- */

 #ifdef DEBUG
uHALr_printf("Setting up soft vectors\n");

 #endif
/* Define pre & post-process routines for Interrupt */
uHALir_DefineIRQ(IrqStart, IrqFinish, (PrVoid) 0);
uHALr_InitInterrupts();

 #ifdef DEBUG
uHALr_printf("Timer init\n");

 #endif
uHALr_InitTimers();

 #ifdef DEBUG
uHALr_printf("targetInit() complete\n");

 #endif
} /* targetInit */

Example 4-3 Operating system start up

/* start the ARM target running */
void
ARMTargetStart(void)

{
 #ifdef DEBUG

uHALr_printf("Starting target\n") ;
 #endif

/* request the system timer */
if (uHALr_RequestSystemTimer(

PrHandler) OSTimeTick,
(const unsigned char *)"uCOS-II") <= 0)

uHALr_printf("Timer/IRQ busy\n");
/* Start system timer & enable the interrupt. */
uHALr_InstallSystemTimer();

}

4.2.3 Context Switching

µC/OS-II switches context and causes another thread to run under the following
conditions:

• when a thread makes a system call that causes it to stop running

• if a timer interrupt is received, and a task with a higher priority is ready to run.

 A thread might be caused to stop running when it waits on a semaphore or a timer.
4-6 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

Operating Systems and µHAL
Example 4-4 on page 4-7 and Example 4-5 on page 4-7 contain an example of
switching between two tasks.

Example 4-4 Context switching Task1()

void
Task1(void *i)

{
uint Reply;
for (;;)
{

OSSemPend(Sem2, 0, &Reply); /* wait for the semaphore */
uHALr_printf("1+");
OSTimeDly(100); /* wait a short while */
uHALr_printf("1-");
OSSemPost(Sem1); /* signal the semaphore */

}
}

Example 4-5 Context switching Task2()

void
Task2(void *i)

{
uint Reply;
for (;;)
{

OSSemPend(Sem1, 0, &Reply); /* wait for the semaphore */
uHALr_printf("[");
OSTimeDly(1000); /* wait a short while */
uHALr_printf("2]");
OSSemPost(Sem2); /* signal the semaphore */

}
}

A sequence of context switches for Task1() and Task2() is:

1. The call to OSSemPend() does not cause a context switch, and so Task1() prints 1+
before calling OSTimeDly().

2. OSTimeDly() causes the Task1() thread to be suspended and µC/OS-II starts to run
Task2().
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 4-7

Operating Systems and µHAL
This form of context switch involves saving the context of the current thread (all
of its registers and the CPSR) on its stack and restoring the context of the highest
priority task, in this case Task2().

3. Task2() does not wait on the first call to OSSemPend() either. It prints [and then
calls OSTimeDly() that suspends Task2() pending the timer expiring.

4. At this point, Task1 still cannot run as its (shorter) timer has not yet expired. The
output is shown in Example 4-6. (Output is done over the serial port if it is a
standalone image or using the debug console if it is a semihosted image.)

Example 4-6 Initial output

uCOS-II Running on an Integrator board
uHAL v1.1:
Date: Aug 12 1999

1+[

5. Each time an interrupt occurs, the µHAL interrupt handling code
uHALir_TrapIRQ() saves the current register set on the stack and checks for a
start-of-interrupts handling routine. For µC/OS-II, this is IrqStart() as shown in
Example 4-7.

Example 4-7 IrqStart()

extern int OSIntNesting;
/* This is what uCOS does at the start of an IRQ */
void IrqStart(void)
{

/* increment nesting counter */
OSIntNesting++;

}

6. IrqStart() increments the global count OSIntNesting that is used in the µC/OS-II
scheduler. The µHAL interrupt handling code dispatches the timer interrupt
handling code and, eventually, the µC/OS-II timer routine OSTimeTick() is called.

OSTimeTick() decrements the delay timer of any delayed thread. This might make
a task runnable. Task1 becomes runnable as soon as its delay timer expires. At the
end of the µHAL interrupt handler, µC/OS-II checks for an end of interrupts
handling routine. For µC/OS-II, the end of interrupt handler is IrqFinish() as
shown in Example 4-8 on page 4-9.
4-8 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

Operating Systems and µHAL
Example 4-8 IrqFinish()

/* This is what uCOS does at the end of an IRQ */
extern int OSIntExit(void);
extern void IRQContext(void); /* post DispatchIRQ processing */
PrVoid IrqFinish(void)
{

/* call exit routine -
 return TRUE if a context switch is needed */

if (OSIntExit() == TRUE)
return (IRQContext);

return ((PrVoid) 0);
}

7. IrqFinish() calls OSIntExit() to determine if a context switch is necessary. If a
context switch is necessary, IrqFinish() returns the address of IRQContext() (the
µC/OS-II interrupt-specific context switching routine).

Normally, the µHAL interrupt handling routine restores the saved registers from
the stack and returns from the interrupt. Because the end-of-interrupt routine
returned an address, IrqFinish() calls the µC/OS-II interrupt context switching
routine with the saved registers still on the stack.

Note
 The usage of registers on the stack must be the same for both µC/OS-II and

µHAL.

8. When Task1() runs it prints 1-, posts to the Task2() semaphore (incrementing it)
and waits on its own semaphore.

9. When Task2() is selected to run (after its delay timer expires), it prints 2] and
posts to the Task1() semaphore. This allows Task1() to run, causing the whole
cycle to repeat as shown in Example 4-9.

Example 4-9 Later output

uHAL v1.1:
Date: Aug 12 1999

1+[1-2]1+[1-2]1+[1-2]1+[1-2]1+[1-2]1+[1-2]1+[1-
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 4-9

Operating Systems and µHAL
4.2.4 Efficiency considerations

The method of switching context during an interrupt is not particularly efficient because
it involves several calls into C code. It does, however, have the advantage of being
highly portable.

If efficiency is a constraint, the port of an operating system can use its own interrupt
handling code instead of the µHAL routines:

• An initial step to improving efficiency is to replace the µHAL interrupt handler
uHALir_TrapIRQ() but still call the C-based interrupt and timer handling routines
provided by µHAL. If the replacement interrupt handler uses the READ_INT macro,
it is not dependent on the version of the ARM evaluation board that is used. This
also has the advantage that the stack usage can differ between the operating
system and µHAL.

• You can make additional improvement if, once a timer is started, it is periodic and
does not require any further intervention. The operating system can reuse the
interrupt and no additional calls to µHAL are required once the timer is running.

• The final option is to reuse parts of µHAL in a board-specific port and tailor the
code to the operating system. This approach is not very portable, but you can use
it to improve efficiency.
4-10 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

Operating Systems and µHAL
4.3 Complex operating system

Complex operating systems cannot directly use µHAL but they can do one or more of
the following:

• reuse its definitions and some of its board-specific code

• use a µHAL-based image as a loader or initializer.

4.3.1 Reusing definitions

Reusing definitions usually means using the definitions from platform.h. This gives the
operating system definitions of where in the physical memory map registers are located,
as well as bit settings for those registers. For example, platform.h for the Integrator
platform defines the physical address of the LED and switch register set as shown in
Example 4-10.

Example 4-10 LED and switch addresses

 #define INTEGRATOR_DBG_ALPHA_OFFSET 0x00
 #define INTEGRATOR_DBG_LEDS_OFFSET 0x04
 #define INTEGRATOR_DBG_SWITCH_OFFSET 0x08

 #define INTEGRATOR_DBG_BASE 0x1A000000
 #define INTEGRATOR_DBG_ALPHA (INTEGRATOR_DBG_BASE + INTEGRATOR_DBG_ALPHA_OFFSET)
 #define INTEGRATOR_DBG_LEDS (INTEGRATOR_DBG_BASE + INTEGRATOR_DBG_LEDS_OFFSET)
 #define INTEGRATOR_DBG_SWITCH (INTEGRATOR_DBG_BASE + INTEGRATOR_DBG_SWITCH_OFFSET)

This definition can be directly used if the address map remains physical.

If the operating system runs out of virtual memory, there must be a further definition. If
you port Linux to Integrator for example, all of the Integrator registers are mapped to
virtual address 0xF0000000 and placed together using the following definition:

 #define IO_BASE 0xF0000000
 #define IO_ADDRESS(x) ((x>>4) + IO_ BASE)

The virtual address of Integrator switch registers becomes ((0x1A000008 >> 4) +
0xF0000000) or 0xF1A00000.

A Linux port to the Integrator platform would have each bank of registers mapped to its
own virtual address. The LED offset from the debug base is defined in platform.h as
INTEGRATOR_DBG_LEDS_OFFSET and has a value of 4 bytes.

You can find the LEDs using this address:

IO_ADDRESS(INTEGRATOR_DBG_BASE) + INTEGRATOR_DBG_LEDS_OFFSET
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 4-11

Operating Systems and µHAL
The bit settings can then be used as normal. For example, bit 0 is the green LED. There
are also defines for the LEDs, GREEN_LED as shown in Example 4-11.

Example 4-11 LED bit values

 #define uHAL_LED_ON 1
 #define uHAL_LED_OFF 0
 #define uHAL_NUM_OF_LEDS 4
 #define GREEN_LED 0x01
 #define YELLOW_LED 0x02
 #define RED_LED 0x04
 #define GREEN_LED_2 0x08
 #define ALL_LEDS 0x0F

 #define LED_BANK INTEGRATOR_DBG_LEDS

4.3.2 µHAL-based loader application

A pure µHAL application is used to initialize the system and then to load the operating
system. For example, you can load the binary image of a Linux kernel into flash using
the ARM Flash Utility.

A µHAL-based loader application initializes the Integrator PCI subsystem and then
copies the kernel into memory before transferring control to it. The kernel does not
require any PCI setup code, instead it scans the PCI subsystem discovering how the
µHAL application set it up. This removes the need for the kernel to understand the
details of setting up the V3 PCI chip and how to route interrupts on the Integrator
platform.

You can also modify the µHAL loader/initialization application to pass a data structure
to the operating system kernel that describes the system.
4-12 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

Chapter 5
Angel

This chapter describes the function of Angel on development boards, and how µHAL
and Angel debug monitor sources are related. The code required to port Angel to a
system that already has µHAL is covered in detail. The chapter contains the following
sections:

• About Angel on page 5-2

• µHAL-based Angel on page 5-9

• Building a µHAL-based Angel on page 5-11

• Source file descriptions on page 5-13

• Device drivers on page 5-22

• Developing applications with Angel on page 5-26

• Angel in operation on page 5-33

• Angel communications architecture on page 5-46.

For more information on using Angel with a debugger, see the documentation provided
ADS.
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 5-1

Angel
5.1 About Angel

This section describes how µHAL and the Angel debug monitor sources are related. It
recommends a number of coding practices that allow Angel and µHAL to be quickly
and easily ported to ARM-based systems, and for semihosted µHAL applications to run
with Angel.

The Angel debug monitor uses a serial line or Ethernet to communicate with a
development host running an ARM debugger. The debugger uses the Angel Debug
Protocol (ADP) to send requests to Angel to, for example:

• download images

• set breakpoints

• examine registers and variables.

These functions are described in detail in the documentation supplied with your
debugger. To carry out these functions, Angel uses the physical system resources, such
as interrupts, serial ports, and memory (for stack and context storage).

Building a fully functional µHAL-based Angel is simplified if you take a series of small
steps. This is where µHAL is used. Port µHAL to your platform first and verify that:

• memory management is functioning correctly

• LEDs are functioning

• the serial port is operating

• interrupts are being generated.

These steps can be performed one at a time. When you have verified that the board is
functioning correctly at this level, re-use the code within Angel.

It is usually better to build on an example of an existing port, than to start again. Most
of the ports of Angel in ARM Firmware Suite are based on reusing µHAL sources.
These are targeted at the Integrator and the Prospector development systems. This
chapter uses both of these sources as examples.

5.1.1 Angel system resource requirements

Where possible, Angel resource usage can be statically configured at compile and link
time. For example, the memory map, exception handlers, and interrupt priorities are all
fixed at compile and link time.
5-2 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

Angel
System resources

Angel requires the following non-configurable resources:

• Two ARM Undefined Instructions (for big-endian or little-endian versions,
however only a little-endian version of Angel is supplied with AFS)

• One Thumb Undefined Instruction

• One ARM SWI with value 0x123456

• One Thumb SWI with value 0xAB.

Note
 You can reconfigure the value of the ARM and Thumb SWI, but this is not

necessary or recommended.

ROM and RAM requirements

Angel requires ROM or Flash memory to store the debug monitor code, and RAM to
store data. The amount of ROM, Flash, and RAM required varies depending on the
development board you are using.

The standard RAM on Integrator and Prospector is sufficient to run Angel. The RAM
on Prospector cannot normally be upgraded.

Exception vectors

Angel requires some control over the ARM exception vectors. Exception vectors are
initialized by Angel, and are not written to after initialization. This supports systems
with ROM at address 0, where the vectors cannot be overwritten.

Note
 An application that chains the vectors must unchain them on exit, or the target must be
reset, so that the exceptions do not crash the machine when the application is
overwritten.

Angel installs itself by initializing the vector table so that it takes control of the target
when an exception occurs. For example, debug communications from the host cause an
interrupt that halts the application and calls the appropriate code within Angel.
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 5-3

Angel
Interrupts

Angel requires use of at least one interrupt to support communication between the host
and target systems. You can set up Angel to use:

• IRQ

• FIQ

• both IRQ and FIQ.

Angel normally uses FIQ with µHAL using IRQ. However, some ports, such as the
Prospector P720T and Intel 80310, chain IRQs (Angel and µHAL sharing IRQs).

Stacks

Angel requires control over its own Supervisor stack. If you want to make Angel calls
from your application you must set up your own stacks. Applications built with the C
library initialize stacks automatically. Refer to Developing applications with Angel on
page 5-26 for more information.

Angel also requires that the current stack pointer points to a few words of usable full
descending stack whenever an exception is possible, because the Angel exception return
code uses the application stack to return.

Angel and cache memory

Angel is built for the processor in use and consequently recognizes whether the
processor supports cache flushing. On systems where different processors might be
used, Angel can be built to recognize the processor in use, but the current builds do not
support this. If you disable the cache when running Angel, your applications might run
several times slower than with cache (the maximum serial line speed might also be
reduced.) However, the debugging process is not otherwise affected.

If you want your applications to run at full speed with cache memory, use Multi-ICE
instead of Angel. (Multi-ICE is a separate hardware product and is not supplied with
AFS.)

5.1.2 Thumb support

The prebuilt Angel image and the default Angel build support Thumb programs only on
Integrator. Switch Thumb support off using the THUMB_SUPPORT=0 define.
5-4 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

Angel
5.1.3 Angel system features

Angel provides the following functionality:

• Debug support

• C library semihosting support

• Communications support on page 5-6

• Task management on page 5-6

• Exception handling on page 5-7.

Debug support

Angel provides the following basic debug support:

• reporting and modifying memory and processor status

• downloading applications to the target system

• setting breakpoints.

Refer to Angel debugger functions on page 5-35 for more information on how Angel
performs these functions.

C library semihosting support

Angel uses a SoftWare Interrupt (SWI) mechanism to enable applications linked with
the ARM C and C++ libraries to make semihosting requests. Semihosting requests are
requests such as open a file on the host, or get the debugger command line, that must be
communicated to the host to be carried out. These requests are referred to as
semihosting because they rely on code in the host machine to carry out the request.

ADS provides prebuilt ANSI C libraries that you can link with your application.
Specific C library functions, such as input/output, use the SWI mechanism to pass the
request to the host system.

These libraries are used by default when you link code that calls ANSI C library
functions. Refer to the description of the C libraries in the ADS documentation for more
information.

Angel uses a single SWI to request semihosting operations. By default, the SWI is
0x123456 in ARM state and 0xAB in Thumb state. You can change these numbers, but that
is not recommended.
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 5-5

Angel
If semihosting support is not required you can disable it by setting the
semihosting_enabled variable in the ARM debuggers:

• In armsd set:

$semihosting_enabled = 0

• In ADW or ADU, select Debugger Internals from the View menu to view and
edit the variable.

• In AXD, use the Processor properties to view and edit the variable.

Refer to the description of ARM debuggers in the documentation supplied with ADS
for more information.

Communications support

Angel communicates using Angel Debug Protocol (ADP), and uses channels to allow
multiple independent sets of messages to share a single communications link. Angel
provides an error-correcting communications protocol over a serial (and serial/parallel
on PID) connection from the host to the target board. The target has Angel resident on
the board. See Angel communications architecture on page 5-46.

The host and target system channel managers ensure that logical channels are
multiplexed reliably. The device drivers detect and reject corrupted data packets. The
channel managers monitor the overall flow of data and store transmitted data in buffers,
in case retransmission is required. Refer to Angel communications architecture on
page 5-46 for more information.

The Angel Device Driver Architecture uses Angel task management functionality to
control packet processing and to ensure that interrupts are not disabled for long periods
of time.

You can write device drivers to use alternative devices for debug communication, such
as a ROMulator. You can extend Angel to support different peripherals, or your
application can address devices directly.

Task management

All Angel operations, including communications and debug operations, are controlled
by Angel task management. Angel task management:

• ensures that only a single operation is carried out at any time

• assigns task priorities and schedules tasks accordingly

• controls the Angel environment processor mode.

Refer to Angel task management on page 5-37 for more information.
5-6 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

Angel
Exception handling

Angel exception handling provides the basis for debug, C library semihosting,
communications, and task management. Angel installs exception handlers for each
ARM exception type except Reset:

SWI Angel installs a SWI exception handler to support semihosting requests,
and to allow applications and Angel to enter Supervisor mode.

Undefined Angel uses three Undefined Instructions to set breakpoints in code. Refer
to Setting breakpoints on page 5-30 for more information.

Data, Prefetch Abort

Angel installs basic Data and Prefetch Abort handlers. These handlers
report the exception to the debugger, suspend the application, and pass
control back to the debugger.

FIQ, IRQ Angel installs IRQ and FIQ handlers that enable Angel communications
to run off either, or both types of interrupt. If you have a choice you must
use IRQ for Angel communications, and FIQ for your own interrupt
requirements.

You can chain your own exception handlers for your own purposes. Refer to Chaining
exception handlers on page 5-29 for more information.

5.1.4 Using Angel with a debugger

A typical Angel system has two main components that communicate through a physical
link, such as a serial cable:

Debugger The debugger runs on the host computer. It gives instructions to Angel
and displays the results obtained from it. All ARM debuggers support
Angel, and you can use any other debugging tool that supports the
communications protocol used by Angel.

Angel debug monitor

The Angel debug monitor runs alongside the application being debugged
on the target platform.
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 5-7

Angel
Once you have installed Angel into the flash memory, you can use it with your
debugger. The way you connect to Angel depends on the debugger you are using:

armsd The command line must be of the form:

armsd -adp -port s=1 -linespeed 38400 image.axf

AXD for ADS 1.0 (or higher)

See the debugger documentation supplied with ADS.

You can test whether Angel has installed by setting a terminal emulator to 9600 baud,
setting the boot image selector switch to boot the Angel image, and resetting the board.
Angel attempts to communicate with the debugger over the serial port. The terminal
emulator displays some symbols and then the Angel banner. See the AFS User Guide
for more information on using Angel with a Integrator board.

5.1.5 Downloading Angel to a development board

Some development boards come with Angel installed. If your board does not have
Angel already installed, you must download the Angel image for your board and
processor. Prebuilt images for the boot monitor and Angel are in the AFS1_4\Images
directory. You can also customize a version of Angel and download it to the application
flash area using one of the download utilities supplied for your platform. See the
relevant appendix for more details.
5-8 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

Angel
5.2 µHAL-based Angel

Most of the Angel code is the same for µHAL-based Angels as any other (non-µHAL)
Angel. The only difference is that µHAL-based Angels utilize system-dependent code
that is held within µHAL. Angel still requires the same set of macros, source code, and
definitions that it did before, but now it imports some of these definitions from µHAL
source files.

You can download one of the prebuilt Angel images, or rebuild Angel and download
your modified version.

If you rebuild Angel, the version string is Unreleased. This indicates that the copy of
Angel was built outside of ARM. You can edit the version string information in the
source files in banner.c and banner.h to display your own version code.

5.2.1 Source directory for Angel

A particular board is supported by code held in the relevant board-specific directory of
µHAL. For example, the sources that relate to Integrator are all held in the directory
uHAL\Boards\INTEGRATOR. This set of sources consists of:

platform.h and platform.s

These files contain definitions of the board, including its memory layout,
and devices.

driver.s This file contains low-level assembly code needed for the board to
function.

target.s This file contains ARM assembly macros that are used within µHAL. For
example, to switch the memory map or light a particular LED. Routines
in driver.s often use these macros too.

memmap.s This file describes (in tabular form) the memory map for a particular
system. This includes where in virtual memory, the various areas of
physical memory are mapped.

board.c This file contains C routines that support the operation of the board. For
example, the PCI Configuration space access routines for Integrator are
stored here.
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 5-9

Angel
5.2.2 Angel sources and definitions

A µHAL-based Angel requires extra sources and definitions. For example, the
angel\Integrator directory contains:

banner.h This file provides the startup banner displayed by this Angel.

devices.c This file describes the set of devices available to Angel for this board.

makelo.c This file allows variables to be shared between both the .c and the .s
assembler files. It produces an assembler header file called lolevel.s.

timerdev.c This file implements Angel timers for the Integrator platform. This timer
is used for profiling and for polled device drivers (for example, Ethernet
devices).

integrator.h This file contains Integrator-specific Angel definitions, including
platform.h.

devconf.h This file is the main configuration file of the target image. It describes the
uses that Angel makes of the system resources, for example stack
memory.

serial.c This file implements the serial driver for Angel on this system.

ambauart.h This file contains definitions for the serial interface hardware.

The angel\Prospector directory contains similar files. The use of these files by Angel is
described in Building a µHAL-based Angel on page 5-11.
5-10 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

Angel
5.3 Building a µHAL-based Angel

If you are building a µHAL-based Angel, not all of the code is in the Angel board
directory (such as AFSv1_4\Source\angel\Integrator). Part of the code is located in the
board-specific or processor-specific area of µHAL (for example,
AFSv1_4\Source\uHAL\Boards\INTEGRATOR or AFSv1_4\Source\uHAL\Processors\ARM720T).
This means that your project file or makefile must point to these directories to obtain
those sources and include files.

The following examples are from the makefile for the Integrator Angel. Example 5-1
defines where the various parts of code that Angel is dependent on are located.

Example 5-1 Defining code locations

ADS_BUILD=0
TARGET = Integrator
IMAGE = angIntegrator
ROOTDIR = ../..
UHAL_BASE = $(ROOTDIR)/../uHAL/
UHAL_BOARD_DIR = $(UHAL_BASE)/Boards/INTEGRATOR
TARGDIR = $(ROOTDIR)/Integrator
ETHDIR = $(ROOTDIR)/ethernet
PROCESSOR = ARM7T

The part of the makefile shown in Example 5-2 sets up the flags to be used with the
assembler (a similar definition is needed for the compiler). It ensures that the
appropriate µHAL directories are searched for include files.

Example 5-2 Setting the assembler flags

AFLAGS= -g -apcs $(APCS) $(ASENDIAN) -arch 4 \
 -I$(OBJDIR) \
 -I$(ROOTDIR) -I$(TARGDIR) -I$(UHAL_BOARD_DIR) -I$(CLIB)\
 -I$(UHAL_BASE)/h \
 -I$(UHAL_BASE)/Processors/$(PROCESSOR) \
 -PD "LOGTERM_DEBUGGING SETA $(LOGTERM_DEBUGGING)" \
 -PD "ANGELVSN SETA $(ANGELVSN)" \
 -PD "DEBUG SETA $(DEBUG)" \
 -PD "LATE_STARTUP SETA $(LATE_STARTUP)" \
 -PD "ROADDR SETA $(ROADDR)" \
 -PD "THUMB_SUPPORT SETA $(THUMB_SUPPORT)" \
 -PD "ASSERT_ENABLED SETA $(ASSERT_ENABLED)" \
 -PD "MINIMAL_ANGEL SETA $(MINIMAL_ANGEL)" \
 -PD "ETHERNET_SUPPORTED SETA $(ETHERNET_SUPPORTED)" \
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 5-11

Angel
 -PD "DEBUG_BASE SETA $(TASKLOG_BASE)" \
 -PD "DEBUG_SIZE SETA $(TASKLOG_SIZE)" \
 -PD "$(PROCESSOR) SETL {TRUE}" \
 -PD "ADS_BUILD SETA $(ADS_BUILD)"

5.3.1 Angel project and makefiles

There are ADS project files and Unix makefiles in the Angel build directories.

PC project files

You can build Angel with ADS (version 1.0 or higher) CodeWarrior project files (.mcp).

Unix makefile

The CD has a makefile for use on a Unix workstation (AFSv1_4\Source\angel\Makefile)
that rebuilds versions of Angel for all target boards.

There are also makefiles that rebuild Angel for a single development board. The
makefiles are located in the boardname.b directory. For example, the makefile for
Integrator is AFSv1_4\Source\angel\Integrator.b\gccsunos\Makefile.

The definitions in the makefile are:

ROOT=..
TOOLS=../tools
MK= $(TOOLS)/mk

For general information on makefiles and directory structure, see AFS directories and
files on page 1-3.

Output formats

The Angel build creates both binary (.bin) and Motorola (.m32) format images. For
Integrator, the names of these files are angIntegrator.bin and angIntegrator.m32
respectively.
5-12 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

Angel
5.4 Source file descriptions

This section describes the source files used by the µHAL Angel and provides examples
of their use:

• banner.h

• devices.c on page 5-14

• makelo.c on page 5-16

• timerdev.c on page 5-16

• serial.c on page 5-17

• target.s on page 5-17

• devconf.h on page 5-18.

5.4.1 banner.h

This file displays the banner when Angel boots. The display is output to the serial port
or the console window of the ARM debugger. It is good practice to use the banner to
convey useful information about the system. In Example 5-3, banner.c displays:

• the version of Angel

• the board it is running on

• whether or not the MMU, caches, and write buffer are enabled

• the interrupt source this Angel is built to use.

Example 5-3 Using banner.h

 #if CACHE_SUPPORTED
 # define MMU_STRING " MMU on, Caches enabled, "
 #else
 # define MMU_STRING "MMU on, Caches disabled, "
 #endif

 #if ENABLE_CLOCK_SWITCHING
 # define CSW_STRING " Clock Switching on "
 #else
 # define CSW_STRING "Clock Switching off "
 #endif

 #if HANDLE_INTERRUPTS_ON_IRQ
 #define INTERRUPTS_STRING "(IRQ), "
 #else
 #define INTERRUPTS_STRING "(FIQ), "
 #endif

 #define ANGEL_BANNER \
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 5-13

Angel
"Angel Debug Monitor for Prospector " INTERRUPTS_STRING
MMU_STRING CSW_STRING "(serial)\n" \
TOOLVER_ANGEL " rebuilt on " __DATE__ " at " __TIME__ "\n"

5.4.2 devices.c

This file describes the set of devices that Angel has access to on this system. The entries
in three global arrays are used by Angel to access device driver code:

• angel_Device[]

• angel_IntHandler[]

• angel_PollHandler[].

They must be in order. All devices have an angel_Device entry. Devices typically have
either an angel_IntHandler entry or an angel_PollHandler entry.

The device implementation file must export a device structure that is referenced in
devices.c.

There are two levels of device interface:

Byte-serial This uses ring buffers to transfer data to the core and requires a packetizer
SerialControl structure.

Packet This level (for example, Ethernet) transfers data in Angel data buffers.

There are two types of device interface:

Interrupt-driven

The device hardware interrupts the processor when a data transfer is
required.

Polled The device hardware must be polled to determine if a data transfer is
required. Polled interfaces require a timer on the target board.
5-14 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

Angel
Example 5-4 describes the system as having a serial device and, optionally, an ethernet
and debug communications channel.

Example 5-4 Using device.c (1)

const struct angel_DeviceEntry *const angel_Device[DI_NUM_DEVICES] =
{
 &angel_AMBAUARTSerial[0],
 #if (AMBAUART_NUM_PORTS > 1)
 &angel_AMBAUARTSerial[1],
 #elif DEBUG && LOGTERM_DEBUGGING
 &angel_NullDevice,
 #endif

 #if ETHERNET_SUPPORTED
 &angel_EthernetDevice,
 #endif

 #if DCC_SUPPORTED
 &angel_DccDevice,
 #endif
};

Example 5-5 describes the set of interrupt handlers that this Angel uses.
Angel_TimerIntHandler is a timer interrupt for example.

Example 5-5 Using device.c (2)

/*The interrupt handler table - one entry per handler.
* DE_NUM_INT_HANDLERS must be set in devconf.h to the number of
* entries in this table.*/
 #if (DE_NUM_INT_HANDLERS > 0)
const struct angel_IntHandlerEntry angel_IntHandler[DE_NUM_INT_HANDLERS] =
{
 { angel_AMBAUARTIntHandler, DI_AMBAUART_A }

 #if (AMBAUART_NUM_PORTS > 1)
 ,{ angel_AMBAUARTIntHandler, DI_AMBAUART_B }
 #elif DEBUG && LOGTERM_DEBUGGING
 ,{ angel_LogtermIntHandler, DI_AMBAUART_B }
 #else
 ,{ angel_NodevIntHandler, 0}
 #endif

 #if TIMER_SUPPORTED
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 5-15

Angel
 ,{ Angel_TimerIntHandler, 0 }
 #endif
};
 #endif

/* The poll handler table - one entry per handler
* DE_NUM_POLL_HANDLERS must be set in devconf.h to the number
* of entries in this table. */
 #if (POLLING_SUPPORTED && DE_NUM_POLL_HANDLERS > 0)
const struct angel_PollHandlerEntry angel_PollHandler[DE_NUM_POLL_HANDLERS] =
{
 #if DCC_SUPPORTED
 { (angel_PollHandlerFn)dcc_PollRead, DI_DCC,
 (angel_PollHandlerFn)dcc_PollWrite, DI_DCC },
 #endif
};

5.4.3 makelo.c

This file provides a translation between C #defines and assembler constants. There must
be a line in the makelo.c for every definition that the board (or Angel) code requires to
be available to assembly code. The line in Example 5-6 makes the symbol
Angel_FIQStackOffset available in assembler sources.

Example 5-6

fprintf(outfile, "Angel_FIQStackOffset\t\tEQU\t0x%08X\n",
 Angel_FIQStackOffset);

5.4.4 timerdev.c

This file makes a timer available to Angel by providing a set of plug-in routines that
manage a timer. This allows Angel to:

• initialize the timer

• start the timer

• stop the timer

• get and set the timer interval.

Note

 By default, Angel does not use a timer. If you require a timer to support, for example,
profiling, you can extend the default functionality by adding one in this module.
5-16 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

Angel
5.4.5 serial.c

This file contains the serial device driver for this particular platform. For µHAL-based
Angel, this usually reuses the board-specific definitions from µHAL (for example, the
bits in the individual UART registers) to implement the serial device functions of the
Angel.

5.4.6 target.s

Angel must have various macros defined within target.s. These are used at system
startup by startrom.s. These macros are:

UNMAPROM This macro is called by the startrom.s ROM initialization code. It is
called in systems that use ROM remapping to ensure that the ROM image
is at 0 at reset. After the system has been initialized, this macro is called
to switch the ROM to its physical address and RAM at 0. The actual
mechanism for performing the remap varies from board to board. For
more details, refer to the documentation for your hardware.

STARTUPCODE

This macro is called from startrom.s for target-specific startup. It is
likely to include memory sizing, initialization of memory controllers, and
interrupt controller reset.

INITMMU This macro initializes the MMU (or MPU).

Note
 Take care with this macro because the location of the page table is

important to the operation of the macro and must be given correctly.
There is also a setup issue if the operation of the system is big-endian as
the MMU is responsible for the byte order of the core and must be set up
early to allow the correct operation of the code.

INITTIMER This macro allows initialization of any timers required by the application.
It is called after the interrupts are disabled and the system is set in
Supervisor mode.

GETSOURCE This macro is called by suppasm.s routines (the general Angel support
routines). It defines the Angel interrupts used and offers a small amount
of prioritization to ensure that the communications source has priority for
Angel operation. The routine places the C-defined source value (defined
in devconf.h). These values are used by the interrupt handler for a jump
table holding the individual Angel Interrupt source handler function
pointers.
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 5-17

Angel
CACHE_IBR This macro is called from suppasm.s support code to set an Instruction
Barrier Range. This is required on systems with processors that have a
Harvard cache.

None of these macros are used within µHAL and so must be written for Angel.
However, existing µHAL macros can be reused. For example, the Integrator STARTUPCODE
macro reuses the µHAL INIT_RAM and DISABLE_INTS macros.

5.4.7 devconf.h

This file is the main configuration file for the target image. It sets up the Angel resources
for the specific target and shows the hardware available for Angel usage including:

• available memory map

• interrupt operation

• peripherals

• devices.

This file contains macros that define:

• feature set and device drivers enabled

• debug enable and method

• interrupt masks and ID numbers

• stack sizes

• start from ROM or RAM selection

• system clock speed

• device ID codes

• ring buffer sizes.

Caution
 DCC and CACHE support are processor-dependent. Declaration of either of these
support calls enables routines that only work for specific processor options. If the
processor options do not match your board, Angel halts.

The DEBUG_METHOD is only applicable when the DEBUG compiler option is set in
the makefile. It defines the channel to be used to pass the debug messages.

The definitions from the Integrator version are shown in Example 5-7 on page 5-19.
5-18 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

Angel
Example 5-7 Angel definitions

/* Choose the method for debug output here. Options supported for PID are:
* panicblk panic string written to RAM
* logserial via Serial port at 115200 baud
* logterm as logserial, but interactive. */
 #if DEBUG
 #if MINIMAL_ANGEL
 #define DEBUG_METHOD panicblk
 #else
 #define DEBUG_METHOD logterm
 #endif
 #endif

Interrupt operation is selectable for Angel allowing the use of IRQ, FIQ, or both
interrupts as sources for the ADP channel communications. µHAL-based Angel
currently only supports FIQ. If the FIQ is chosen as the source for Angel
communications channel, the FIQ safety-level descriptor defines the operation of the
FIQ with regard to use of the Angel serializer. The recommended default setting is to
ensure that FIQs use the serializer and lock mechanisms. The other options are shown
in serlock.h in the generic code section.

The memory map must be defined to allow the debugger to control illegal read/writes
using the PERMITTED checks. These must reflect the permitted access to the system
memory architecture. For Integrator, the PERMITTED macros are:

 /* These macros are used by debugger-originated memory reads/writes to check if
the write is valid. */
 #define READ_PERMITTED(__addr__) (1)
 #define WRITE_PERMITTED(__addr__) (1)

Note
 You must take care with systems that have access to the full 4GB of memory, as the
highest section of memory must equate to 0xFFFFFFFF when the base and size are defined
as a sum, and it might wrap around to 0.

For example, if there is memory-mapped input/output at 0xFFD00000 the definition must
be:

 #define IOBase (0xFFD00000)
 #define IOSize (0x002FFFFF)
 #define IOTop (IOBase + IOSize)

and not:
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 5-19

Angel
 #define IOBase (0xFFD00000)
 #define IOSize (0x00300000)
 #define IOTop (IOBase + IOSize)

By default, Angel checks for the highest available memory location from the default
location. This is useful for systems, such as Integrator, where memory can be added into
the DRAM slots but still must be accessed by Angel. It allows the stacks and heap more
space by relocating to the top of memory. It allows a single Angel to be used across a
common product range with similar memory maps but different memory sizes.

The stacks must be defined for all processor modes that are used by Angel. These
always include User, SVC, UNDEF, and the appropriate mode for the chosen Interrupt
source. The location of the stacks can be fixed, or can be set to the top of memory once
this has been defined by the memory sizing function. All other Angel-defined memory
spaces (fusion stack heaps, profile work area, and application stacks) can be defined to
sit relative to the stacks, or they can be given fixed locations. The default for the
application heap space is above the run-time Angel code and the available space is to
the lowest limit of the stacks. The definition for Integrator is shown in Example 5-8.

Example 5-8 Integrator definitions

/* The following are the sizes of the various Angel stacks */
 #define Angel_UNDStackSize 0x0100

 #define Angel_ABTStackSize 0x0100

 #define Angel_AngelStackSize (POOLSIZE *Angel_AngelStackFreeSpace)

 #define Angel_SVCStackSize 0x0800

Note
 Angel stack space is different from the application stack space to allow Angel to debug
code that has corrupt or missing stacks.

The download agent area must be a spare area of RAM that can be used for testing. The
download agent usually executes from the load agent address and copies itself over the
resident RAM Angel image (that is, it executes in the same way as the ROM-based
image).

The available devices must be defined in the structure DeviceIdent. The definition for
Integrator is shown in Example 5-9 on page 5-21.
5-20 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

Angel
Example 5-9 DeviceIdent

typedef enum DeviceIdent
{
 DI_AMBAUART_A,
 #if (AMBAUART_NUM_PORTS > 1) || (DEBUG && LOGTERM_DEBUGGING)
 DI_AMBAUART_B,
 #endif
 #if ETHERNET_SUPPORTED
 DI_ETHER,
 #endif
 #if DCC_SUPPORTED
 DI_DCC,
 #endif
 DI_NUM_DEVICES
}
DeviceIdent;

You must ensure that the order in this structure is the same as that defined in the array
in devices.c, as this allows access to the register base of the specified ports in the
defined order. This is also true for the interrupt handler structure. Because this is the
basis for the jump table in suppasm.s, the order and number must be the same as defined
in devices.s. The labels must also be placed in makelo.c to ensure that they are available
for suppasm.s.
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 5-21

Angel
5.5 Device drivers

These files are the main area of the porting operation. The files are
application-dependent. The control of the device is carried out through function
pointers defined in devclnt.h, devdriv.h and serring.h.

The main controlling functions are:

• angel_DeviceControlFn() on page 5-24

• Transmit control (ControlTx) on page 5-24

• Receive control (ControlRx) on page 5-25

• Transmit kickstart (KickStart) on page 5-25

• Interrupt handler on page 5-25.

5.5.1 The SerialControl structure

The individual control functions are located by the contents of a SerialControl structure.
Example 5-10 shows the definition of the control functions and the SerialControl
structure from serring.h.

Example 5-10 serring.h definitions

/* function prototypes */
typedef void (*ControlTx_Fn)(DeviceID devid);
typedef void (*ControlRx_Fn)(DeviceID devid);
typedef DevError (*Control_Fn)(DeviceID devid, DeviceControl op,
 void *arg);
typedef void (*KickStart_Fn)(DeviceID devid);
typedef void (*Processor_Fn)(void *args);

/* collected glue for interface between high- and low-level device drivers */
typedef struct SerialControl {
 RxTxState *const rx_tx_state; /* can be NULL */
 RawState *const raw_state; /* can be NULL --> look for ETX */
 Processor_Fn tx_processing; /* how to fill/process tx ring */
 Processor_Fn rx_processing; /* how to read/process rx ring */
 unsigned int port; /* device-specific ID */
 RingBuffer *const tx_ring; /* tx ring buffer */
 RingBuffer *const rx_ring; /* rx ring buffer */
 ControlTx_Fn control_tx; /* how to control tx IRQs, etc. */
 ControlRx_Fn control_rx; /* how to control rx IRQs, etc. */
 Control_Fn control; /* device control function */
 KickStart_Fn kick_start; /* kick-start function for tx */
} SerialControl;
5-22 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

Angel
The actual functions used to satisfy the control functions depend on the type and
number of I/O devices. The code in Example 5-11 is for the AMBA UART located on
the Integrator.

Example 5-11 AMBA UART code

/* The control functions and interface */
static const SerialControl ambauart_Ctrl[AMBAUART_NUM_PORTS] =
{
 {
 #if (RAW_AMBAUART_A == 0)
 &ambauart_rx_tx_state[AMBAUART_IDENT_A],
 NULL, serpkt_int_tx_processing,
 serpkt_int_rx_processing,
 #else
 NULL, &ambauart_raw_state[AMBAUART_IDENT_A],
 serraw_int_tx_processing,
 serraw_int_rx_processing,
 #endif
 AMBAUART_IDENT_A,
 &ambauart_tx_ring[AMBAUART_IDENT_A],
 &ambauart_rx_ring[AMBAUART_IDENT_A],
 ambauart_ControlTx, ambauart_ControlRx,
 ambauart_Control, ambauart_KickStartFn
 }
 #if AMBAUART_NUM_PORTS > 1
 ,{
 #if (RAW_AMBAUART_B == 0)
 &ambauart_rx_tx_state[AMBAUART_IDENT_B],
 NULL, &packet_state[AMBAUART_IDENT_B],
 serpkt_int_tx_processing,
 serpkt_int_rx_processing,
 #else
 NULL, &ambauart_raw_state[AMBAUART_IDENT_B],
 NULL, serraw_int_tx_processing,
 serraw_int_rx_processing,
 #endif
 AMBAUART_IDENT_B,
 &ambauart_tx_ring[AMBAUART_IDENT_B],
 &ambauart_rx_ring[AMBAUART_IDENT_B],
 ambauart_ControlTx, ambauart_ControlRx,
 ambauart_Control, ambauart_KickStartFn
 }
 #endif
};
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 5-23

Angel
5.5.2 angel_DeviceControlFn()

This controls the device by passing in a set of standard control values that are defined
in devices.h in the main directory.

Syntax

DevError angel_DeviceControl(DeviceId devID, DeviceControl op, void *arg)

where:

devID Is the index of the device to control.

op Is the operation to perform.

arg Is a parameter depending on the operation.

Examples of the values for devID are:

DC_INIT Specific device initialization at the start of a session.

DC_RESET Device reinitialization to set the device into a known operational state
ready to accept input from the host at the default setup.

DC_RECEIVE_MODE

Receive Mode Select. Sets the device into and out of receive mode.

DC_SET_PARAMS

Set device operational parameters. Sets the device parameters at
initialization. This is also used if the host must renegotiate the
parameters, for example in the instance of a change of baud rate.

Return value

Returns one of the following:

DE_OKAY Control request is underway.

DE_NO_DEV No such device.

DE_BAD_OP Device does not support operation.

5.5.3 Transmit control (ControlTx)

When in operation, Angel defaults to the receive active state. This allows quick response
to host messages. This function controls the transmit path of the serial driver, switching
it on or off depending on the flag status set up in the calling routine.
5-24 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

Angel
5.5.4 Receive control (ControlRx)

This function is similar to Transmit control (ControlTx) on page 5-24. It controls the
receive channel.

5.5.5 Transmit kickstart (KickStart)

As Angel generally operates in receive active mode, transmission must be initiated by
this function. The ADP construction code sets up the bytes to be transmitted for a
message to the host in a transmit buffer. It then calls the kick_start() function to initiate
the transfer. This routine takes the first character from the transmit buffer and passes it
to the serial Tx register. This causes a Tx interrupt from which the interrupt handler
passes the remainder of the buffer as each character is transmitted.

5.5.6 Interrupt handler

The interrupt handlers are generic for each peripheral. In the case of the Integrator
boards, the interrupt handler controls interrupts from each serial driver Tx and Rx as
well as the parallel reads.

The interrupt handler determines the source of the interrupt and performs the
appropriate action depending on the source:

Tx Pass bytes from the internal Tx buffer to the serial Tx FIFO, if there is
space in the FIFO.

Rx Pass the byte received at the Rx FIFO into the internal Rx buffer, ready
for Angel to unpack the message when the transfer is complete.

Parallel The parallel port is polled to pass the data received into the memory
location requested.

All the above operations are serialized by Angel to ensure that they are not interrupted
by any other operations. Interrupts are disabled from the start of the interrupt handler
routine until the serializer function is called.

Other system drivers (Ethernet/DCC for example) might not require the full operation
functions and instead require only a pure Rx/Tx control.
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 5-25

Angel
5.6 Developing applications with Angel

This section gives useful information on how to develop applications under Angel:

• Planning your development project

• Programming restrictions on page 5-27

• Using Angel with an RTOS on page 5-27

• Using Supervisor mode on page 5-28

• Chaining exception handlers on page 5-29

• Linking Angel C library functions on page 5-30

• Using assertions when debugging on page 5-30

• Setting breakpoints on page 5-30

• Changing from little-endian to big-endian Angel on page 5-30

• Application communications on page 5-31.

5.6.1 Planning your development project

Before you begin your development project you must make basic decisions about such
things as:

• the ATPCS variant to be used for your project

• whether or not ARM/Thumb interworking is required

• the endianness of your target system.

Applications built with µHAL handle these issues by default.

Refer to the appropriate documentation supplied with ADS for more information on
interworking ARM and Thumb code, and specifying ATPCS options.

In addition, you must consider:

• Whether or not you require C library support in your final application. You must
decide how you implement C library I/O functions if they are required, because
the Angel semihosting SWI mechanism will not be available. Refer to Linking
Angel C library functions on page 5-30 for more information.

• Whether or not the image is built with debug enabled. You must be aware of the
small size overhead when using debuggable images as production code.

• Communications requirements. You must write your own device drivers for your
production hardware.

• Memory requirements. You must ensure that your hardware has sufficient
memory to hold both Angel and your program images.
5-26 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

Angel
5.6.2 Programming restrictions

Angel resource requirements introduce a number of restrictions on application
development under Angel:

• Angel requires control of its own Supervisor stack. If you are using an RTOS you
must ensure that it does not change processor state while Angel is running. Refer
to Using Angel with an RTOS for more information.

• You must not use ARM SWI 0x123456 or Thumb SWI 0xAB in your SWI handling
code. These SWIs are used by Angel to support C library semihosting requests.

• If you are using SWIs in your application, and using Multi-ICE for debugging,
you must usually set a breakpoint on the SWI handler routine, where you know it
is a SWI, rather than at the SWI vector itself.

• If you are using SWIs in your application you must restore registers to the state
that they were when you entered the SWI.

• If you want to use the Undefined Instruction exception for any reason you must
remember that Angel uses this to handle breakpoints and the exception must be
chained.

5.6.3 Using Angel with an RTOS

From the application perspective Angel is single-threaded, modified by the ability to use
interrupts provided the interrupt is not context switching. External functions must not
change processor modes through interrupts. This means that running Angel and an
RTOS together is difficult, and is not recommended unless you are prepared for a
significant amount of development effort.

If you are using an RTOS you will have difficulties with contention between the RTOS
and Angel when handling interrupts. Angel requires control over its own stacks, task
scheduling, and the processor mode when processing an IRQ or FIQ.

An RTOS task scheduler must not perform context switches while Angel is running.
Context switches must be disabled until Angel has finished processing.

For example:

1. An RTOS installs an ISR to perform interrupt-driven context switches.

2. The ISR is enabled when Angel is active (for example, handling a debug request).

3. An interrupt occurs when Angel is running code.

4. The ISR switches the Angel context, not the RTOS context.

That is, the ISR puts values in processor registers that relate to the application, not to
Angel, and it is very likely that Angel will crash.
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 5-27

Angel
There are two ways to avoid this situation:

• Detect ISR calls that occur when Angel is active, and do not task switch. The ISR
can run, provided the registers for the other mode are not touched. For example,
timers can be updated.

• Disable either IRQ or FIQ interrupts, the one Angel is not using, while Angel is
active. This is not easy to do.

In summary, the normal process for handling an IRQ under an RTOS is:

1. IRQ exception generated.

2. Do any urgent processing.

3. Enter the IRQ handler.

4. Process the IRQ and issue an event to the RTOS if required.

5. Exit by way of the RTOS to switch tasks if a higher priority task is ready to run.

Under Angel this procedure must be modified to:

1. IRQ exception generated.

2. Do any urgent processing.

3. Check whether Angel is active:

a. If Angel is active then the CPU context must be restored on return, so
scheduling cannot be performed, although for example a counter can be
updated. Exit by restoring the pc to the interrupted address.

b. If Angel is not active, process as normal, exiting by way of the scheduler if
required.

Note
 See Chapter 4 Operating Systems and µHAL for an example of RTOS scheduling.

5.6.4 Using Supervisor mode

If you want your application to execute in Supervisor mode at any time, you must set
up your own Supervisor stack. If you call a SWI while in Supervisor mode, Angel uses
four words of your Supervisor stack when entering the SWI. After entering the SWI
Angel uses its own Supervisor stack, not yours.
5-28 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

Angel
This means that, if you set up your own Supervisor mode stack and call a SWI, the
Supervisor stack pointer register (sp_SVC) must point to four words of a full
descending stack in order to provide sufficient stack space for Angel to enter the SWI.

5.6.5 Chaining exception handlers

Angel provides exception handlers for the Undefined, SWI, IRQ/FIQ, Data Abort, and
Prefetch Abort exceptions. If you are working with exceptions, you must ensure that any
exception handler that you add is chained correctly with the Angel exception handlers.
Refer to the description of processor exceptions in the documentation supplied with
ADS for more information.

If you are chaining an interrupt handler and you know that the next handler in the chain
is the Angel interrupt handler, you can use the Angel interrupt table rather than the
processor vector table. You do not have to modify the processor vector table. The Angel
interrupt table is easier to manipulate because it contains the 32-bit address of the
handler. The processor vector table is limited to 24-bit addresses.

Note
 If your application chains exception handlers (including ISRs) and you kill the
application, Angel must be reset with a hardware reset. This ensures that the vectors are
set up correctly when the application is restarted.

The consequences of not passing an exception on to Angel from your exception handler
depend on the type of exception, as follows:

Undefined You are not able to single step or set breakpoints from the debugger.

SWI If you do not implement the EnterSVC SWI, Angel does not work. If you
do not implement any of the other SWIs you cannot use semihosting.

Prefetch Abort

The exception is not trapped in the debugger.

Data Abort The exception will not be trapped in the debugger. If a Data Abort occurs
during a debugger-originated memory read or write, the operation might
not proceed correctly, depending on the action of the handler.

IRQ This depends on how Angel is configured. Angel does not work if it is
configured to use IRQ as its interrupt source.

FIQ This depends on how Angel is configured. Angel does not work if it is
configured to use FIQ as its interrupt source.
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 5-29

Angel
5.6.6 Linking Angel C library functions

The C libraries provided with the ARM tools use SWIs to implement semihosting
requests. For more information on using libraries, refer to the compiler and library
documentation supplied with ADS. You have two options for using ARM C library
functionality:

• Use the ARM C library semihosting functions for early prototyping and redefine
individual library I/O functions with your own C functions targeted at your
hardware and operating system environment.

• Support SWIs in your own application or operating system and use the ARM C
libraries as provided.

5.6.7 Using assertions when debugging

To speed up debugging, Angel includes runtime assertion code that checks that the state
of Angel is as expected. The Angel code defines the ASSERT_ENABLED option to enable
and disable assertions.

If you use assertions in your code you must wrap them in the protection of
ASSERT_ENABLED macros so that you can disable them in the final version if required.

 #if ASSERT_ENABLED
...
 #endif

Angel uses such assertions wherever possible. For example, assertions are made when
it is assumed that a stack is empty, or that there are no items in a queue. You must use
assertions whenever possible when writing device drivers. The ASSERT macro is
available if the code is a simple condition check (variable = value).

5.6.8 Setting breakpoints

Angel can set breakpoints in RAM only. You cannot set breakpoints in ROM or Flash.

In addition, you must be careful when using single step or breakpoints on the UNDEF,
IRQ, FIQ, or SWI vectors. Do not single step or set breakpoints on interrupt service
routines on the code path used to enter or exit Angel.

5.6.9 Changing from little-endian to big-endian Angel

Changing memory byte order is dependent on the development board you are using.
Refer to the documentation that was supplied with the board.
5-30 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

Angel
5.6.10 Application communications

Angel requires use of at least one device driver for its own communications
requirements. If you are using Angel on a board with more than one serial port, such as
Integrator, you can either:

• use Angel on one serial port and your own device on the other

• use a customized version of Angel that requires no serial port, and use either or
both of the serial ports for your application.

The Angel port for Integrator provides examples of raw serial drivers. Refer to the
Angel source code for details of how these are implemented. If you want to use Angel
with your own hardware you must write your own device drivers.

Angel serial drivers

Figure 5-1 gives an overview of the Angel serial device architecture.

Figure 5-1 Serial device architecture

������

������

����	
��

����
��

��������

�����

���
�

�����

����

��
��������
��
������

����
�

��
������

�����

���
�

�����

����

	�������
�����

�����

��

��
�������

�� �������

!
��
��

��
�

�� ���������
��
������

�����
�������
��
������

�����

���
�

�����

����

�"����

�"����

�� ��������������
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 5-31

Angel
Using the Debug Communication Channel

You can use cin and cout in armsd, the channel viewer interface, or the ARM debugger
GUI to access the DCC from the host. You can use the DCC channel to send ARM DCC
instructions to the processor. No other extra channels are supported.
5-32 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

Angel
5.7 Angel in operation

This section briefly explains Angel operations you must understand before porting
Angel to your own hardware. It contains the following:

• Initialization

• Waiting for debug communications on page 5-34

• Angel debugger functions on page 5-35

• Angel task management on page 5-37

• Context switching on page 5-41

• Example of Angel processing: a simple IRQ on page 5-44.

5.7.1 Initialization

The initialization of the code environment and system is almost identical, whether the
code is to initialize the debugger or to launch an application. The initialization sequence
is:

1. The processor is switched from the current privileged mode to Supervisor mode
with interrupts disabled. Angel checks for the presence of an MMU. If an MMU
is present it can be initialized after switching to Supervisor mode.

2. Angel sets the code execution and vector location, depending on the compilation
addresses generated by the values of ROADDR and RWADDR.

3. Code and data segments for Angel are copied to their execution addresses.

4. If the application is to be executed then the runtime system setup code and the
application itself are copied to their execution addresses. If the system has ROM
at address 0 and the code is to be run from ROM, only the Data and Zero
Initialization areas are copied.

5. The stack pointers are set up for each processor mode that Angel operates in.
Angel maintains control of its own stacks separately from any application stacks.
You can configure the location of Angel stacks.

6. Target-specific functions such as MMU or Profiling Timer are initialized if they
are included in the system.

7. The Angel serializer is set up. Refer to the Angel task management on page 5-37
for more information on the Angel serializer.

8. The processor is switched to User mode and program execution is passed to the
high-level initialization code for the C library and Angel C functions.

When initialization is complete, program execution is directed to the __main entry
point.
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 5-33

Angel
9. At this point, the initialization sequence is executed:

a. The communications channels are initialized for the Angel Debug Protocol
(ADP).

b. Any raw data channels installed for the application are set up if you are
using extra channels. The application can set this up itself. Refer to the
Angel source code for details.

c. Angel transmits its boot message through the boot task and waits for
communication from the debugger.

5.7.2 Waiting for debug communications

After initialization, Angel enters the idle loop and, if polling is enabled, it continually
calls the device polling function. All current boards use interrupts instead of looping in
the poll routine. This ensures that any polled communications device is serviced
regularly. When input is detected, it is placed into a buffer and decoded into packet form
to determine the operation that has been requested. If an acknowledgment or reply is
required, it is constructed in an output buffer ready for transmission.

All Angel operations are controlled by Angel task management. Refer to Angel task
management on page 5-37 and Example of Angel processing: a simple IRQ on
page 5-44 for more information on Angel task management.
5-34 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

Angel
5.7.3 Angel debugger functions

This section gives a summary of how Angel performs the basic debugger functions:

• reporting memory and processor status

• downloading a program image

• setting breakpoints.

Reporting processor and memory status

Angel reports the contents of memory and the processor registers as follows:

Memory The memory address being examined is passed to a function that copies
the memory as a byte stream to the transmit buffer. The data is transmitted
to the host as an ADP packet.

Registers Processor registers are saved into a data block when Angel takes control
of the target (usually at an exception entry point). When processor status
is requested, a subset of the data block is placed in an ADP packet and
transmitted to the host.

When Angel receives a request to change the contents of a register, it
changes the value in the data block. The data block is stored back to the
processor registers when Angel releases control of the target and
execution returns to the target application.

Download

When downloading a program image to your board, the debugger sends a sequence of
ADP memory write messages to Angel. Angel writes the image to the specified memory
location.

Memory write messages are special because they can be longer than other ADP
messages. If you are porting Angel to your own hardware your device driver must be
able to handle messages that are longer than 256 bytes. The actual length of memory
write messages is determined by your Angel port. Message length is defined in
devconf.h with:

 #define BUFFERLONGSIZE
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 5-35

Angel
Setting breakpoints

Angel uses three Undefined Instructions to set breakpoints. The instruction used
depends on:

• the endianness of the target system

• the processor state (ARM or Thumb):

— In ARM state, Angel recognizes the following words as breakpoints:

0xE7FDDEFE for little-endian systems

0xE7FFDEFE for big-endian systems.

— In Thumb state, Angel recognizes 0xDEFE as a breakpoint.

Note
 These are not the same as the breakpoint instructions used by Multi-ICE.

These instructions are used for normal, user interrupt, and vector hit breakpoints. In all
cases, no arguments are passed in registers. The breakpoint address itself is where the
breakpoint occurs.

When you set a breakpoint, Angel:

• stores the original instruction to ensure that it is returned if the area containing it
is examined

• replaces the instruction with the appropriate Undefined Instruction.

The original instruction is restored when the breakpoint is removed, or when a request
to read the memory that contains the instruction is made in the debugger. When you step
through a breakpoint, Angel replaces the saved instruction and executes it.

Note
 Angel can set breakpoints only on RAM locations.

When Angel detects an Undefined Instruction it:

1. Examines the instruction by executing an:

• LDR instruction from lr – 4, if in ARM state

• LDR instruction from lr – 2, if in Thumb state.

2. If the instruction is the predefined breakpoint word for the current processor state
and endianness, Angel:

a. Halts execution of the application.

b. Transmits a message to the host to indicate the breakpoint status.

c. Executes a tight poll loop and waits for a reply from the host.
5-36 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

Angel
If the instruction is not the predefined breakpoint word, Angel:

a. Reports it to the debugger as an undefined instruction.

b. Executes a tight poll loop and waits for a reply from the host.

ARM breakpoints are detected in Thumb state. When an ARM breakpoint is executed
in Thumb state, the Undefined Instruction vector is taken whether executing the
instruction in the top or bottom half of the word. In both cases these correspond to a
Thumb Undefined Instruction and result in a branch to the Thumb Undefined
Instruction handler.

Note
 Thumb breakpoints are not detected in ARM state.

5.7.4 Angel task management

All Angel operations are controlled by Angel task management that:

• assigns task priorities and schedules tasks accordingly

• controls the Angel environment processor mode.

Angel task management requires control of the processor mode. This can impose
restrictions on using Angel with an RTOS. Refer to Using Angel with an RTOS on
page 5-27 for more information.

Task priorities

Angel assigns task priorities to tasks under its control. Angel ensures that its tasks have
priority over any application task. Angel takes control of the execution environment by
installing exception handlers at system initialization. The exception handlers enable
Angel to check for commands from the debugger and process application semihosting
requests.

Angel does not function correctly if your application or RTOS interferes with the
execution of the interrupt, SWI, or Data Abort exception handlers. Refer to Chaining
exception handlers on page 5-29 for more information.

When an exception occurs, Angel either processes it completely as part of the exception
handler processing, or calls Angel_SerialiseTask() to schedule a task. For example:

• When a SWI occurs, Angel determines whether the SWI is a simple SWI that can
be processed immediately, such as the EnterSVC SWI, or a complex SWI that
requires access to the host communication system, and therefore to the serializer.
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 5-37

Angel
• When an IRQ occurs, Angel determines whether or not the IRQ signals the receipt
of a complete ADP packet. If it does, Angel task management is called to control
the packet decode operation. Refer to Example of Angel processing: a simple IRQ
on page 5-44 for more information. Other Angel ports can make other choices for
IRQ processing, provided the relevant task is eventually run.

 The task management code maintains two values that relate to priority:

Task type The task type indicates type of task being performed. For
example, the application task is of type TP_Application, and
Angel tasks are usually TP_AngelCallback. The task type labels a
task for the lifetime of the task.

Task priority The task priority is initially derived from the task type, but is
independent afterwards. Actual priority is indicated in:

• the value of a variable in the task structure

• the relative position of the task structure in the task queue.

The task priority of the application task changes when an
application SWI is processed, to ensure correct interleaving of
processing.

Table 5-1 shows the relative task priorities used by Angel.

Angel task management is implemented through the following top-level functions:

• Angel_SerialiseTask()

• Angel_NewTask()

• Angel_QueueCallback()

• Angel_BlockApplication()

• Angel_NextTask()

Table 5-1 Task priorities

Priority Task Description

Highest AngelWantLock High priority callback.

- AngelCallBack Callbacks for Angel.

- ApplCallBack Callbacks for the user application.

- Application The user application.

- AngelInit Boot task. Emits boot message on reset and
then exits.

Lowest IdleLoop Waiting for task.
5-38 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

Angel
• Angel_Yield()

• Angel_Wait()

• Angel_Signal()

• Angel_TaskID().

Some of these functions call other Angel functions not documented here. The functions
are described in brief below. For full implementation details, refer to the source code in
serlock.h, serlock.c, and serlasm.s.

Angel_SerialiseTask

In most cases this function is the entrance function to Angel task management. The only
tasks that are not a result of a call to Angel_SerialiseTask() are the boot task, the idle
task, and the application. These are all created at startup. When an exception occurs,
Angel_SerialiseTask() cleans up the exception handler context and calls
Angel_NewTask() to create a new high priority task. It must be entered in a privileged
mode.

Angel_NewTask

Angel_NewTask() is the core task creation function. It is called by Angel_SerialiseTask()
to create task contexts.

Angel_QueueCallback

This function:

• queues a packet notification callback task

• specifies the priority of the callback

• specifies up to four arguments to the callback.

The callback executes when all tasks of a higher priority have completed. Table 5-1 on
page 5-38 shows relative task priorities.

Angel_BlockApplication

This function is called to allow or disallow execution of the application task. The
application task remains queued, but is not executed. If Angel is processing an
application SWI when Angel_BlockApplication() is called, the block might be delayed
until just before the SWI returns.
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 5-39

Angel
Angel_NextTask

This is not a function, in that it is not called directly. Angel_NextTask() is executed when
a task returns from its main function. This is done by setting the link register to point to
Angel_NextTask() on task entry.

The Angel_NextTask() routine:

• enters Supervisor mode

• disables interrupts

• calls Angel_SelectNextTask() to select the first task in the task queue that has not
been blocked and run it.

Angel_Yield

This is a yield function for polled devices. It can be called:

• by the application

• by Angel while waiting for communications on a polled device

• within processor-bound loops such as the idle loop.

Angel_Yield() uses the same serialization mechanism as IRQ interrupts. Like an IRQ, it
can be called from either User or Supervisor mode and returns cleanly to either mode.
If it is called from User mode it calls the EnterSVC SWI to enter Supervisor mode, and
then disables interrupts.

Angel_Wait

Angel_Wait() works in conjunction with Angel_Signal() to enable a task to wait for a
predetermined event or events to occur before continuing execution. When
Angel_Wait() is called, the task is blocked unless the predetermined event has already
been signalled with Angel_Signal().

Angel_Wait() is called with an event mask. The event mask denotes events that result in
the task continuing execution. If more than one bit is set, any one of the events
corresponding to those bits unblocks the task. The task remains blocked until another
task calls Angel_Signal() with one or more of the event mask bits set. The meaning of
the event mask must be agreed beforehand by the routines.

If Angel_Wait() is called with a zero event mask, execution continues normally.
5-40 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

Angel
Angel_Signal

Angel_Signal() works in conjunction with Angel_Wait(). This function sends an event
to a task that is now waiting for it, or will wait for it in the future:

• If the task is blocked, Angel_Signal() assumes that the task is waiting and
subtracts the new signals from the signals the task was waiting for. The task is
unblocked if the event corresponds to any of the event bits defined when the task
called Angel_Wait().

• If the task is running, Angel_Signal() assumes that the task will call Angel_Wait()
at a time in the future. The signals are marked in the task signalWaiting member.

Angel_Signal() takes a task ID that identifies a current task, and signals the task that the
event has occurred. See the description of Angel_Wait() for more information on event
bits. The task ID for the calling task is returned by the Angel_TaskID() macro. The task
must write its task ID to a shared memory location if an external task is to signal it.

Angel_TaskID

This macro returns the task ID (a small integer) of the task that calls it.

Angel_TaskIDof

This macro takes a task structure pointer and returns the task ID of that task.

5.7.5 Context switching

Angel maintains context blocks for each task under its control through the life of the
task, and saves the value of all current processor registers when a task switch occurs. It
uses two groups of register context save areas:

• The Angel global register blocks. These are used to store the CPU registers for a
task when events such as interrupt and task deschedule events occur.

• An array of available Task Queue Items (TQIs). Each allocated TQI contains the
information Angel requires to correctly schedule a task, and to store the CPU
registers for a task when required.
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 5-41

Angel
The global register blocks: angel_GlobalRegBlock

The Angel global register blocks are used by all the exception handlers and the special
functions Angel_Yield() and Angel_Wait(). Register blocks are defined as an array of
seven elements. Table 5-2 shows the global register blocks.

In the case of RB_SWI and RB_Interrupted, the register blocks contain the previous
task register context so that the interrupt can be handled. If the handler function calls
Angel_SerialiseTask(), the global register context is saved into the current task TQI.

In the case of RB_Yield, the register block is used to temporarily store the context of
the calling task, prior to entering the serializer. The serializer saves the contents of
RB_Yield to the TQI entry for the current task, if required.

The Angel task queue: angel_TQ_Pool

The serializer maintains a task queue by linking together the elements of the
angel_TQ_Pool array. The task queue must contain an idle task entry. Each element of the
array is a TQI. A TQI contains task information such as:

• the register context for the task

• the current priority of the task

• the type of the task (for example, TP_Application)

• the task state (for example, TS_Blocked)

• the initial stack value for the task

• a pointer to the next lower-priority task.

Table 5-2 Global register blocks

Register block Description

RB_Interrupted Used by the FIQ and IRQ exception handlers.

RB_Desired Used by Angel_SerialiseTask().

RB_SWI Saved on entry to a complex SWI and restored on return to the
application.

RB_Undef Saved on entry to the undefined instruction handler.

RB_Abort Saved on entry to the abort handler.

RB_Yield Used by the Angel_Yield() and Angel_Wait() functions.

RB_Fatal Used only in a debug build of Angel. It saves the context where a fatal
error occurred.
5-42 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

Angel
The elements in the angel_TQ_Pool array are managed by routines within the serializer
and must not be modified externally.

Angel calls Angel_NewTask() to create new tasks. This function initializes a free TQI
with the values required to run the task. When the task is selected for execution,
Angel_SelectNextTask() loads the register context into the CPU. The context is restored
to the same TQI when:

• Angel_SerialiseTask() is called as the result of exception processing or a call to
Angel_Yield()

• Angel_Wait() determines that the task must be blocked.

When the debugger requests information about the state of the application registers, the
Angel debug agent retrieves the register values from the TQI for the application. The
application TQI is updated from the appropriate global register block when exceptions
cause Angel code to be run.

Overview of Angel stacks for each mode

The serialization mechanism described in Angel task management on page 5-37 ensures
that only one task ever executes in Supervisor mode. Therefore, all Angel Supervisor
mode tasks share a single stack, on the basis that:

• it is always empty when a task starts

• when the task returns, all information that was on the stack is lost.

The application uses its own stack, and executes in either User or Supervisor mode.
Callbacks due to application requests to read or write from devices under control of the
Device Driver Architecture execute in User mode, and use the application stack.

The following Angel stacks are simple stacks exclusively used by one thread of control.
This is ensured by disabling interrupts in the corresponding processor modes:

• IRQ stack

• FIQ stack

• UND stack

• ABT stack.

The User mode stack is also split into two cases, because the Application stack and
Angel stack are kept entirely separate. The Angel User mode stack is split into array
elements that are allocated to new tasks, as required. The application stack must be
defined by the application.
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 5-43

Angel
5.7.6 Example of Angel processing: a simple IRQ

This section gives an example of processing a simple IRQ from start to finish, and
describes in more detail how Angel task management affects the receipt of data through
interrupts. See also Angel communications architecture on page 5-46 for an overview
of Angel communications.

Figure 5-2 shows the application running, when an IRQ is made that completes the
reception of a packet.

Figure 5-2 Processing a simple IRQ

The IRQ is handled as follows:

1. The Interrupt exception is noticed by the processor. The processor:

• fetches the IRQ vector

• enters Interrupt mode

• starts executing the Angel Interrupt Service Routine.

�� ���
��

�#

�
��
���
�

��
�

�� ���
�
���"�
$

����
��

	�����
�
��%"��
$

&��$

���
���

���

��
�'��������
����(���

)��
�
���

�����
����
�
���

���
���

���

�����
����

	���
������
���

��������
��

�������*��
���

)���
���
�� ���

������
�$

��+����

#"�"������(���

&�����+����

	���(���
���
$

�� ��
��
"��

���

��� ���

���

���

��

��

��
��

��

�

�

�

�

�

�

�

�

5-44 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

Angel
On entry to the IRQ handler, FIQ interrupts are disabled if
HANDLE_INTERRUPTS_ON_FIQ=1 (the default is 0, FIQ interrupts enabled). Interrupts
are not re-enabled until either:

• Angel_SerialiseTask() is called

• the interrupt completes.

2. The Angel ISR saves the processor state in a register block, uses the GETSOURCE
macro to determine the interrupt source, and jumps to the handler. The processor
state is saved because this data is required by Angel_SerialiseTask().

3. The interrupt handler determines the cause of the IRQ. If the interrupt is not an
Angel interrupt, it makes a count of ghost interrupts and returns.

Note
 If the count exceeds five, a fatal error is generated and Angel is reset.

If the interrupt is an Angel interrupt and the driver uses polled input, the handler
calls Angel_SerialiseTask() to schedule processing. If the driver does not use
polled input, the handler calls Angel_SerialiseTask() to schedule processing if:

• the end of packet character is reached

• the end of request is reached for a raw device (determined by length)

• the ring buffer is empty (tx), or full (rx).

4. If Angel_SerialiseTask() is not required, the ISR reads out any characters from
the interrupting device and returns immediately.

5. Angel_SerialiseTask() saves the stored context from step 2 and creates a new
task. It then executes the current highest priority task. The new task is executed
after all tasks of higher priority have been executed.

6. The new task executes in Supervisor mode. It reads the packet from the device
driver to create a proper ADP packet from the byte stream.

7. When the packet is complete, the task schedules a callback task to process the
newly arrived packet.

8. The callback routine processes the packet and terminates. Angel_NextTask() finds
that the application is the highest priority task, and Angel_SelectNextTask()
restarts the application by loading the context stored at step 2 into the processor
registers.
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 5-45

Angel
5.8 Angel communications architecture

This section gives an overview of the Angel communications architecture. It describes
how the various parts of the architecture fit together, and how debugging messages are
transmitted and processed by Angel.

• Overview of the Angel communications layers

• Boot support on page 5-47

• Channels layer and buffer management on page 5-48

• Device driver layer on page 5-51

• Transmit sequence on page 5-52

• Receive sequence on page 5-53.

For full details of the Angel Debug Protocol and messages, refer to Angel Debug
Protocol and Angel Debug Protocol Messages.

5.8.1 Overview of the Angel communications layers

Figure 5-3 shows a conceptual model of the communication layers for Angel. In
practice, some layers might be combined.

Figure 5-3 Communications layers for Angel

,�����������
���

���

��������������-��
����������
��
���. �����������������

�������

�� ��

�//� �		 	0
�

�����(�������������("��������� ����

5-46 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

Angel
The channels layer includes:

ADP The Angel Debug Protocol channel. This consists of the Host ADP
channel (HADP) and Target ADP channel (TADP).

BOOT The boot channel.

DCC The debug communications channel.

CLIB C library support.

At the top level on the target, the Angel agent communicates with the debugger host,
and the user application can make use of semihosting support (CLIB).

All communications for debugging (ADP, BOOT, DCC, and CLIB) require a reliable
channel between the target and the host. The reliable communications and buffer
management layer is responsible for providing reliability, retransmissions, and
multiplexing/demultiplexing for these channels. This layer must also handle buffer
management, because reliability requires retransmission after errors have occurred.

The device driver layer detects and rejects bad packets but does not offer reliability
itself.

5.8.2 Boot support

If there are two or more debug devices (for example, serial and serial/parallel), the boot
agent must be able to receive messages on any device and then ensure that further
messages that come through the channels layer are sent to the correct (new) device.

When the debug agent detects a Reboot or Reset message, it listens to the other channels
using the device that received the message. All debug channels switch to use the newly
selected debug device.

During debugging, each channel is connected through the same device to one host.
Initially, Angel listens on all Angel-aware devices for an incoming boot packet, and
when one is received, the corresponding device is selected for further Angel use. Angel
listens for a reset message throughout a debugging session, so that it can respond to
host-end problems or restarts.

To support this, the channels layer provides a function to register a read callback across
all Angel-aware devices, and a function to set the default device for all other channel
operations.
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 5-47

Angel
5.8.3 Channels layer and buffer management

The channels layer is responsible for multiplexing the various Angel channels onto a
single device, and for providing reliable communications over those channels. The
channels layer is also responsible for managing the pool of buffers used for all
transmission and reception over channels. Raw device I/O does not use the buffers.

Although there are several channels that might be in use independently (for example,
CLIB and HADP), the channel layer accepts only one transmission attempt at a time.

Channel restrictions

To simplify the design of the channels layer and to help ensure that the protocols
operating over each channel are free of deadlocks, the following restriction is placed on
the use of each channel:

• For a particular channel, all messages must originate from either the Host or the
Target, and responses can be sent only in the opposite direction on that channel.
Therefore, two channels are required to support ADP:

— one for host-originated requests (Read Memory, Execute, and Interrupt
Request)

— one for target-originated requests (Thread has stopped).

• Each message transmitted on a channel must be acknowledged by a reply on the
same channel.

Buffer management

Managing retransmission means that the channels layer must keep messages that have
been sent until they are acknowledged. The channel layer supplies buffers to channel
users who want to transmit, and then keeps transmitted buffers until acknowledged.

The number of available buffers might be limited by memory to less than the theoretical
maximum requirement of one for each channel and one for each Angel-aware device.

The buffers contain a header area sufficient to contain channel number and sequence
IDs for use by the channels layer itself. Any spare bits in the channel number byte are
reserved as flags for future use.
5-48 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

Angel
Long buffers

Most messages and responses are short (typically less than 40 bytes), although some can
be up to 256 bytes long. However, there are some situations where larger buffers are
useful. For example, if the host is downloading programs or configuration data to the
target, a larger buffer size reduces the overhead created by channel and device headers,
by acknowledgment packets and by the line turnaround time required to send each
acknowledgment (for serial links). For this reason, a long (target-defined but suggested
size of 4KB) buffer is available for target memory writes that are used for program
downloads.

Limited RAM

When RAM is unlimited, the easiest solution is to make all buffers large. There is a
mechanism that allows a single large buffer to be shared, because RAM in an Angel
system is not normally an unlimited resource.

When the device driver has read enough of a packet to determine the size of the packet
being received, it performs a callback asking for a suitably sized buffer. If a small buffer
is adequate, a small buffer is provided. If a large buffer is required, but is not available,
the packet is treated as a bad packet, and a resend request results.

Buffer life cycle

When sending data, the user of a channel must explicitly allocate a buffer before
requesting a write. Buffers must be released either by:

• Passing the buffer to one of the channel transmit functions in the case of reliable
data transmission. In this case, the channels code releases the buffer.

• Explicitly releasing it with the release function in the case of unreliable data
transmission.
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 5-49

Angel
Receive buffers must be explicitly released with the release function (see Figure 5-4).

Figure 5-4 Send buffer life cycle

Channel packet format

Channel packets contain information, including:

• channel ID, such as the HADP ID

• packet number

• acknowledged packet number

• flags used for distinguishing data from control information.

The length of the complete data packet is returned by the device driver layer. An overall
length field for the user data portion of the packet is not required, because the channel
header is fixed length.

Heartbeat mechanism

In general, heartbeats must be enabled for reliable packet transmission to work. Some
of the demonstration applications, however, cause a timeout if heartbeats are enabled.
If you enable heartbeats, ensure that your application lets Angel take control
periodically to service the heartbeat request.

The remote_a heartbeat software writes packets using at least the heartbeat rate, and uses
heartbeat packets to ensure this. It expects to see packets back using at least the packet
timeout rate, and signals a timeout error if this is violated.

	
��
���
��������������
������
� ��
���
��������������
������
�

��
����

�

��

��
�

���� ��

������

�

��

��
�

���� ��

������

����
����
5-50 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

Angel
5.8.4 Device driver layer

Angel supports polled and asynchronous interrupt-driven devices, and devices that start
in an asynchronous mode and finish by polling the rest of a packet. At the boundary of
the device driver layer, the interface offers asynchronous (by callback) read and write
interfaces to Angel, and a synchronous interface to the application.

Support for callback across all devices

This is primarily a channels layer issue, but because the boot channel must listen on all
Angel-compatible devices, the channels layer must determine how many devices to
listen to for boot messages, and which devices those are.

To provide this statically, the devices layer exports the appropriate device table or tables,
together with the size of the tables.

Transmit queueing

Because the core operating mode is asynchronous and more than one thread can use a
device, Angel rejects all but the first request, returns a busy error message, and leaves
the user (channels or the user application) to retry later.

Angel interrupt handlers

Angel interrupt handlers are installed statically at link time. The Angel interrupt handler
runs off IRQ and/or FIQ. It is recommended that it is run off IRQ. The Angel interrupt
is defined in devconf.h.

Control calls

Angel device drivers provide a control entry point that supports the enable/disable
transmit/receive commands, so that Angel can control application devices at critical
times.
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 5-51

Angel
5.8.5 Transmit sequence

A simplified view of the transmit sequence is shown in Figure 5-5.

Figure 5-5 Transmit sequence

�� ��+	����������

�� ��+	���������������

�� ��+������1��
�

2������3�����1��
�
�����
+�����1��
�

�� ��+��&� ���

4����
��
�������
������
���
������

�������
������
�������
�

�� ��+��+���
�����

���
�+����(���

���
�+"�(����+����(���

�� ��+	�������������
"���
5-52 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

Angel
5.8.6 Receive sequence

A simplified view of the transmit sequence is shown in Figure 5-6.

Figure 5-6 Receive sequence

�
���"�

�������
��

�����
+��
+��+���������

�� ��+	������+�� ��
������

������������

������
�"�
���

�� ��+�������� ��
������

�� ��+��+5�
�����

����+����(���

	��������������������(���
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 5-53

Angel
5-54 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

Chapter 6
Flash Library Specification

This chapter provides the complete functional specification of the ARM flash library
and the various ways it can be used.

This chapter contains the following sections:

• About the flash library on page 6-2

• About flash management on page 6-4

• ARM flash library specifications on page 6-5

• Functions listed by type on page 6-14

• Flash library functions on page 6-19

• File processing functions on page 6-35

• SIB functions on page 6-40

• Using the library on page 6-47.

See also Chapter 3 ARM Boot Monitor and Chapter 7 Using the ARM Flash Utilities for
additional information about images in flash memory.
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 6-1

Flash Library Specification
6.1 About the flash library

Current ARM development boards (such as Integrator) contain a large area of flash
memory. This space is used to store many programs and associated data in a block
structure, as defined in Image management on page 6-10.

The flash library divides the large flash memory structure into discrete blocks. In the
case of the Integrator board, these are 128KB blocks. An image can contain any number
of blocks, but it must conform to the flash library definition. Figure 6-1 shows the
standard flash library image storage layout.

Figure 6-1 Flash library image storage layout

The following list describes the areas contained in Figure 6-1:

Image area

All of the code and read-only data segments of the image.

Header information

Any file header information from the downloaded file is placed after the
image. (Not all images have header information.)

Image information

Added by the flash library code for image identification and code
operations.

�� ������ 0� �����(�����(�"�����

0� �����(�����(�"�����
-�� ��������.,�"���������

!�������������
���

�� ���������
���

6��
����������
���

-����������.
6-2 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

Flash Library Specification
Unused flash

The footer must be at the end of the block of flash memory. The memory
between the end of the image information and the footer is unused. If
there is not room in the block containing the image for the footer, the
footer will be placed at the end of the next block.

Footer information

A five-word information block containing:

• the address of the information block for this image

• the base address of the data (the start might be at the beginning of
a previous block rather than at the start of this block)

• a unique 32-bit value to aid in fast searching

• the image type (that is, a block, an image, a SIB, or data)

• a checksum for the footer information (over the first four words
only).
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 6-3

Flash Library Specification
6.2 About flash management

Some embedded systems incorporate large areas of static programmable memory and
require a mechanism to allocate, program, and pass control to images of varying size.
This section describes the mechanism for programming flash, how multiple images are
programmed into flash, and how images are selected for automatic execution.

The main characteristics of the ARM Flash Utility (AFU) and ARM flash library
structure are:

• The library images use a footer rather than a header. For executable images and
structured data, the existence of a header complicates using the image.

• The library manages memory in standard, small block sizes that hide detail from
the normal user. The block size can be defined to provide a reasonable mix of
flexibility and efficiency.

• The AFU supports the following image formats:

— ELF

— binary

— Motorola S-record

— Intel hex format

— Compressed binary.

Binary images require additional information to be defined by the build system in
addition to the data contained in the file. AFU automatically identifies the file
type from the image it receives.

• The AFU removes headers where possible. This ensures that the first word of the
image is real image data, as it would be in a final product.

• Images occupy sequential flash locations.
6-4 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

Flash Library Specification
6.3 ARM flash library specifications

This section discusses the general uses for the flash library and the flash types it
supports. It also describes how image management is performed in the following
sections:

• Code portability

• Accessing flash

• flashPhysicalType structure on page 6-6

• flashType structure on page 6-9

• Flash types on page 6-10

• Image management on page 6-10

• Porting the Flash Library on page 6-13.

The boot monitor also uses flash memory to store information about images. These
System Information Blocks (SIBs) are application-specific. For information on the SIBs,
see Chapter 3 ARM Boot Monitor.

6.3.1 Code portability

The flash programming library provides a standard access mechanism. The building
blocks for common flash types simplify porting by:

• declaring where the flash memory is located

• identifying the type of flash

• declaring the size of the flash

• linking with the library.

The library guarantees a common access mechanism between the boot switcher, AFU,
and other programming mechanisms.

A simple board-specific layer enables rapid porting to platforms that use supported
flash types. Since all flash access is performed through routines defined in the
board-specific layer, it is easy to add support for new types.

6.3.2 Accessing flash

Primary routines are supplied that allow access to on-board flash and allow an
application to:

• check that there is actually flash at a given location

• write a word

• read a word

• erase a block of flash

• program a block of flash.
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 6-5

Flash Library Specification
Note

 The flash device must not be cached or protected (by the MMU or MPU) while being
programmed. On systems with a MMU, flash memory is often cached to improve code
execution. On such systems flash can be mapped twice, with the second mapping set to
be noncacheable for use when writing to the device. The flash management code (and
the debug agent) cannot execute from the same flash part as the flash part that is being
programmed.

6.3.3 flashPhysicalType structure

At the lowest level, the flash memory is using the flashPhysicalType device structure.
Table 6-1 and Table 6-2 on page 6-9 lists the contents of the device structure of the flash
library. These physical device structures are accessed by the library using the flashType
device structure.

Table 6-1 Physical structure routines

Field
Size
(bytes)

Value/usage

base 4 Virtual base address of this flash device for reads (normal access).

writeBase 4 Virtual base address of this flash device for writes. This can be the same as the
read address if there are no caches or if caches are disabled, or can be a different
address that is defined as noncacheable.

physicalBase 4 The base address of this flash device before any memory management is
enabled. This is used by applications that run from reset and use these
structures to access data/programs in flash (for example, bootMonitor).

width 4 Width of flash device, in bits.

parallel 4 Number of 8-bit or 16-bit devices installed in parallel to emulate a wider data
path.

size 4 Size of flash, in bytes.

type 4 Atmel, Intel or other CFI manufacturers, AMD, or unknown type.

writeSize 4 Size of the physical flash block when writing data. Many devices can be
programmed much faster using a block-programming algorithm.

eraseSize 4 Size of the physical flash block when erasing data. Some devices support
different erase/write block sizes

logicalSize 4 Size of the logical flash block. If a device supports very small physical blocks,
it may be easier to group these together to simplify flash access.
6-6 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

Flash Library Specification
write() 4 Pointer to a routine to write one 32-bit word to flash.

writeBlock() 4 Pointer to a routine to write a block of writeSize bytes to flash.

read() 4 Pointer to a routine to read one 32-bit word from flash.

readBlock() 4 Pointer to a routine to read a block of writeSize bytes from flash.

erase() 4 Pointer to a routine to delete a block of eraseSize from flash.

init() 4 Pointer to a routine to unlock flash to allow erasure and programming.

close() 4 Pointer to a routine to lock flash to prevent erasure or programming.

query() 4 Pointer to a routine to query the flash to ensure that size is correct. This allows
an application to determine at run-time how much flash is fitted on a platform.

Info 64 An ASCII string, used to identify the device (NULL-terminated).

next 4 Pointer to the next flash device structure.

Table 6-1 Physical structure routines (continued)

Field
Size
(bytes)

Value/usage
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 6-7

Flash Library Specification
The library defines a C structure, shown in Example 6-1, for the physical flash
definition so that all offsets from the first word are abstracted.

Example 6-1 flashPhysicalType structure

typedef int32 flFlash_WriteProc(char *address, unsigned32 data, char *flash);
typedef int32 flFlash_WriteBlockProc(char *address, unsigned32 *data,
 unsigned32 size, char *flash, int width);
typedef int32 flFlash_ReadProc(char *address, unsigned32 *value);
typedef int32 flFlash_ReadBlockProc(char *address, unsigned32 *data,
 unsigned32 size);
typedef int32 flFlash_EraseProc(char *address, unsigned32 size, char *flash,
 int width);
typedef int32 flFlash_InitProc(char *address, int width);
typedef int32 flFlash_CloseProc(char *address, int width);
typedef int32 flFlash_QueryProc(void *flash);

typedef struct flashPhysicalType
{
 // Base Addresses for the start of this 'device'
 char *base // Virtual address of flash for reads (normal access)
 char *writeBase // Virtual address of flash for writes
 char *physicalBase // This is the location where flash can be accessed
 // _before_ any memory management is enabled
 unsigned32 width; // Width of flash access on this platform (bits)
 unsigned32 parallel; // Number of devices in parallel across databus
 unsigned32 size; // Size of flash, in bytes
 unsigned32 type; // Atmel / Intel (CFI) / AMD / Unknown
 unsigned32 writeSize; // Size of physical block
 unsigned32 eraseSize; // Size of block erase
 unsigned32 logicalSize; // Size of logical block
 // Pointers to routines which perform operations on this device
 flFlash_WriteProc *write; // Write one word
 flFlash_WriteBlockProc *writeBlock; // Write a block of writeSize bytes
 flFlash_ReadProc *read; // Read one word
 flFlash_ReadBlockProc *readBlock; // Read a block of writeSize bytes
 flFlash_EraseProc *erase; // Erase a block of eraseSize bytes
 flFlash_InitProc *init; // Unlock a flash device
 flFlash_CloseProc *close; // Lock a flash device
 flFlash_QueryProc *query; // Query a flash device (size etc)
 char info[64]; // Null terminated Info string
 struct flashPhysicalType *next; // Pointer to next flash device
}
tPhysicalFlash;
6-8 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

Flash Library Specification
6.3.4 flashType structure

The flash library uses a logical representation of the flash space. This involves one or
more logical devices. ARM uses two types:

Boot Flash This is an area that contains applications that the user would not normally
wish to overwrite, such as the boot monitor, Angel debug client, or
system self-tests.

Application Flash

This area is where the user keeps applications and data.

The library defines a C structure, shown in Example 6-2, for the logical flash definition
so that all offsets from the first word are abstracted.

Example 6-2 flashType structure

typedef struct flashType
{
 struct flashPhysicalType *devices; // Pointer to physical device list
 unsigned32 offset; // Number of blocks into the device
 unsigned32 bsize; // Size of flash, in blocks
 unsigned32 type; // Boot/Application type
 struct flashType *next; // Pointer to next flash device
}
tFlash;

Table 6-2 Logical structure routines

Field
Size
(bytes)

Value/usage

devices 4 Pointer to the first physical device which holds this logical area.

offset 4 Offset (in blocks) into the device at which this logical area starts.

bsize 4 Size of the logical area (in blocks).

type 4 BOOT or APP(lication) area.

next 4 Pointer to the next logical flash device structure.
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 6-9

Flash Library Specification
6.3.5 Flash types

The library supports the following flash types:

Intel For specifications and general information on the Intel 28Fxxx parts that
use the Common Flash Interface, contact Intel or visit the Intel web site.
(Not all Intel parts use the common flash interface.)

Atmel For specifications and general information on the Atmel flash devices,
contact Atmel or visit the Atmel web site. These parts do not use the
Common Flash Interface protocol.

AMD For specifications and general information on the AMD flash devices,
contact AMD or visit the AMD web site. These parts only use the
Common Flash Interface protocol to query the device.

SST For specifications and general information on the SST flash devices,
contact SST or visit the SST web site. These parts use the Common Flash
Interface protocol only to query the device. The SST devices supported
use the same programming mechanism as AMD, but with a different
command set.

6.3.6 Image management

At the end of the last block of an image, the flash management program writes a data
record, or footer, that contains information about the image, such as name, start
location, and checksum. If the footer cannot fit into the last block of the image, it must
be written at the end of the next block (the block fields update accordingly). If this footer
is not written, the image is not visible to the boot switcher, and it will not be visible
when the flash management program is next run.
6-10 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

Flash Library Specification
Footer structure

The footer structure is a five-word device that contains a pointer to a more detailed
structure that, if required, defines the image.

Table 6-3 shows the format for the footer.

The image base address is the start of the first block containing data for this image. If
the image is less than one logical block in length, this pointer will be set to the start of
the current block.

The library defines a C structure for the footer so that all offsets from the first word are
abstracted. Example 6-3 shows this structure.

Example 6-3 FooterType structure

typedef struct FooterType {
 void *infoBase ; /* Address of first word of ImageFooter */
 char *blockBase ; /* Start of area reserved by this footer */
 unsigned int signature /* 'Magic' number to prove it's a footer */
 unsigned int type ; /* Area type: ARM image, SIB, customer*/
 unsigned int checksum ; /* Checksum of this structure only */
} tFooter ;

Table 6-3 Footer format

Field
Size
(bytes)

Value/usage

Image information base 4 Pointer to the full image descriptor structure.

Image base address 4 Location in flash memory where the image starts.

Signature 4 0xA0FFFF9F is an illegal instruction in the ARM
instruction set. It can never be produced by
compilers as code, so it is a relatively safe value for
a unique signature.

Image type 4 Indicates an ARM executable image, SIB, or custom
code.

Checksum 4 Checksum for this footer. The checksum is the word
sum (with the carry wrapped into the least
significant bit) and is stored as the inverse of the
sum.
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 6-11

Flash Library Specification
ImageInfo structure

Because the library supports different program image formats, the actual flash
programming is separate from image loading. Table 6-4 describes the C structure that
holds information about the image.

This structure replicates much of the information contained in the header of file formats
such as Executable and Linkable Format (ELF) in a form that is accessible to the
file-independent routines.

The image data structure contains information about any file header stored in the image
space to allow reconstruction of the file, if required.

Table 6-4 ImageInfo structure

Field
Size
(bytes)

Value/usage

Image boot flags 4 The boot requirements for the image: Bit 0: NOBOOT.
If set, this image is not bootable. The boot switcher
ignores it when selecting an image to run. Bit 1:
COMPRESSED. If set, this image must be
decompressed before being copied into memory. Bit 2:
Initialize memory (and MMU) before executing the
image. Bit 3: Copy the image into memory before
executing it. Bit 4: File system image (SIB).

Unique image number 4 Number defined to allow fast searches for the image and
easy execution. This is a logical image number and is not
related to the order of the images in flash.

Image load address 4 Location in memory where the image must be loaded for
execution, if relevant.

Image length 4 Length of image in memory, in bytes, excluding any file
header.

Image execute address 4 Execution address of the image in memory.

Image name 16 Name of the image as a 16-byte, null-terminated string.

Header length 4 Length of any separated header stored with the image.

Header type 4 Type of file: ELF, binary, or S-record.

Image checksum 4 Checksum to include full image, header, and this image
information block. The checksum is the word sum (with
the carry wrapped into the least significant bit) and is
stored as the inverse of the sum.
6-12 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

Flash Library Specification
The image information block is situated immediately after the full image, and any
header information is stripped from the input file and stored with the image. The
checksum is calculated from the full image, any header information, and the image
information block. Example 6-4 shows the ImageInfoType structure.

Example 6-4 ImageInfoType structure

typedef struct ImageInfoType
{
 unsigned32 bootFlags ; /* Boot flags, compression etc. */
 unsigned32 imageNumber ; /* Unique number, selects for boot etc. */
 char *loadAddress ; /* Address program should be loaded to */
 unsigned32 length ; /* Actual size of image */
 PFN address ; /* Image is executed from here */
 char name[16] ; /* Null terminated */
 char *headerBase ; /* Flash Address of any stripped header */
 unsigned32 header_length; /* Length of header in memory */
 unsigned32 headerType ; /* ELF, S-record etc. */
 unsigned32 checksum ; /* Image checksum (inc. this struct) */
} tImageInfo ;

6.3.7 Porting the Flash Library

A simple board-specific layer enables rapid porting to platforms which use supported
flash types. Because all flash access is performed through routines defined in the
board-specific layer, adding support for new types is not complex, and consists of the
following simple steps:

• Define the physical structures

• Define the logical structures

• Write the platform-specific routines as specified in Flash library functions, listed
by type on page 6-14.
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 6-13

Flash Library Specification
6.4 Functions listed by type

This section lists the library functions by type. The functions are grouped into the
following main categories:

• Functions that directly access flash memory are described in Flash library
functions, listed by type.

• Functions related to file structures are described in File processing functions,
listed by type on page 6-16.

• Functions related to application-defined nonvolatile storage areas are described in
SIB functions on page 6-18.

6.4.1 Flash library functions, listed by type

This section list the functions that directly access flash memory, and shows where
further information can be found on each function.

Platform-specific routines

There are just two platform-specific routines. These are used to activate any
mechanisms to lock and unlock write-access to flash. The routines are:

• Flash_Write_Enable() on page 6-19

• Flash_Write_Disable() on page 6-19.

Locating flash

Because accessing the flash area on one platform might cause an exception on another,
it is difficult to locate the flash. Linking platform-specific code that defines the base of
flash memory allows common applications, such as the download to flash feature of the
ARM debuggers, to work on all supported platforms.

The flash device structure allows you to handle multiple flash parts in a common
manner by the library or an application. If a device has an area that can be locked, it can
be presented as two logical devices, partitioned into lockable and nonlockable. The
functions for locating flash are:

• fLib_DefinePlat() on page 6-20

• fLib_FindFlash() on page 6-20

• fLib_OpenFlash() on page 6-21.
6-14 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

Flash Library Specification
Single word access

The smallest unit of access is a single word of 32 bits. If flash parts on a given platform
are only on 8-bit or 16-bit data paths, these functions mask all issues of byte order and
multiple access.

The functions are:

• fLib_ReadFlash32() on page 6-22

• fLib_WriteFlash32() on page 6-22.

Block access

The library uses the concept of logical blocks to improve access times when handling
multiple images in flash. These logical blocks hide any physical block mechanism the
actual hardware might use to provide a library of high-level routines. The read and write
routines are generic so you do not require knowledge of logical blocks, but these
routines must synchronize internally to use logical blocks where possible. Each
program image occupies one or more blocks of flash. The functions are:

• fLib_ReadArea() on page 6-23

• fLib_WriteArea() on page 6-23

• fLib_DeleteArea() on page 6-24

• fLib_GetBlockSize() on page 6-24.

Images in flash

An application must be able to find an image already programmed in flash memory, and
find room for a new image. Also, much of the complexity of footers, checksums, and
image numbers can be hidden by wrapper routines that allow an application to simply
read, write, or verify an image. These functions use the footer list produced by
fLib_FindFooter(). The functions are:

• fLib_ReadImage() on page 6-25

• fLib_WriteImage() on page 6-25

• fLib_VerifyImage() on page 6-26

• fLib_FindImage() on page 6-27

• fLib_ExecuteImage() on page 6-27

• fLib_DeleteImage() on page 6-28

• fLib_ChecksumImage() on page 6-28

• fLib_ChecksumFooter() on page 6-29

• fLib_UpdateChecksum() on page 6-29

• fLib_GetEmptyFlash() on page 6-30

• fLib_GetEmptyArea() on page 6-31.
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 6-15

Flash Library Specification
Image footers

The flash library provides functions to locate, read, build, and write these footers. The
function fLib_FindFooter() scans flash and produces a list of footers. Reading an
individual footer, however, is not merely a case of accessing the returned list. The
application does not know the actual physical organization and layout of the flash
hardware, therefore the footer functions manage the low-level access. The image footer
functions are:

• fLib_initFooter() on page 6-31

• fLib_ReadFooter() on page 6-32

• fLib_WriteFooter() on page 6-32

• fLib_VerifyFooter() on page 6-33

• fLib_FindFooter() on page 6-33

• fLib_BuildFooter() on page 6-34.

6.4.2 File processing functions, listed by type

The flash library separates file read/write from flash programming. This allows the
library to support multiple file formats. File formats ELF, binary, and Motorola S-record
are supported.

This section lists, and describes, the file processing functions by type, and shows where
further information can be found on each function.

The choice of basic file access or formatted file access depends on the information
extracted from the header. When the file header is parsed, fLib_ReadFileHead() sets
image->readFile(), image->writeFile() and image->footer.fileType appropriately.

If the file does not require any conversion, image->readFile() points at
flib_ReadFileRaw(), and image->writeFile() points at flib_WriteFileRaw(). Otherwise,
such as for an S-record file, the appropriate routine addresses are set in
image->readFile() and image->writeFile(). If a file format has no header, readFile()
must parse the size bytes of data read from the file from image->head first.

Simple file access

The interface to access files on the host is as simple as possible. The file must be opened
before access is possible, and must be closed when done. Data is read and written using
functions that access the image structure to determine if any format conversion is
required (the raw functions are also available).
6-16 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

Flash Library Specification
The simple file access functions are:

• fLib_ReadFileRaw() on page 6-35

• fLib_WriteFileRaw() on page 6-35

• fLib_OpenFile() on page 6-36

• fLib_CloseFile() on page 6-37.

File headers and formats

The flash library can maintain an original file format header as part of the image. The
data is stored in flash using the original header immediately following the executable
image. See Figure 6-1 on page 6-2.

The file inputs must be checked for file type, and stored with respect to the header and
code image information. There are two functions to handle parsing of the header
information to and from the flash image space:

• fLib_ReadFileHead() on page 6-37

• fLib_WriteFileHead() on page 6-38.

Formatted file access

Data is accessed using functions that use the image structure for any required format
conversion. These functions are:

• fLib_ReadFile() on page 6-38

• fLib_WriteFile() on page 6-39.

External file translation interface

Some external file types, including Motorola S-record and Intel hex, require each input
element to be converted. To allow easy access for filter and conversion routines, a small
interface has been included. The interface is defined in a C structure, as shown in
Example 6-5.

Example 6-5 External file translation interface structure

typedef struct
{
 char in_buff[80]; /* Buffer for the ASCII input processing */
 char out_buff[80]; /* Buffer for the processed binary image */
 char * address; /* Address Image buffer should go to */
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 6-17

Flash Library Specification
 int rec_length; /* Actual size of image buffer */
 int records; /* Internal counter for block passage */
} tProcess_type ;

Parameters are in the format shown in Table 6-5.

The external processing function uses the tProcess_type structure to translate the file on
a line-by-line basis and give the correct data and storage address to the input function.

There are no individual external file translation interface routines.

6.4.3 SIB functions

Applications sometimes need small amounts of nonvolatile storage. The boot monitor,
for example, requires a small block of data to identify which image to run. These small
blocks of application-specific information are provided as System Information Blocks
(SIB).

The following functions are available to create and access SIBs:

• SIB_Open() on page 6-42

• SIB_Close() on page 6-43

• SIB_GetPointer() on page 6-43

• SIB_Copy() on page 6-44

• SIB_Program() on page 6-44

• SIB_GetSize() on page 6-45

• SIB_Verify() on page 6-45

• SIB_Erase() on page 6-46.

Table 6-5 Parameters

Field
Size in
bytes

Value/usage

in_buff 80 Input line buffer for the ASCII element read in from an external file.

out_buff 80 Storage space for conversion output.

address 4 Address for storage, taken from the element header.

rec_length 4 True element size taken from the element being processed.

records 4 Internal counter for the process type to show the number of
elements processed.
6-18 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

Flash Library Specification
6.5 Flash library functions

This section documents the functions in the flash library. The functions are listed in the
order as documented in Flash library functions, listed by type on page 6-14. All
functions and type definitions are contained in flash_lib.h.

6.5.1 Flash_Write_Enable()

This function will unlock all devices of the specified type. If the target platform requires
some initialization to enable writing to flash, it should be defined here.

Syntax

int Flash_Write_Enable(int type)

where:

type Is a flash type as defined in flash_lib.h.

Return value

Returns one of the following:

0 If successful.

-1 If not successful.

6.5.2 Flash_Write_Disable()

This function will lock all devices of the specified type. If the target platform requires
some initialization to disable writing to flash, it should be defined here.

Syntax

int Flash_Write_Disable(int type)

where:

type Is a flash type as defined in flash_lib.h.

Return value

Returns one of the following:

0 If successful.

-1 If not successful.
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 6-19

Flash Library Specification
6.5.3 fLib_DefinePlat()

This function defines logical structures used by the library. The library accesses flash
using these logical structures which contain pointers to physical devices and pointers to
other logical devices.

Syntax

unsigned int fLib_DefinePlat(tFlash **tf)

where:

tf Is the address of a pointer that will be set to the address of the flashType
device structure in the system.

Return value

Returns one of the following:

0 If flash is found.

*tf is set to the address of the first element of the array of device
structures.

-1 If no flash is found

6.5.4 fLib_FindFlash()

This function locates the flash memory devices on this platform. If there is more than
one device in the system, the application must build a linked list of devices before
calling fLib_OpenFlash().

Syntax

unsigned int fLib_FindFlash(tFlash **tf)

where:

tf Is the address of a pointer that will be set to the address of the first
flashType device structure in the system.
6-20 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

Flash Library Specification
Return value

Returns one of the following:

count If one or more flash devices is found, the number of devices is returned.

*tf is set to the address of the first element of the array of device
structures.

0 If no flash is found.

6.5.5 fLib_OpenFlash()

This function initializes the flash device for this platform. If a physical device has an
init() routine, it will be called here to unlock it ready for programming.

Syntax

int fLib_OpenFlash(tFlash *flashmem)

where:

flashmem Is a pointer to the first flash memory information structure.

Return value

Returns one of the following:

0 If successful.

-1 If not successful.

6.5.6 fLib_CloseFlash()

This function finalizes the flash device for this platform. If a physical device has a
close() routine, it will be called here to lock it to prevent further programming.

Syntax

int fLib_CloseFlash(tFlash *flashmem)

where:

flashmem Is a pointer to the first flash memory information structure.
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 6-21

Flash Library Specification
Return value

Returns one of the following:

0 If successful.

-1 If not successful.

6.5.7 fLib_ReadFlash32()

This function calls the read() function from the appropriate physical device pointed to
by the flashmem structure and reads one 32-bit word from the flash at the given address.

Syntax

int fLib_ReadFlash32(unsigned int *address, unsigned int *value,
tFlash *flashmem)

where:

address Is a pointer to the address of the flash memory to be read.

value Is a pointer to the memory address where the flash should be copied.

flashmem Is a pointer to the flash device structure to allow access to the flash
read/write routines.

Return value

Returns one of the following:

0 If successful. The memory at value now holds the results.

-1 If not successful.

6.5.8 fLib_WriteFlash32()

This function writes one 32-bit word to the flash at the given address.

Syntax

int fLib_WriteFlash32(unsigned int *address, unsigned int value,
tFlash *flashmem)

where:

address Is a pointer to the address of the flash memory to be written to.

value Is the data to be written to the specified flash address.

flashmem Is a pointer to the flash device structure to allow access to the flash
read/write routines.
6-22 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

Flash Library Specification
Return value

Returns one of the following:

0 If successful.

-1 If not successful.

6.5.9 fLib_ReadArea()

This function reads an area of size bytes from flash memory.

Syntax

int fLib_ReadArea(unsigned int *address, unsigned int *data, unsigned int size,
tFlash *flashmem)

where:

address Is a pointer to the address of the flash memory to be read.

data Is a pointer to the location the data is to be copied to.

size Is the size, in bytes, of the data area.

flashmem Is a pointer to the flash device structure to allow access to the flash
read/write routines.

Return value

Returns one of the following:

0 If successful.

-1 If not successful.

6.5.10 fLib_WriteArea()

This function writes an area of size bytes to flash memory.

Syntax

int fLib_WriteArea(unsigned int *address, unsigned int *data, unsigned int size,
tFlash *flashmem)

where:

address Is a pointer to the address of the flash memory to be written.

data Is a pointer to the data to be written.

size Is the size, in bytes, of the data area.

flashmem Is a pointer to the flash device structure to allow access to the flash
read/write routines.
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 6-23

Flash Library Specification
Return value

Returns one of the following:

0 If successful.

-1 If not successful.

6.5.11 fLib_DeleteArea()

This function deletes (erases) an area of flash memory.

Syntax

int fLib_DeleteArea(unsigned int *address, unsigned int size, tFlash *flashmem)

where:

address Is a pointer to the address of the flash memory to be erased.

size Is the size, in bytes, of the data area to be erased.

flashmem Is a pointer to the flash device structure to allow access to the flash
read/write routines.

Return value

Returns one of the following:

0 If successful.

-1 If not successful.

6.5.12 fLib_GetBlockSize()

This function returns the size, in bytes, of the logical block for this platform.

Note
 These logical blocks cannot be smaller than the largest device physical block size. This
block size will be a multiple of the erase block size.

Syntax

unsigned int fLib_GetBlockSize(tFlash *flashmem)

where:

flashmem Is a pointer to the flash device structure to return the size.
6-24 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

Flash Library Specification
Return value

Returns one of the following:

size If the flash block size can be determined, the size of the block is returned.

0 If the size cannot be determined.

6.5.13 fLib_ReadImage()

This function reads the image from flash memory as defined in foot. The destination
specified by the foot->infoBase->loadAddress pointer cannot be NULL.

Syntax

int fLib_ReadImage(tFooter *foot, tFlash *flashmem)

where:

foot Is a pointer to the footer structure defining the image pointer for the
image to be read.

flashmem Is a pointer to the flash device structure to allow access to the flash
read/write routines.

Return value

Returns one of the following:

0 If successful.

-1 If not successful.

6.5.14 fLib_WriteImage()

This function writes the image selected by the specified image structure. The image
structure must be fully defined.

Syntax

int fLib_WriteImage(tImageInfo *image, tFlash *flashmem, unsigned32 *current,
tFooter *foot)
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 6-25

Flash Library Specification
where:

image Is a pointer to the image structure for the image to be copied.

flashmem Is a pointer to the flash device structure to allow access to the flash
read/write routines.

current Is a pointer to the start of the image in RAM.

foot Is a pointer to the footer structure defining the image pointer for the
image to be copied.

Return value

Returns one of the following:

0 If successful.

-1 If not successful.

6.5.15 fLib_VerifyImage()

This function verifies that the image, selected by the specified image structure, matches
the image as programmed. The image structure must be fully defined.

Syntax

int fLib_VerifyImage(tFooter *foot, tFlash *flashmem)

where:

foot Is a pointer to the footer structure defining the image pointer for the
image to be verified.

flashmem Is a pointer to the flash device structure to allow access to the flash
read/write routines.

Return value

Returns one of the following:

0 If successful.

-1 If not successful.
6-26 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

Flash Library Specification
6.5.16 fLib_FindImage()

This function scans the list of flash footers looking for a footer with an image number
that matches the specified number. If the specified footer pointer is not NULL, the
footer is copied from flash.

Syntax

int fLib_FindImage(tFooter **list, unsigned int imageNo, tFooter *foot,
tFlash *flashmem)

where:

list Is a pointer to a list of pointers to footers.

imageNo Is the unique number of the image to be located.

foot Is a pointer to the location where the found footer should be copied.

flashmem Is a pointer to the flash device structure to allow access to the flash
read/write routines.

Return value

Returns one of the following:

0 If successful.

-1 If not successful.

6.5.17 fLib_ExecuteImage()

This function executes the image selected by the specified image footer.

Syntax

int fLib_ExecuteImage(tFooter *foot)

where:

foot Is a pointer to the footer that defines the image to be executed.

Return value

Returns one of the following:

No return If successful, the function does not return.

-1 If not successful.
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 6-27

Flash Library Specification
6.5.18 fLib_DeleteImage()

This function deletes the image in flash selected by the specified image footer.

Syntax

int fLib_DeleteImage(tFooter *foot, tFlash *flashmem)

where:

foot Is a pointer to the footer that defines the image to be deleted.

flashmem Is a pointer to the flash device structure to allow access to the flash
read/write routines.

Return value

Returns one of the following:

0 If successful.

-1 If not successful.

6.5.19 fLib_ChecksumImage()

This function calculates the checksum for the specified image. The image structure and
associated footer must be fully defined, but the contents of the image structure are not
summed. The checksum is a word sum, and is inverted before being stored.

Syntax

int fLib_ChecksumImage(tFooter *foot, unsigned int *sum, tFlash *flashmem)

where:

foot Is a pointer to the footer structure defining the image pointer for the
image to be check-summed.

sum Is a pointer to the (non-flash) location where the image checksum is to be
stored.

flashmem Is a pointer to the flash device structure to allow access to the flash
read/write routines.
6-28 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

Flash Library Specification
Return value

Returns one of the following:

0 If successful.

-1 If not successful.

6.5.20 fLib_ChecksumFooter()

This function calculates the checksum for the specified image. The image structure and
associated footer must be fully defined, but the contents of the image structure are not
summed. If the image sum value is -1, only the footer value will be calculated. The
checksums are word sums, and are inverted before being stored.

Syntax

int fLib_ChecksumFooter(tFooter *foot, unsigned int *foot_sum,
unsigned int *image_sum, tFlash *flashmem)

where:

foot Is a pointer to the footer structure for the footer and image to be
check-summed.

foot_sum Is a pointer to the location in RAM where the footer checksum is to be
stored.

image_sum Is a pointer to the location in RAM where the image checksum is to be
stored.

flashmem Is a pointer to the flash device structure to allow access to the flash
read/write routines.

Return value

Returns one of the following:

0 If successful.

-1 If not successful.

6.5.21 fLib_UpdateChecksum()

This function writes the calculated checksum to flash.

If the image is a System Information Block (SIB), the SIB checksum is updated.
Otherwise, the image checksum is written.

The supplied footer checksum is also written to flash.
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 6-29

Flash Library Specification
Syntax

int fLib_UpdateChecksum(tFooter *foot, unsigned int im_check,
unsigned int ft_check, tFlash *flashmem)

where:

foot Is a pointer to the footer structure for the footer and image to be
check-summed.

im_check Is the checksum for the image or SIB.

ft_check Is the checksum for the footer structure.

flashmem Is a pointer to the flash device structure to allow access to the flash
read/write routines.

Return value

Returns one of the following:

0 If successful.

-1 If not successful.

6.5.22 fLib_GetEmptyFlash()

This function scans the list of flash footers, looking for an empty area from start, of at
least unused size.

Syntax

int fLib_GetEmptyFlash(tFooter **list, unsigned int *start,
unsigned int *location, unsigned int empty,
tFlash *flashmem)

where:

list Is a pointer to a list of pointers to footers.

start Is a pointer to the start location required in flash memory.

location Is a pointer to the start of the flash area capable of housing the image.

empty Is the size of the empty area required in flash memory.

flashmem Is a pointer to the location from where the footer image is to be copied.
6-30 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

Flash Library Specification
Return value

Returns one of the following:

0 If successful.

-1 If not successful.

6.5.23 fLib_GetEmptyArea()

This function scans flash footers, looking for any empty area of at least empty size.

Syntax

int fLib_GetEmptyArea(tFooter **list, unsigned int empty, tFlash *flashmem)

where:

list Is a pointer to a list of pointers to footers.

empty Is the size of the empty area required in flash memory.

flashmem Is a pointer to the location from where the footer image is to be copied.

Return value

Returns one of the following:

0 If successful.

-1 If not successful.

6.5.24 fLib_initFooter()

This function initializes the footer at foot with known values (-1, or 0xFFFFFFFF). This
sets up the footer to a known state. The value -1 is the general value of unprogrammed
flash.

Syntax

int fLib_initFooter(tFooter *foot, int ImageSize, int type)

where:

foot Is a pointer to the footer structure for initialization.

ImageSize Is the size of the image, if known.

type Is a footer type such as an ARM executable or SIB (bit patterns defined
in flash_lib.h).
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 6-31

Flash Library Specification
Return value

Returns one of the following:

0 If successful.

-1 If not successful.

6.5.25 fLib_ReadFooter()

This function reads the footer at start in flash memory to foot in memory.

Syntax

int fLib_ReadFooter(unsigned int *start, tFooter *foot, tFlash *flashmem)

where:

start Is a pointer to the location of the footer image in flash memory.

foot Is a pointer to the location the footer image is to be copied to.

flashmem Is a flash device structure for access to flash access routines.

Return value

Returns one of the following:

0 If successful.

-1 If not successful.

6.5.26 fLib_WriteFooter()

This function writes a footer to flash memory. image_data contains the complete image
footer to be written, including the checksum. Because the footer contains a pointer to
the end of the flash block, this function uses the pointer to determine where the footer
should be written.

Syntax

int fLib_WriteFooter(tFooter *foot, tFlash *flashmem, unsigned int *foot_data,
unsigned int *image_data)

where:

foot Is a pointer to the location where the footer image is to be copied.

flashmem Is a structure with pointers to flash access routines.

foot_data Is the location of footer data in RAM to be copied to a flash location.

image_data Is a pointer to the location of the image information to be copied to flash.
6-32 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

Flash Library Specification
Return value

Returns one of the following:

0 If successful.

-1 If not successful.

6.5.27 fLib_VerifyFooter()

This function verifies the footer at foot. It checks the signature word, and also checks
that the checksum is correct.

Syntax

int fLib_VerifyFooter(tFooter *foot, tFlash *flashmem)

where:

foot Is a pointer to the footer image to be verified.

flashmem Is a structure with pointers to flash access routines.

Return value

Returns one of the following:

0 If successful.

-1 If not successful.

6.5.28 fLib_FindFooter()

This function scans the flash memory from start for size bytes, returning a list of
pointers to the image footers.

Syntax

unsigned int fLib_FindFooter(unsigned int *start, unsigned int size,
tFooter *list[], tFlash *flashmem)
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 6-33

Flash Library Specification
where:

start Is a pointer to the address of the flash memory to be scanned.

size Is the size, in bytes, of the flash memory. If the size is defined as zero,
only the address of the next footer found is returned.

list Is a pointer to a list of pointers to footers. The list must be large enough
to contain:

• a pointer to each logical block of flash in the specified area

• a final pointer that will point to null.

flashmem Is a structure with pointers to flash access routines.

Return value

Returns the number of flash footers found.

6.5.29 fLib_BuildFooter()

This function builds a footer for the specified image. The image structure already
contains all information about the program image in memory. This function must
convert these pointers to their final values in flash.

Syntax

int fLib_BuildFooter(tFooter *foot, tFlash *flashmem)

where:

foot Is a pointer to the footer to be built.

flashmem Is a structure with pointers to flash access routines.

Return value

Returns one of the following:

0 If successful.

-1 If not successful.
6-34 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

Flash Library Specification
6.6 File processing functions

This section documents the set of file processing function calls. The functions are listed
in the order as documented in File processing functions, listed by type on page 6-16. All
functions and type definitions are contained in flash_lib.h.

6.6.1 fLib_ReadFileRaw()

This function reads up to size bytes from the open file fp.

Syntax

unsigned int fLib_ReadFileRaw(unsigned int *value, unsigned int size,
tFile_IO *file_IO, tFILE *fp)

where:

value Is a pointer to the destination memory address to which the contents of
the file is copied.

size Is the number of bytes to be read.

file_IO Is a pointer to a structure that accesses the external file input/output by
way of simple input/output routines.

fp Is a pointer to an open file stream from which to read file data.

Return value

Returns one of the following:

count If successful, the number of bytes read is returned.

0 If not successful.

6.6.2 fLib_WriteFileRaw()

This function writes up to size bytes to the open file fp.

Syntax

unsigned int fLib_WriteFileRaw(unsigned int *value, unsigned int size,
tFile_IO *file_IO, tFILE *fp)
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 6-35

Flash Library Specification
where:

value Is a pointer to the source memory address from which the contents of the
file is copied.

size Is the number of bytes to be written.

file_IO Is a pointer to a structure that accesses the external file by way of simple
input/output routines.

fp Is a pointer to an open file stream to which file data is written.

Return value

Returns one of the following:

count If successful, the number of bytes written is returned.

0 If not successful.

6.6.3 fLib_OpenFile()

This function opens a file of the given filename in the given mode.

Syntax

File *fLib_OpenFile(char *filename, char *mode, tFile_IO *file_IO)

where:

filename Is a pointer to the name of the file on the host.

mode Is the mode in which the file should be opened, such as rb for read-only.

file_IO Is a pointer to a structure that accesses the external file input/output by
way of simple input/output routines.

Return value

Returns one of the following:

pointer If successful, a pointer to the file on the host is returned.

0 If not successful.
6-36 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

Flash Library Specification
6.6.4 fLib_CloseFile()

This function closes the specified file on the host.

Syntax

int fLib_CloseFile(File *file, tFile_Io *file_IO)

where:

file Is a pointer to the file on the host.

file_IO Is a pointer to a structure that accesses the external file I/O by simple I/O
routines.

Return value

Returns one of the following:

0 If successful.

-1 If not successful.

6.6.5 fLib_ReadFileHead()

This function reads the file header, determines the file type, and sets fields in image from
the data. The number of bytes read is returned in the field pointed to by size. The header
is copied to the buffer already defined in image->head.

Syntax

unsigned int fLib_ReadFileHead(File *file, tImageInfo *image,
unsigned int *size, tFile_IO *file_IO)

where:

file Is a pointer to the file on the host.

image Is a pointer to the image structure.

size Is a pointer to size of the data read from the host.

file_IO Is a pointer to a structure that accesses the external file I/O by simple I/O
routines.

Return value

Returns one of the following:

filetype If the file type is known, it is returned as from ENUM_FILETYPE.

0 If the file type is unknown.
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 6-37

Flash Library Specification
6.6.6 fLib_WriteFileHead()

This function writes the header pointed to by the image->footer to the specified file. The
header is parsed and the writeFile routine pointer is updated.

Syntax

unsigned int fLib_WriteFileHead(File *file, tImageInfo *image,
tFile_IO *file_IO)

where:

file Is a pointer to the file on the host.

image Is a pointer to the image structure.

file_IO Is a pointer to a structure that accesses the external file input/output by
way of simple input/output routines.

Return value

Returns one of the following:

count If successful, the number of bytes written is returned.

0 If there is no header.

6.6.7 fLib_ReadFile()

This function reads (and converts) 32-bit words from the open file.

Syntax

unsigned int fLib_ReadFile(unsigned int *value, unsigned int size,
tImageInfo *image, tFile_IO *file_IO)

where:

value Is a pointer to the memory address where the file data is copied.

size Is the number of bytes to be read.

image Is a pointer to the image structure.

file_IO Is a pointer to a structure that accesses the external file input/output by
way of simple input/output routines.

Return value

Returns one of the following:

count If successful, the number of bytes read is returned.

0 If not successful.
6-38 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

Flash Library Specification
6.6.8 fLib_WriteFile()

This function converts and writes 32-bit words to the open file.

Syntax

unsigned int fLib_WriteFile(unsigned int *value, unsigned int size,
tImage *image, tFile_IO *file_IO)

where:

value Is a pointer to the memory address.

size Is the number of bytes to be written.

image Is a pointer to the image structure.

file_IO Is a pointer to a structure that accesses the external file input/output by
way of simple input/output routines.

Return value

Returns one of the following:

count If successful, the number of bytes written is returned.

0 If not successful.
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 6-39

Flash Library Specification
6.7 SIB functions

System Information Blocks (SIBs) provide nonvolatile storage for applications. The
flash library can create a large block of memory called a SIB flash block that can then
be used by various applications to create or access individual SIBs within the larger
block. It is also possible for an application to ask for an entire SIB flash block if, for
example, the application requires very large SIBs or if the SIBs must not be accidently
modified by another applications.

The following functions are available to create and access SIBs:

• SIB_Open() on page 6-42

• SIB_Close() on page 6-43

• SIB_GetPointer() on page 6-43

• SIB_Copy() on page 6-44

• SIB_Program() on page 6-44

• SIB_GetSize() on page 6-45

• SIB_Verify() on page 6-45

• SIB_Erase() on page 6-46.

6.7.1 The SIB flash block

The SIB flash block contains multiple SIBs as shown in Figure 6-2 on page 6-41. The
SIBs contained within the SIB flash block are application-dependent. The flash library
defines how the SIB blocks are accessed but does not define the contents of the
individual SIBs.

The size limit for SIB blocks is 512 bytes and the index limit (number of SIBs with the
same name) is 64.
6-40 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

Flash Library Specification
Figure 6-2 SIB flash block

Flash blocks containing SIBs must be identifiable. The SIB flash block footer contains
a word that identifies the block as a SIB flash block. A SIB information block precedes
the footer and contains additional information about the block. Table 6-6 describes the
contents of the SIBInfo structure.

The SIB is defined as a C structure, as shown in Example 6-6 on page 6-42.

�
��
���
������(����

6��
��

,���� ������

�
��7

,���� ������

,���� ������

,���� ������

�
��8

�
��9

�
��:

&�����
������(����

Table 6-6 SIBInfo structure

Field
Size (in
bytes)

Value/usage

SIB unique number 4 Unique number for the SIB flash block (or blocks)
for system reference.

SIB block extension 4 Pointer to the start of this SIB flash block (some SIBs
require more than one flash block).

Label 16 Text label for identification of the SIB flash block.
This will generally be the initializing system name.

Checksum 4 Checksum for this footer. The checksum is the word
sum (with the carry wrapped into the least significant
bit) and is stored as the inverse of the sum.
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 6-41

Flash Library Specification
Example 6-6 SIBInfoType structure

typedef struct SIBInfoType
{
 unsigned32 SIB_number; /* Unique number of SIB Block */
 unsigned32 SIB_Extension; /* Base of SIB flash block */
 char Label[16]; /* String space for ownership string */
 unsigned32 checksum; /* SIB Image checksum */

}tSIBInfo;

6.7.2 SIB_Open()

SIB_Open() scans flash for SIB blocks and indexes the SIBs in a linked list for faster
access (an application might have multiple SIBs in different blocks). The application
can then access the SIBs by their index. This routine uses the fLib_FindFlash(),
fLib_OpenFlash(), and fLib_FindFooter() functions.

Syntax

int SIB_Open(char *idString, int *sibCount, int privFlag)

where:

idString Is provided by the application and is an identification string that will be
used to locate existing blocks and mark new ones.

sibCount Is set to the number of SIBs found.

privFlag Is zero for common access or nonzero for private access. Private access
means that the entire flash block is private.

Return value

Returns one of the following:

-1 If idString is already set.

0 If successful.
6-42 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

Flash Library Specification
6.7.3 SIB_Close()

SIB_Close() frees SIB access.

Syntax

int SIB_Close(char *idString)

where:

idString Is provided by the application and is an identification string that is used
to locate existing blocks and mark new ones.

Return value

Returns one of the following:

-1 If idString is already set.

0 If successful.

6.7.4 SIB_GetPointer()

SIB_GetPointer() gets the start address of SIB user data.

Syntax

int SIB_GetPointer(int sibIndex, void **dataBlock)

where:

sibIndex Is the index number of the SIB. The SIB indexes were identified by
SIB_Open().

dataBlock Is set to the address of the SIB user data.

Return value

Returns one of the following:

-1 If not successful.

0 If successful. dataBlock is set to the address.
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 6-43

Flash Library Specification
6.7.5 SIB_Copy()

SIB_Copy() gets a local copy of the user data in a SIB.

Syntax

int SIB_Copy(int sibIndex, void *dataBlock, int dataSize)

where:

sibIndex Is the index number of the SIB. The SIB indexes were identified by
SIB_Open().

dataBlock Is the base source address.

dataSize Is the free space at the source address.

Return value

Returns one of the following:

-1 If not successful.

0 If successful.

6.7.6 SIB_Program()

SIB_Program() creates a new SIB or updates an existing SIB with new user data.

Syntax

int SIB_Program(int sibIndex, void *dataBlock, int dataSize)

where:

sibIndex Is the new index number of the SIB. The existing SIB indexes were
identified by SIB_Open().

dataBlock Is the base source address.

dataSize Is the free space at the source address.

Return value

Returns one of the following:

-1 If not successful.

0 If successful.
6-44 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

Flash Library Specification
6.7.7 SIB_GetSize()

SIB_GetSize() gets the size of SIB data.

Syntax

int SIB_GetSize(int sibIndex, int *dataSize)

where:

sibIndex Is the index number of the SIB. The SIB indexes were identified by
SIB_Open().

dataSize Is set to the size of the SIB.

Return value

Returns one of the following:

-1 If not successful.

0 If successful.

6.7.8 SIB_Verify()

SIB_Verify() verifies the SIB is intact by checking the signature and checksum.

Syntax

int SIB_Verify(int sibIndex)

where:

sibIndex Is the index number of the SIB. The SIB indexes were identified by
SIB_Open().

Return value

Returns one of the following:

-1 If not successful.

0 If successful.
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 6-45

Flash Library Specification
6.7.9 SIB_Erase()

SIB_Erase() erases the SIB.

Syntax

int SIB_Erase(int sibIndex)

where:

sibIndex Is the index number of the SIB. The SIB indexes were identified by
SIB_Open(). The entry in active_sibs[sibIndex] is set to NULL.

Return value

Returns one of the following:

-1 If not successful.

0 If successful.
6-46 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

Flash Library Specification
6.8 Using the library

The flash library provides a wide range of routines, so it is recommended that you
understand how they work together. The sequences described in this section do not give
specific constructs, however they give a general indication of usage.

6.8.1 Starting up and finding flash

When the programming application starts on the target, the application must:

1. Define and locate the flash.

2. Verify that it is supported.

3. Scan for any images that have already been programmed.

Example 6-7 shows the functions that perform these operations.

Example 6-7 Functions used for start up

unsigned int fLib_DefinePlat(tFlash **flashmem);
unsigned int fLib_FindFlash(tFlash **flashmem);
int fLib_OpenFlash(tFlash *flashMem);
unsigned int fLib_FindFooter(unsigned int *start, unsigned int size,
 tFooter **list[], tFlash *flashmem);

6.8.2 Reading a file into memory

It is only necessary to read an image from the host once. Therefore, it is recommended
that you do not integrate the file that is read into the programming command. Instead,
perform a separate step to read the file first, such as by using a combined
read-and-program command. Example 6-8 shows the functions that perform these
operations.

Example 6-8 Functions used to read into memory

File *fLib_OpenFile(char *filename, char *mode, tFile_IO *file_IO);
unsigned int fLib_ReadFileHead(File *file, tImage *image,
 unsigned int *size, tFile_IO *file_IO);
unsigned int fLib_ReadFile(unsigned int *value, unsigned int size,
 tImage *image, tFile_IO *file_IO);
int fLib_CloseFile(File *file, tFile_IO *file_IO);
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 6-47

Flash Library Specification
6.8.3 Preparing and programming an image

After the image is loaded into memory, space must be found for the image and the image
footer has to be built before the image can be programmed. If an image is relocated into
memory when executed, it can be programmed into any available flash space. If there
is no room for the desired image in flash, an existing image will have to be deleted.

The image number must be checked to ensure that it is unique. If image numbers were
not unique, there would be problems selecting one of the multiple images to execute.
After the image is written, the footer should be rescanned to update the image list. (The
image numbers are logical numbers and are not related to the order of the images in
flash.) Example 6-9 shows the functions that perform these operations.

Example 6-9 Functions used for programming

int fLib_FindImage(tFooter **list, unsigned int imageNo, tFooter *foot,
 tFlash *flash);
int fLib_GetEmptyFlash(tFooter **list, unsigned int *search_start,
 unsigned int *location, unsigned int empty,
 tFlash *flash);

or:

int fLib_GetEmptyArea(tFooter **list, unsigned int &location,
 unsigned int empty, tFlash *flash);
int fLib_DeleteArea(unsigned int *address, unsigned int size, tFlash *flash);
int fLib_BuildFooter(tFooter *foot, tFlash *flash);
int fLib_ChecksumFooter(tFooter *footer, unsigned int *foot_sum,
 unsigned int *image_sum, tFlash *flash);
int fLib_WriteImage(tImageInfo *image, tFlash *flash, unsigned int *current,
 tFooter *foot);

or:

int fLib_WriteArea(unsigned int *address, unsigned int *data,
 unsigned int size, tFlash *flashmem);
tFooter* fLib_WriteFooter(tFooter *foot, tFlash *flash,
unsigned int *foot_data, unsigned int *image_data);
unsigned int fLib_FindFooter(unsigned int *start,
 unsigned int size, tFooter *list[], tFlash *flash);

6.8.4 Reading an image to a file

The process described in Preparing and programming an image can be reversed to
produce a file on the host from a flash image. Example 6-10 on page 6-49 shows the
functions that perform these operations.
6-48 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

Flash Library Specification
Example 6-10 Functions used for reading

int fLib_FindImage(tFooter **list, unsigned int imageNo, tFooter *foot,
 tFlash *flash);
int fLib_VerifyFooter(tFooter *foot, tFlash *flash);
int fLib_ReadImage(tFooter *foot, tFlash *flash);
int fLib_ChecksumImage(tFooter *footer, unsigned int *image_sum, tFlash *flash);
tFILE *fLib_OpenFile(char *filename, char *mode, tFile_IO * file_IO);
unsigned int fLib_WriteFileHead(tFILE *file, tImageInfo *image,
 tFile_IO * file_IO)
fLib_WriteFile(unsigned32 *value, unsigned int size, tImageInfo *image,
 tFile_IO * file_IO);
int fLib_CloseFile(tFILE *file, tFile_IO * file_IO);

6.8.5 Executing an image

This process is very similar to the image read, but instead of copying to memory and
then to a file, the image is copied to memory only if specified, and then processor
control is passed to the image. Example 6-11 shows the functions that perform these
operations.

Example 6-11 Functions used for executing

int fLib_FindImage(tFooter **list, unsigned int imageNo, tFooter *foot,
 tFlash *flash);
int fLib_VerifyFooter(tFooter *foot, tFlash *flash);
int fLib_ReadImage(tFooter *foot, tFlash *flash);
int fLib_ChecksumImage(tFooter *footer, unsigned int *image_sum, tFlash *flash);
int fLib_ExecuteImage(tFooter *foot);
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 6-49

Flash Library Specification
6-50 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

Chapter 7
Using the ARM Flash Utilities

This chapter discusses the operation of utilities for accessing flash memory.

The ARM Flash Utility (AFU) provides functions for accessing the flash library as
described in Chapter 6 Flash Library Specification.

The ARM Boot Flash Utility (BootFU) and the ProgCards utility provide functions for
programming the boot and FPGA areas of flash memory.

This chapter contains the following sections:

• About the AFU on page 7-2

• Starting the AFU on page 7-3

• AFU commands on page 7-4

• The Boot Flash Utility on page 7-20

• BootFU commands on page 7-22.

See also Chapter 3 ARM Boot Monitor and Chapter 6 Flash Library Specification for
additional information about images in flash memory.
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 7-1

Using the ARM Flash Utilities
7.1 About the AFU

The AFU is an application for manipulating and storing data within a system that uses
the flash library. It is a target-based application designed to allow you to download code
onto an ARM development system, maintaining the ARM Flash Library structure. This
enables you to use ARM boot systems to run the code on the board.

The AFU can handle the following formats:

• ELF

• plain binary

• Motorola S-record format

• Intel hex format

• Compressed binary.

The AFU performs the following functions:

1. Reads the files from a host system.

2. Analyzes the required location (if applicable).

3. Writes the code image into the correct location in memory.

4. Strips the file header from the image and stores it immediately after the image.
This allows full reconstruction of the file where possible.

5. Adds an image information block after any file header information to allow flash
library-aware drivers to identify and run the code segments.

6. Stores the flash footer block at the subsequent block boundary to the image
information block. This allows for quick image search routines.
7-2 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

Using the ARM Flash Utilities
7.2 Starting the AFU

The AFU is designed to run within an ARM debug environment such as the ARM
Multi-ICE server and the ARM eXtendable Debugger (AXD) environment. The target
processor must have flash memory mapped to be noncacheable or configured to run
without caches. To set up and run the AFU:

1. Start up a debug session for the board requiring flash download.

Note
 If you are using Angel instead of Multi-ICE, the Angel image must be present in

the development board and selected to run on reset.

2. Load the image afu.axf in the debugger.

3. Ensure the console window is active. If it is not, select Console from the View
menu.

4. Run the code by pressing F5, or by typing go in the command window, or by
clicking on the GO icon.

The console window appears in the foreground and becomes active, with the AFU
header similar to the following:

ARM Firmware Suite
Copyright (c) ARM Ltd 1999-2000. All rights reserved.

ARM Flash Utility
Program Version 1.0
Date: 29 Jan 2000

The AFU scans for flash components and defaults to the device at the lowest address.
After the flash device is selected, the AFU scans the flash for any images currently
programmed.

The following prompt is displayed when the AFU is ready to accept user input:

AFU>
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 7-3

Using the ARM Flash Utilities
7.3 AFU commands

This section describes each of the command-line entries the AFU can accept. It
describes the parameters required by the command, and shows the output generated by
the AFU. Table 7-1 lists the AFU commands.

7.3.1 User command explanation

The AFU has a very basic command interpreter with parsing for fast command typing.
There is no command-line buffering. You have to reenter in full any incorrect command
input.

The syntax of the commands shown in AFU commands shows both the full command
and the minimum character(s) required for the AFU parser to run the command. The
commands and short-cuts are not case sensitive.

Table 7-1 AFU commands

Command Short form Description

List on page 7-5 l Lists image footers

DiagnosticList on page 7-6 dia Examines flash blocks for possible
problems

TestBlock on page 7-11 t Tests the integrity of the block

Delete on page 7-11 delete Deletes a full image from flash

DeleteBlock on page 7-12 deleteb Deletes a specified block

DeleteAll on page 7-13 deletea Erases all flash blocks

Program on page 7-13 p Takes an image from a host computer and
places it in flash

Read on page 7-17 r Takes an image from memory and stores it
on the host computer

Quit on page 7-18 q Quits the current AFU session

Help on page 7-18 h Displays the AFU command summary

Identify on page 7-19 i Identifies the current active flash device
7-4 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

Using the ARM Flash Utilities
7.3.2 List

When the AFU scans the memory, it creates a list of recognized footers throughout the
memory block. The List command shows this list, and other information, from the
image footers and image information.

Syntax

list

Output

The list is formatted as shown in Table 7-2.

Example

In Example 7-1, the only image in the memory system is a single block image at block
17 called hello, where the entry point is at the start of the image.

Example 7-1 List command

AFU>List
Image 1 Block 17 End Block 17 address 0x24220000 exec 0x24220000 - name hello

Table 7-2 Output format of list

Name Format Explanation

Image n The specific image number you must enter when uploading and programming the
image. This number is unique in flash memory.

Block n The start block of the image.

End block n The final block of the image that contains, at least, the five word footer.

Address 0xhhhhhhhh The address of the start of the image in memory. This address corresponds with the
start of the start block.

Exec 0xhhhhhhhh The execution address of the image in memory. This might not be within the flash
memory boundaries if the image is to be copied to another memory location.

Name text The textual name given to the image when programming into memory.
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 7-5

Using the ARM Flash Utilities
7.3.3 DiagnosticList

This command has multiple functions to allow examination of the flash blocks to scan
for possible problems. This command is rarely used in normal operation of the AFU.

Syntax

diagnosticlist {all|section bn|footer bn|dump bn}

where:

all Scans through every block in the current device. Outputs the usage of
each block, as shown in Table 7-3.

If the image spans multiple blocks, each block is listed as used by the
same image number and image name.

The AFU can only recognize blocks that have been programmed to
conform to the flash library specification (see Image management on
page 6-10).

The list will only show images that have the correct flash image footer.
Any images not conforming to this are not shown, and the blocks
occupied by these are marked as unused.

The DiagnosticList all command (and the following DiagnosticList
section command) indents the used blocks to ensure that they can be
noticed. This is useful when the list is rapidly scrolling down the console
window.

Table 7-3 Output format of DiagnosticList all

Name Format Explanation

Block n The start block of the image.

Image number n The specific image number you must enter when uploading
and programming the image. This number is unique in flash
memory.

Type n The image type value, taken from the footer information.

Image text The textual name given to the image when programming
into memory.
7-6 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

Using the ARM Flash Utilities
section bn

Presents a list of identical format to DiagnosticList All, but only lists the
ten subsequent flash blocks after the user input start block n, where n is a
logical flash block number.

footer bn

Shows the footers of the subsequent five blocks after the input block
number n, where n is a logical flash block number, formatted to describe
the displayed information, as shown in Table 7-4.

The DiagnosticList Footer command does not only list valid footer
information, but it also lists any data found in the footer area of the listed
blocks. You must analyze the data given to see the valid footers, the areas
of code, and the unused blocks.

Table 7-4 Output format of DiagnosticList footer

Name Format Explanation

Block n The start block of the image, where n is a logical flash
block number.

Address 0xhhhhhhhh The address of the start of the image in memory. This
address corresponds with the start of the start block.

infoBase 0xhhhhhhhh The address of the image information block in memory,
that is at the end of the image.

blockBase 0xhhhhhhhh The address of the start of the image in flash memory.

Signature 0xhhhhhhhh A unique word value to distinguish the footer from any
code to allow for faster search operations.

Type 0xhhhhhhhh The image type as defined in the file flash_lib.h.

Checksum 0xhhhhhhhh The logical inverse of the word sum of the preceding four
words
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 7-7

Using the ARM Flash Utilities
dump bn Produces a hexadecimal dump of the first four words of the ten blocks
following the input block number n (where n is a logical flash block
number), as shown in Table 7-5. The DiagnosticList Dump command
makes block-based (not image-based) selections, and displays the first
four words of each block in the selected area starting at the input block.

Examples

The following examples (Example 7-2 to Example 7-5 on page 7-10) demonstrate
usage of each DiagnosticList command.

Example 7-2 DiagnosticList all command

AFU>DiagnosticList All
Block Number 0 unused
Block 1 Image Number 1 type 1 Used by image hello_world
Block 2 Image Number 2 type 1 Used by image dhrystone
Block 3 Image Number 2 type 1 Used by image dhrystone

Block Number 4 unused
Block Number 5 unused
Block Number 6 unused
Block Number 7 unused
.
.
.
Block Number 255 unused

Table 7-5 Output format of DiagnosticList dump

Name Format Explanation

Block n The block number for the data being listed.

Address 0xhhhhhhhh The address of the first word being listed, that will correspond
with the block number shown.
7-8 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

Using the ARM Flash Utilities
Example 7-3 DiagnosticList footer command

AFU>DiagnosticList Footer B1
Footer for Block 1 at Address 0x24020000
infoBase : 0x2402330c
blockBase : 0x24020000
signature : 0xa00fff9f
type : 0x00000001
checksum : 0x0beddde0

Footer for Block 2 at Address 0x24040000
infoBase : 0x0a0000f0
blockBase : 0xe3570078
signature : 0x0a0000ae
type : 0x00000001
checksum : 0xe5940000

Footer for Block 3 at Address 0x24060000
infoBase : 0x2404330c
blockBase : 0x2404f000
signature : 0xa00fff9f
type : 0x00000001
checksum : 0x0be5fde0

Footer for Block 4 at Address 0x24080000
infoBase : 0xffffffff
blockBase : 0xffffffff
signature : 0xffffffff
type : 0xffffffff
checksum : 0xffffffff

Footer for Block 5 at Address 0x240a0000
infoBase : 0xffffffff
blockBase : 0xffffffff
signature : 0xffffffff
type : 0xffffffff
checksum : 0xffffffff

where:

Block 1 Is a correct footer because the signature is valid, and the infoBase and
BlockBase are within the bounds of the image address (similar to the block
address).

Block 2 Is either some random code of an image that spans two blocks (in this
case), or a block that does not conform to the library specification.
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 7-9

Using the ARM Flash Utilities
Block 3 Is the footer for block 2 and block 3 (blockBase shows the start of the
image).

Block 4 Is unused.

Block 5 Is unused.

Example 7-4 DiagnosticList dump command

AFU>DiagnosticList dump B1
Block 1
Address 0x24020000 : 0xe59f0034 0xe59f1034 0xe59f3034 0xe1500001
Block 2
Address 0x24040000 : 0xffffffff 0xffffffff 0xffffffff 0xffffffff
Block 3
Address 0x24060000 : 0xe59f0034 0xe59f1034 0xe59f3034 0xe1500001
Block 4
Address 0x24080000 : 0xffffffff 0xffffffff 0xffffffff 0xffffffff
Block 5
Address 0x240a0000 : 0xffffffff 0xffffffff 0xffffffff 0xffffffff
Block 6
Address 0x240c0000 : 0xffffffff 0xffffffff 0xffffffff 0xffffffff
Block 7
Address 0x240e0000 : 0xffffffff 0xffffffff 0xffffffff 0xffffffff
Block 8
Address 0x24100000 : 0xffffffff 0xffffffff 0xffffffff 0xffffffff
Block 9
Address 0x24120000 : 0xffffffff 0xffffffff 0xffffffff 0xffffffff
Block 10
Address 0x24140000 : 0xffffffff 0xffffffff 0xffffffff 0xffffffff

Example 7-5 DiagnosticList section command

AFU>DiagnosticList Section B1
Block 1 Image Number 1 type 1 Used by image hello_world
Block 2 Image Number 2 type 1 Used by image dhrystone
Block 3 Image Number 2 type 1 Used by image dhrystone

Block Number 4 unused
Block Number 5 unused
Block Number 6 unused
Block Number 7 unused
Block Number 8 unused
Block Number 9 unused
Block Number 10 unused
7-10 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

Using the ARM Flash Utilities
7.3.4 TestBlock

This command tests that the block is functional. A continually varying stream of words
is written to the block and the data actually written is read and compared to the original
data:

• If successful, the test displays worked and the test block is erased.

• Otherwise, the test displays the address and contents of the first five failures and
the total number of errors. The block is left unerased to allow further examination.

The TestBlock command initially checks for data in the block conforming to the flash
library specification, and does not allow any testing over a valid image. Example 7-6
shows the response to the command.

The block number must be included in the command line.

Syntax

testblock bn

where:

n Is the logical block number to be tested.

Example 7-6 TestBlock

AFU> TestBlock B200
Do you really want to do this (Y/N)? y
deleting block 200
Writing test pattern to block 200
Reading test pattern from block 200
Flash test of block 200 worked

7.3.5 Delete

The Delete command deletes the full image from flash memory as selected. Once
deleted, it cannot be retrieved. There is a final check to ensure the action is required.
Example 7-7 on page 7-12 shows the response to the command. You must input a valid
image number or no action will be taken.

Syntax

delete n
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 7-11

Using the ARM Flash Utilities
where:

n Is the image number of the full image to be deleted.

Example 7-7 Delete

AFU> Delete 4
Do you really want to do this (Y/N)? y
Scanning Flash blocks for usage

Deleting flash image 4
Scanning Flash blocks for usage

7.3.6 DeleteBlock

This command deletes the specified block input on the command line, irrespective of
any AFU images in flash. Example 7-8 shows the response to the command. There is a
final user check to ensure the action was intended.

Caution

 If used incorrectly, this command will damage images that span multiple blocks.

Syntax

deleteblock Bn

where:

n Is the number of the specific block to be deleted.

Example 7-8 DeleteBlock

AFU> DeleteBlock B17
Do you really want to do this (Y/N)? y
Delete flash block 17
Scanning Flash blocks for usage
7-12 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

Using the ARM Flash Utilities
7.3.7 DeleteAll

This command erases all flash blocks. Example 7-9 shows the response to the
command.

The DeleteAll action takes two minutes to complete on an ARM Integrator/CM920T
board.

Syntax

deleteall

Example 7-9 Delete

AFU> deletea
Do you really want to do this (Y/N)? y
Deleting flash blocks:
This takes approximately 2 minutes

AFU>

7.3.8 Program

This command takes an image from a host computer and places it in the flash memory
location that conforms with the flash library specification (see Image management on
page 6-10). A footer and image information block is appended to the image and header.

The AFU analyzes the input file, and tries to ascertain the storage address and image
type from the file. If the image type is unrecognized, the AFU defaults to binary storage
and stores the image either directly in the location defined in the command line, or in
the lowest available space within the flash blocks.

If the start location is omitted from the command input, the AFU uses the address taken
from the header, or, if this is not available, the AFU will search for the lowest space large
enough to house the image. The AFU always shows where the image is being stored (in
block numbers). If the image executes from RAM, it can be placed anywhere in flash
and the boot switcher will move it to RAM when it is run.

If the AFU discovers that the storage block is unavailable, it displays a warning and
returns. The AFU will not destroy any data found at the required address.

There is no restriction to the programming address of the image. The image can be
programmed to start anywhere within a block.
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 7-13

Using the ARM Flash Utilities
The AFU checks for the image number input already in use, and does not allow the
programming to take place if there is a duplication.

Images that have been compressed can also be programmed into flash. These images
must be:

• deflated with a utility such as Winzip or gzip

• linked to run from RAM

• the only contents of the compressed file.

If there is an error in the command line, the complete command must be retyped.

Syntax

program n name path\filename [location] [noboot] [z]

where:

n Is the unique number of the image to be programmed. This is a logical
number and is not related to the order of the images in flash.

name Is the name, up to 16 characters, to identify the image being programmed.
It does not have to be unique.

path\filename

Is the path to the required file being programmed into the flash. The path
and filename are retrieved using semihosting, so they must be the correct
format for the host system.

[location]

Is the optional address, or block number, of the start of the image in flash
memory, using one of the following formats:

• decimal base address

• hexadecimal base address

• block number specified as Bn, where n is a logical flash block
number.

noboot Is an optional flag to indicate to a boot switcher not to boot from this
image.

z Is an optional flag to indicate that the supplied file is a compressed binary
image.
7-14 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

Using the ARM Flash Utilities
Examples

In Example 7-10, a large image is programmed into a clean flash device. The unique
image number is entered as 0, and is named Large_Image. The image is retrieved from
an Windows system (a backslash is used), and the file is named large.axf.

In this case, the image start address is omitted. The input file is ELF (.axf), so the AFU
reads the start address from the image. The AFU shows that it has searched for the
space, and gives the address and block number for storage.

As the image spans the blocks, the progress is shown. Finally, the flash device is
scanned to update the image list, the new image is seen with the List command.

Example 7-10 Program Image command (large file)

AFU> Program 0 Large_Image d:\large.axf

Lowest available flash at location 0x24000000 block B0
The image load address is 0x24000000
Programming Block B0
Programming Block B1
Programming Block B2
Programming Block B3
Programming Block B4
Programming Block B5
Programming Block B6
Programming Block B7
Programming Block B8
Programming Block B9
Programming Block B10
Programming Block B11
Programming Block B12
Programming Block B13
Programming Block B14
Programming Block B15
Scanning Flash blocks for usage

AFU> list
Listing images in Flash
Image 0 Block 0 End Block 16 address 0x24000000 exec 0x24000000 -
name Large_Image
AFU>
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 7-15

Using the ARM Flash Utilities
In Example 7-11, a small file is programmed into Block 18. The AFU does not search
for available space because the location is specified in the command line. The area is,
however, checked to ensure that it is empty. The image is a binary file so there is no
alternative storage address in the header.

Example 7-11 Program Image command (small file)

AFU> Program 2 small_file d:\small.bin B18
Programming Block B18
Scanning Flash blocks for usage

AFU>

In Example 7-12, a compressed binary file is programmed into Block 25. The AFU will
indicate that the image is compressed and prompt for the start address (where in RAM
the image will be uncompressed to) and the execute address (where control is passed to
when the image boots).

Example 7-12 Program Image command (compressed file)

AFU> Program 4 compressed_file d:\compressed.bin B25 z
This image will be marked for de-compression.
Enter image load address [0x8000]:
Enter image execute address [0x8000]:
Programming Block B25
Programming Block B26
Programming Block B27
Scanning Flash blocks for usage

AFU>

In Example 7-13 on page 7-17, shows a list command followed by an attempt to
program the hello.axf image file to block 19.

The AFU prepares to insert the file at the correct execution address, but discovers that
the block is being used (the block is part of Image 0). The AFU does not proceed with
the download, but shows the error with the first block number involved. In this case, you
must investigate the clash and decide what to do (you must either delete Image 0 or
recompile hello.axf).
7-16 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

Using the ARM Flash Utilities
Example 7-13 List the outcome of Program Image

AFU> List

Listing images in Flash

Image 0 Block 0 End Block 16 address 0x24000000 exec 0x24000000 - name Large_Image
Image 1 Block 17 End Block 17 address 0x24220000 exec 0x24220000 - name hello
Image 2 Block 18 End Block 18 address 0x24240000 exec 0x24240000 - name small_file
Image 4 Block 25 End Block 27 address 0x24320000 exec 0x00008000 - name compressed_file
AFU> Program 3 A_Image d:\hello.axf B19
The image Load address is 0x24020000 from the header
There is not enough space for the image found at this location
As the image requires 0x00002f3c bytes
Please delete Block B1

AFU>

7.3.9 Read

This command takes an image from memory and stores it, in the original format, on the
host computer. The original header is stored first, followed by the code body. The image
is stored directly into filename on the host. The AFU does not alter the filename to
reflect the image type or add any extension.

The AFU halts the file storage if there are any problems detected by the host.

Syntax

read n pathname

where:

n Is the unique number of the image to be stored on the host computer.

pathname Is the filename, with complete path, to the required file being written to
the host computer. You must ensure that the path and filename are correct
for the host system since they are stored using semihosting.

In Example 7-14 on page 7-18, the image Hello is saved to the host system as test.tst.
The file is the exact copy of the original programmed file, inclusive of headers.
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 7-17

Using the ARM Flash Utilities
Example 7-14 Read

AFU> r 1 d:\test.tst
Reading Block Number 17 of image hello

AFU>

7.3.10 Quit

This command quits the current AFU session. After you quit the session, you must
restart the program.

Syntax

quit

7.3.11 Help

This command displays the AFU command summary.

Syntax

help

In addition to h, you can type ? to display the command summary.

Example 7-15 shows the output from the Help command.

Example 7-15 Help

AFU> Help
AFU command summary:

List - List images in flash
DiagnosticList <All> | <Section Bn> | <Footer Bn> | <Dump Bn> Bn = B<Block No.>

- Lists information stored in the Flash by block, footer or block start dump
TestBlock B<block-number>

- Write a test pattern to a particular flash block except block 255 (SIB
Block)
Delete <image-number>

- Delete an image in flash
DeleteBlock B<block-number>

- Deletes a block that appears not to be in an image
DeleteAll
7-18 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

Using the ARM Flash Utilities
- Deletes all blocks except block 255 (SIB Block)
Program <image-number> <image-name> <file-name> [<address> |or| B<block_no>]
[noboot]

- Program the given image into flash at address, 0x<hex_addr> or block number
Read <image-number> <file-name>

- Read the given image from flash into a file
Quit

- Quit
Help

- Print this help text
Identify

- Identify Flash Type
AFU>

7.3.12 Identify

This command identifies the current active flash device. It displays the known
information (as shown at startup) for the currently selected (active) flash device.

Syntax

identify

Example 7-16 shows the output from the Identify command.

Example 7-16 Identify

AFU> Identify
Current Active Flash device is :-
INTEL Flash device at 0x24000000 address : size 0x2000000
AFU>
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 7-19

Using the ARM Flash Utilities
7.4 The Boot Flash Utility

The ARM Boot Flash Utility (BootFU) allows you to modify the specific boot flash
sector on the system.

Caution

 The Boot Flash on the Integrator board contains important system setup data (the FPGA
initialization data) as well as the boot monitor and switcher code.

Modification of the boot flash on the Integrator board always involves a complete boot
flash chip erase prior to programming. If the flash is programmed with incorrect data it
halts operation of the board. This is generally a catastrophic failure.

If a problem is found with the downloaded data, the BootFU options can halt
programming prior to erasing the flash device. This gives you a chance to backup the
flash information.

In addition to diagnostic functions, BootFU can:

• update the whole boot area from an Intel hex file containing boot monitor and
FPGA data

• update only the boot monitor area

• update only the FPGA area.

7.4.1 File Types

BootFU accepts ELF (.axf), binary (.bin), and Motorola M32 S-record (.mcs or .m32)
files for the downloaded image, although the filename and extension is not important
because the BootFU code checks the file type from the data records transferred.
7-20 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

Using the ARM Flash Utilities
7.4.2 Setup

BootFU must be loaded into the target system RAM to operate. This is usually done
using an ARM debugger, for example the ARM Debugger for Windows (ADW):

1. Connect the debugger to the board requiring a boot update.

Note

 It is recommended that you use Multi-ICE with your debugger. If you are using
Angel instead of Multi-ICE, the Angel image must be present in the development
board and selected to run on reset.

2. Use the Load Image command to load the bootfu.axf into RAM at address
0x8000.

3. Ensure the console window is active. If it is not, select Console from the View
menu.

4. Run the utility by pressing F5 or selecting Execute → Go.

The Console window shows a header message similar to:

ARM Firmware Suite
Copyright (c) ARM Ltd 1999-2000. All rights reserved.

Boot Flash Utility
Program Version 1.1
Date: 26 Jan 2000

The utility checks the available flash on the system and show the message:

Searching for flash devices
Flash device 1 found at 0x20000000 (4 blocks of size 0x20000)
Flash device 2 found at 0x24000000 (256 blocks of size 0x20000)
Device 1 found as Boot device
Scanning Flash blocks for usage

BootFU programs boot flash. Any flash not designated as Boot cannot be selected.

BootFU is ready for input when the BootFU> prompt is displayed. This is the input line
for any of the commands.
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 7-21

Using the ARM Flash Utilities
7.5 BootFU commands

You can enter the commands shown in Table 7-6 at the BootFU> prompt.

7.5.1 Help

You can see a summary of the commands by typing help, h or ?. Example 7-17 shows
the response to the command.

Syntax

help

Example 7-17 Help example

BootFU> ?
ARM BootFU command summary:

List - List images in flash
DiagnosticList <Footer Bn> | <Dump Bn> Bn = B<Block No.>
 - Lists information stored in the Flash by footer
 or block start dump

Table 7-6 Commands

Command
Short
form

Description

Help h or ? Displays commands.

List on page 7-23 l Lists the images currently programmed into
flash.

DiagnosticList on page 7-23 dia Lists the first four words of the selected
block or the selected block footer
information.

Program on page 7-24 p Programs the boot flash.

Read on page 7-27 r Uploads an image to the host file system.

Quit on page 7-27 q Quit the Boot Flash Utility.

Identify on page 7-27 i Identifies the current active flash device.

ClearBackup on page 7-28 c Deletes any backup images stored in the
system flash.
7-22 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

Using the ARM Flash Utilities
Program [i<image-number>] [*<image-name>] <file-name> [b<block_no>] [!]
 - Program the given image into flash block number -
 ! means no boot backup
Read <image-number> <file-name>
 - Read the given image from flash into a file
Quit - Quit
Help - Print this help text
Identify - Identify Flash Type
ClearBackup - Removes any Boot backup images from the main system flash

7.5.2 List

This command lists the images currently programmed into flash. If the image has a
header, its information is displayed. If there is only unstructured data in the flash, it is
displayed as unformatted data.

Syntax

list

Example 7-18 List Example

BootFU> list
Block 0 Image Number 4280910 type 1 Used by image Boot_Monitor
Block 1 is unused
Block 2 Has unformatted data
Block 3 Has unformatted data

In Example 7-18, the boot monitor has footer information applied to it as Image1. The
FPGA setup data in the upper two blocks never has footer information applied. If the
entire boot area is programmed from Intel hex files, there is no footer information. The
listing only shows the programmed blocks as unformatted data.

7.5.3 DiagnosticList

The DiagnosticList command allows the listing of the first four words of the selected
block or the selected block footer information. Example 7-19 on page 7-24 shows the
response.

Syntax

diagnosticList f bn|d bn
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 7-23

Using the ARM Flash Utilities
where:

n Is the unique number of the block.

f Lists the block footer of the selected block.

d Dumps the first four words of the selected block.

Example 7-19 DiagnosticList Example

BootFU> dia f b0
Footer for Block 0 at Address 0x20000000
infoBase : 0xffffffff
blockBase : 0xffffffff
signature : 0xffffffff
type : 0xffffffff
checksum : 0xffffffff

Footer for Block 1 at Address 0x20020000
infoBase : 0xffffffff
blockBase : 0xffffffff
signature : 0xffffffff
type : 0xffffffff
checksum : 0xffffffff

Footer for Block 2 at Address 0x20040000
infoBase : 0xadffbfbf
blockBase : 0xff6fdff6
signature : 0x9ffeffdf
type : 0xfcffefef
checksum : 0xfffffffe

Footer for Block 3 at Address 0x20060000
infoBase : 0xb5deebb5
blockBase : 0xebb55feb
signature : 0x5bebb55e
type : 0xf8dafff5
checksum : 0xff847a08

7.5.4 Program

This is the most important command in the BootFU as it starts programming the boot
flash. It is also potentially the most damaging. The command requires at least the path
and filename parameters.

All of the options are position-independent but it is recommended that the binary-only
options are included for any binary downloaded files.
7-24 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

Using the ARM Flash Utilities
Syntax

program path_and_file [bblnum] [iimnum] [*string] [!]

where:

path_and_file

Is the full path to the file and consists of:

• the path

• the file separator used on the host operating system

• the name of the file.

blnum Is the block number to be programmed.

imnum Is the image number for the footer information for binary files.

Caution
 Boot monitor, and only boot monitor, must be programmed with image

number 4280910 in order for it to identify itself.

string Is the name of the image for the footer information for binary files.

! Specifies not to backup the boot area (for systems such as Integrator that
have only a single block of boot flash).

Note
 On systems with multiple blocks of boot flash, this command is not

supported as there is no benefit in backing up the rest of the device.

Examples

Example 7-20 shows a complete boot area program from an Intel hex file.

Example 7-20 Program boot area

BootFU> program d:\test.mcs

* WARNING: re-programming the Boot Flash can cause the system *
* to cease operation - if the images are corrupted or *
* incorrect. Are you sure you wish to continue? *

Do you really want to do this (y/N)? y
Backing up boot image
Boot Image backed up to board flash
Deleting Boot Flash area
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 7-25

Using the ARM Flash Utilities
Decoding and Writing .mcs type file
Scanning Flash blocks for usage
BootFU>

In Example 7-21 the boot monitor code in block 0 is being updated. The system FPGA
data is restored from the backup image stored in the main system flash.

Example 7-21 Program block 0

BootFU> program i4280910 *Boot_Monitor d:\boot.axf b0

* WARNING: re-programming the Boot Flash can cause the system *
* to cease operation - if the images are corrupted or *
* incorrect. Are you sure you wish to continue? *

Do you really want to do this (y/N)? y
Backing up boot image
Boot Image backed up to board flash
Deleting Boot Flash Area
Writing Binary type file
Programming Block B0
Restoring unprogrammed boot flash from Backup
Deleting Backup
Scanning Flash blocks for usage
BootFU>

BootFU operation includes checks to ensure that the correct data is used to update the
image.

The standard operation of BootFU is usually either:

program path\filename

This is for the complete update of the boot flash.

program path\filename bn in *string

For updates, the identifier parameter is optional for image recognition of
binary files.

The no backup option (!) is not recommended. It reduces the program time but it is not
as safe as backing up the data in the system flash.
7-26 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

Using the ARM Flash Utilities
7.5.5 Read

This command allows an image (specifying the image number as inumber) or a block
(specifying the block number as bnumber) to be uploaded to the host file system. You
must add the path and filename parameters to the command. If block 0 is requested the
entire boot device is uploaded and saved. The output file is a pure binary file.

Syntax

read in| bn path_and_file

where:

n Is the unique number of the image or block.

i Reads the selected image.

b Reads the selected block.

path_and_file

Is the full path to the file and consists of:

• the path

• the file separator used on the host operating system

• the name of the file.

7.5.6 Quit

This command quits the BootFU.

Syntax

quit

7.5.7 Identify

This command identifies the current active flash device. This displays the flash type
(boot), device physical base address, and device size in bytes.

Syntax

identify
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 7-27

Using the ARM Flash Utilities
7.5.8 ClearBackup

This command deletes any backup images stored in the system flash. The backup
images are automatically cleared by the utility when the boot flash is fully programmed.
Use this option if there has been a catastrophic (power) failure during programming and
the backup file has not been removed. The clear command deletes all backup files
programmed into the system flash.

Syntax

clear

7.5.9 BootFU Warning messages

If a binary file is downloaded with no block number, it is placed at block 0 by default.
The warning message in Example 7-22 is displayed with the option to quit the program
command.

Example 7-22 Download warning message

* WARNING: No backup has been made and the downloaded file is a *
* binary file - Are you sure that the data loaded will *
* restore the full required boot images..............? *

Do you really want to do this (y/N)?

If the downloaded file is a binary file and no backup has been requested, the warning
message in Example 7-23 is displayed with an option to quit the program command.

Example 7-23 Binary warning message

* WARNING: A binary file has been input without specifying the *
* target block, if you wish to proceed the block number*
* will default to 0 - if not the boot sector flash will*
* be restored from the backup *

Do you really want to do this (y/N)?
7-28 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

Chapter 8
PCI Management Library

This chapter describes the Peripheral Component Interconnect (PCI) library and how
you can use it to configure PCI subsystems. Its contains the following sections:

• About PCI on page 8-2

• PCI configuration on page 8-4

• The PCI library on page 8-8

• PCI library functions and definitions on page 8-14

• About µHAL PCI extensions on page 8-16

• µHAL PCI function descriptions on page 8-17

• Example PCI device driver on page 8-23.
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 8-1

PCI Management Library
8.1 About PCI

This section provides an introduction to the PCI terminology used in this chapter.
Figure 8-1 shows the major components of an example PCI system.

Figure 8-1 An example PCI system

Host
CPU

PCI
Host

Bridge
Video

PCI-PCI
Bridge

PCI-ISA
Bridge

Host
memory

Ethernet SCSI

Host bus

PCI bus 0

PCI bus 1
(e.g. CompactPCI)

Super I/O
controller

ISA bus

Upstream

Downstream

Upstream

Downstream
8-2 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

PCI Management Library
The system features illustrated in Figure 8-1 on page 8-2 are:

Host bus In this system, the CPU and host memory reside on the host bus.

Host bridge This is a device that allows transactions between the host bus and
PCI bus to take place. These typically support a variety of reads
and writes in both directions and might incorporate FIFOs to
support writes in both directions. The types of transactions
supported by the bridge are configurable.

In the case of the ARM Integrator, there is an additional bridge
between the host bus and system bus to which the processors and
memory connect. However, from the point of view of the PCI
functions, this bridge is transparent.

PCI-PCI bridge The electrical loading on a PCI bus is limited and there is a limited
number of devices that can be connected. To overcome this,
multiple PCI buses can be used. The different buses are connected
through PCI-PCI bridges. In this system, the PCI-PCI bridge
connects between bus 0 (used to access fast on-board peripherals)
and bus 1 (in this case is a CompactPCI backplane bus).

All devices connected to the PCI buses including bridges are
uniquely identified by the number of the bus to which they are
attached and the slot number they occupy on that bus. Typically,
the CPU or host bridge is in slot 0.

In the case of a multi-function PCI device, such as a combined
sound and video device, each function is treated as a different
device. In order to uniquely address a PCI device, specify the bus,
slot, and function numbers for that device.

PCI-ISA bridge The PCI-ISA bridge provides support for legacy devices. In this
example, a super input/output controller is used. The PCI-ISA
bridge translates PCI address cycles into ISA address cycles so
that the CPU can access the legacy devices on the ISA bus.

Primary bus In this system, PCI bus 0 is the primary (or upstream) bus for the
PCI-PCI bus. The primary bus for a particular bridge is the bus
nearer to the host CPU that controls the system.

Secondary bus In this system, PCI bus 1 is the secondary (or downstream) bus for
the PCI-PCI bridge.

The bus numbering is important. During initialization the bus
numbers are assigned by the CPU. However, device drivers do not
differentiate when communicating with devices on different PCI
buses.
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 8-3

PCI Management Library
8.2 PCI configuration

This section provides a brief software-biased overview of PCI configuration. The PCI
library contains software to fully configure PCI subsystems. This includes:

• scanning and identifying PCI devices on local and bridged PCI buses

• assigning device resources in PCI memory and I/O space

• allocating interrupt numbers

• numbering the PCI-PCI bridges.

The PCI library uses services exported from the µHAL library to access the PCI
subsystem in a generic way (see About µHAL PCI extensions on page 8-16).

The PCI component of the firmware base level contains the PCI library and example
applications. Source code is provided for the scanpci application that initializes the PCI
subsystem and displays its topology. A sample device driver is also provided that
initializes the PCI bus and assigns interrupt handlers (see Example PCI device driver on
page 8-23).

Caution
 If two VGA adaptors are fitted to the PCI bus, the library assigns them the same
addresses. This could cause incorrect operation or damage to the adaptors.

8.2.1 PCI address spaces

There are three PCI address spaces:

• configuration space

• I/O space

• memory space.

Configuration space

Each PCI device in the system has a 256-byte header in PCI configuration space. The
contents of this header are specified by the PCI standard and defines, among other
things:

• the device type

• the device manufacturer

• how much PCI I/O space the device requires

• how much PCI memory address space the device requires.
8-4 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

PCI Management Library
The address of a PCI Configuration header for a device is directly related to the location
of the device in the PCI topology. The system initialization code must locate the PCI
devices in the system by looking at all of the possible PCI configuration headers in PCI
Configuration space. The PCI configuration code is run by the host bridge. That is, the
processor that owns PCI bus 0.

To find the slot a PCI device is in, the CPU reads the first 32 bits of the PCI header for
the device by issuing a Type 0 PCI Configuration Cycle, (see Figure 8-2). Each slot is
addressed by setting one of bits [31:11]. For example, slot 0 is found by issuing a Type
0 PCI Configuration Cycle with bit 11 set high.

Figure 8-2 PCI Type 0 configuration cycle

The format of a PCI configuration header for a device is shown in Figure 8-3.

Figure 8-3 PCI configuration header

Device select Func Register

31 1110 8 7 2 1 0

00

78 8; 8< =

�������
� >������
�

�
�
"� 	������

	���������

�
���!������
��� 0�
�����
���� 	������������*�

��������������� ��
���

�
���"�
����
�
���"�
�����
=�7�

=�9:

=�8=

=�=�

=�=?

=�=:

=�==
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 8-5

PCI Management Library
The device and vendor identifiers are unique and completely identify the maker of the
PCI device and its type. In addition, the class code identifies the generic type of the
device (for example, video device). The Base Address Registers are used to request and
grant space in PCI I/O or memory spaces.

I/O space

PCI I/O space is used for small amounts of memory that the device makes accessible to
the main processor. Typically, this contains registers within the device.

Memory space

PCI memory space is used for much larger amounts of memory. Video devices often use
large amounts of PCI memory space.

8.2.2 PCI-PCI bridges

The PCI initialization code must recognize PCI-PCI bridges and configure them so that
addresses and data are passed between the upstream and downstream sides.

Except for the required initialization code, a PCI-PCI bridge is transparent to the PCI
devices in the system. PCI I/O and PCI Memory address spaces do not have a hierarchy.
Software running on the host bridge accesses a device without knowing whether the
device’s addresses were assigned to PCI I/O and PCI Memory.

The PCI configuration code uses a Type 1 PCI Configuration Cycle for addressing PCI
devices that are not on the primary bus (see Figure 8-4).

Figure 8-4 PCI Type 1 configuration cycle

The Type 1 Configuration cycle includes the bus number within the address.

78 9: 97 8; 8< 88 8= ? @ 9 8 =

�������� �"� ������������
 6"�� �� ��
�� = 8
8-6 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

PCI Management Library
The PCI-PCI bridges (between the host bridge and the final PCI bus to which the target
device is attached) are responsible for passing the Type 1 cycle along to the next bus.
The algorithm for this mechanism is:

• If the configuration cycle is for a device on the downstream bus, translate it to a
Type 0 cycle.

• If the Configuration cycle is for a device beyond the downstream bus, pass it on
to the next bridge unchanged (as a Type 1 cycle).

This means that the buses must be numbered in a particular order. When the type 1 PCI
configuration cycle reaches its destination bus, the final PCI-PCI bridge translates it into
a Type 0 configuration cycle.
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 8-7

PCI Management Library
8.3 The PCI library

The PCI library code has three main functions:

• to initialize the PCI subsystem, that is, to identify the PCI devices and buses in the
system and then assign them resources

• to locate PCI devices by device drivers

• to allow the PCI device drivers to control their devices.

8.3.1 Initializing the PCI subsystem

This is carried out in three phases:

1. Perform any host bridge initialization (using the system specific µHAL support
function).

2. Scan the local PCI bus for PCI devices. Some of the PCI devices found are
PCI-PCI bridges and, in this case, the PCI initialization code also scans for PCI
devices downstream of the PCI-PCI bridge. In doing this the code must number
the PCI buses.

3. Assign resources to the PCI devices. These resources are:

• areas of PCI I/O and PCI memory. PCI devices must be granted addresses
in PCI I/O and PCI Memory space and those addresses must be enabled.

• interrupt numbers. PCI devices must be given relevant interrupt numbers
that are meaningful to the device drivers in the application or operating
system.
8-8 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

PCI Management Library
8.3.2 Data structures

As the initialization code locates PCI devices, it builds a PCIDevice data structure
describing each one. These each have the format shown in Example 8-1.

Example 8-1 Building data structures

/* A PCI device, the PCI configuration code builds a list of PCI devices */
typedef struct PCIDevice {
 struct PCIDevice *next ; // next PCI device in the system (all buses)
 struct PCIDevice *sibling ; // next device on this bus
 struct PCIDevice *parent ; // this device's parent device Flags
struct {
unsigned int bridge : 1 ; // This is a PCI-PCI bridge device
unsigned int spare : 15 ;
} flags ;
// This part of the structure is only relevant if this is a PCI-PCI bridge
struct {
struct PCIDevice *children ; // pointer to child devices of this PCI-PCI
bridge
 unsigned char number ; // This bus's number
 unsigned char primary ; // number of primary bridge
 unsigned char secondary ; // number of secondary bridge
 unsigned char subordinate ; // number of subordinate buses
} bridge ;
// Vendor/Device is a unique key across all PCI devices.
unsigned short vendor ;
unsigned short device ;
// PCI Configuration space addressing information for this device
unsigned char bus ;
unsigned char slot ;
unsigned char func ;
} PCIDevice_t ;

The list is hierarchical, reflecting the PCI topology of the system. If the PCI device is a
PCI bridge, its children pointer points at the first PCI device found downstream of it.
Each PCI device is on two lists:

PCIroot Points at the host bridge

PCIDeviceList Points at all of the PCI devices in the system.

To find all of the PCI devices in the system, follow the address in PCIDeviceList through
the next pointer of each PCIDevice structure.
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 8-9

PCI Management Library
Figure 8-5 shows the PCIDevice structures for part of the example PCI system. PCIRoot
points at a host bridge that has two children (a PCI-ISA bridge and a PCI Video device).
PCIDeviceList points first at the host bridge and then at each of the PCI devices in the
system. For simplicity, the parent pointer for the PCI-ISA bridge and video device is
omitted from the figure.

The storage space for these data structures is either statically allocated or, if the system
supports it, allocated from µHAL heap storage.

Figure 8-5 PCI library data structure

Note
 These data structures are not exported beyond the PCI library, they are for internal use
and must not be used outside the library.

PCIDeviceList

PCIRoot PCIDevice_t

next

sibling

children

Host bridge

PCIDevice_t

next

sibling

children

PCI-ISA
bridge

PCIDevice_t

next

sibling

children

PCI video
device
8-10 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

PCI Management Library
8.3.3 Host bridge initialization

This function is board-specific and contained in the function uHALir_PCIInit(). This
function initializes the PCI host and enables the PCI access functions and primitives to
function. This function is expected to be able to safely re-initialize the PCI subsystem.

8.3.4 Scanning the PCI system

During scanning, the PCI initialization code:

1. Builds a PCIDevice data structure describing the host bridge.

2. Issues Type 0 configuration cycles looking for all of the devices attached to this
bus.

3. Builds a PCIDevice data structure for each device it finds and adds it as a child of
bus 0 and into PCIDeviceList.

If the device is a multi-function device (as indicated by the Header Type field of the PCI
Configuration Header), the scanning code creates one PCIDevice data structure for each
function.

If the device is a PCI-PCI bridge, the scanning code scans the downstream PCI buses
looking for more PCI devices and bridges. This depth-wise recursive algorithm is used
in order that the buses attached to each PCI-PCI bridge can be correctly numbered.

The scanning phase is complete when:

• the PCI library has a built tree of PCIDevice data structures that describe the
topology of the PCI subsystem

• the PCI buses have been numbered.

8.3.5 Assigning resources to PCI devices

The next phase is to assign areas of PCI I/O and PCI Memory and, if necessary, an
interrupt number to each of the PCI devices in the system.

PCI-PCI bridges must be configured to allow downstream accesses of PCI I/O and PCI
Memory for those devices attached to their secondary PCI bus.

Assigning PCI I/O and Memory areas

The PCI Configuration header for each device contains a number of Base Address
Registers (BARs). These describe the type of PCI address space the device requires and
how much it requires. The device initialization code requests this information by writing
1s to all bits of each BAR in the device and reading back the result.
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 8-11

PCI Management Library
If the device returns a nonzero value, the PCI initialization code must assign it an area
of PCI I/O or PCI Memory space according to the value of bit 0. If bit 0 is:

0 The request is for PCI I/O space.

1 The request is for PCI memory space.

The PCI library assigns the next area of the address space that the device has requested
and enables access to that type of memory (using the Command field of the PCI
Configuration Header).

The location of a device is defined by writing the assigned address back to the
appropriate BAR. Figure 8-6 shows the format of PCI Memory space addresses.

Figure 8-6 Base address for PCI Memory space

Figure 8-7 shows the format of PCI I/O space address.

Figure 8-7 Base address for PCI I/O space

The PCI configuration code ensures that assigned addresses are naturally aligned. For
example, if a PCI device requests 0x40000 bytes of PCI Memory, they align the allocated
address on a 0x40000 byte boundary.

PCI-PCI bridges pass PCI Memory and PCI I/O cycles from their upstream side to the
downstream side if the address is assigned to one of the downstream devices. Each
PCI-PCI bridge stores two pairs of addresses in its BARs that define the upper and lower
bounds of the PCI Memory and PCI I/O address spaces downstream of the bridge.

Access to these two spaces must be enabled by using the command field of the PCI
Configuration header. All PCI I/O and PCI memory addresses downstream, including
those beyond any downstream PCI-PCI bridges, must be assigned within these spaces.
Address assignment is carried out using a recursive algorithm with addresses beyond
the farthest bridges being assigned first.

Base address

31 234 1 0

0P Type

P = prefetchable

Base address

31 2 1 0

1R

R = reserved
8-12 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

PCI Management Library
Assigning interrupt numbers

The PCI specification describes the function of the interrupt line field of the PCI
configuration header as operating system dependent, but intended to pass interrupt
routing information between the operating system and the device driver. During PCI
initialization, the PCI set-up code writes a value into the field. Later, when the device
driver initializes the device, it reads the value and passes it to the operating system,
requesting an interrupt when the triggering event occurs. When an interrupt is triggered,
the operating system must route the interrupt to the correct device driver.

Typically, this value is an offset into the Programmable Interrupt Controller register. For
example, the value 5 would mean bit 5 of the register. It is not important what the
number is, but the operating system interrupt handling code and the PCI setup code
must agree on the meaning.

Each PCI device has four interrupt pins labeled A, B, C, and D. The interrupt pin used
by a device is defined in the PCI configuration header for the device in the interrupt pin
field. The routing of interrupts between slots and the interrupt controller is entirely
system specific. For this reason, the PCI library uses the board-specific function
uHALir_PCIMapInterrupt() to find out how interrupts are routed on a particular board.

The interrupt controller might have as few as four PCI interrupts (one per pin) or as
many as (number of slots x 4). PCI interrupts might be shared by other devices. In other
words, they must allow for their interrupt handler being called with no work to do.

Interrupts from downstream devices are routed through each bridge. Depending on the
slot number of the device, the interrupt pin might be transposed as it crosses the bridge.
For example, a PCI device interrupting on downstream pin B basic can cause pin C on
the upstream side of the bridge to be asserted. The algorithm for working out the
upstream interrupt pin that is asserted given a downstream slot number and interrupt pin
is:

upstream_pin = (((downstream_pin - 1) + slot) % 4) + 1

where Pin A is 1, B is 2, C is 3, and D is 4. A value of 0, means default (Pin A).

The PCI initialization code applies this algorithm once for each PCI-PCI bridge
between the PCI device and the host bridge. When it reaches bus 0, it takes the final pin
number and the slot number of the PCI-PCI bridge and calls uHALir_PCIMapInterrupt()
to return the interrupt number for the device.

8.3.6 Rebuilding the PCI library

The board-specific subdirectories of the lib directory contains variants of the PCI
library in archive format. There are also project files and makefiles in the board-specific
subdirectories of AFSv1_4\Source\PCI\Build\.
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 8-13

PCI Management Library
8.4 PCI library functions and definitions

The PCI library provides three functions and a number of definitions. These are all
contained in AFSv1_4\Source\PCI\Sources\pcilib.h. The PCI library is also used within
the boot monitor component. Currently the PCI Library functions on the Intel IQ80310
(XScale-based evaluation board) and on ARM Integrator systems.

The functions are described in

• PCIr_Init

• PCIr_ForEveryDevice

• PCIr_FindDevice

• PCI definitions on page 8-15.

8.4.1 PCIr_Init

This function initializes the PCI subsystem by calling the system-specific
uHALir_PciInit() function.

Syntax

void PCIr_Init(void)

8.4.2 PCIr_ForEveryDevice

This function calls the given function once for every PCI device in the system passing
the bus, slot, and function numbers for the device. No ordering of devices can be
assumed.

Syntax

void PICir_ForEveryDevice (void (action) (unsigned int, unsigned int,
unsigned int))

8.4.3 PCIr_FindDevice

This function finds a particular instance of the PCI device given its vendor and device
identifier.

Syntax

int PCIr_FindDevice(unsigned short vendor, unsigned short device, unsigned int
instance, unsigned int *bus, unsigned int *slot,
unsigned int *func)
8-14 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

PCI Management Library
where:

vendor Is the vendor identifier.

instance Is the instance number.

device Is the device identifier.

bus Is the PCI bus to which the device is attached.

slot Is the slot number of the device.

func Is the function of the device.

Return value

0 If it has found the device. The bus, slot, and function number for the
device is set up.

nonzero There is not instance occurrences of such a device.

8.4.4 PCI definitions

There are a number of system-specific PCI definitions that are used by the PCI library.
These are listed in Table 8-1.

Table 8-1 PCI definitions

Definition Function

UHAL_PCI_IO The local bus address that PCI I/O space has been mapped to.

UHAL_PCI_MEM The local bus address that PCI Memory space has been
mapped to.

UHAL_PCI_ALLOC_IO_BASE The address in PCI I/O space that the PCI address allocation
must start allocating from.

UHAL_PCI_ALLOC_MEM_BASE The address in PCI Memory space that the PCI address
allocation must start allocating from.

UHAL_PCI_MAX_SLOT The maximum number of PCI slots available on PCI bus 0.
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 8-15

PCI Management Library
8.5 About µHAL PCI extensions

The ARM Firmware PCI library is independent of the particular system that it is
running on. This means that it relies on board-specific code within the µHAL library to
initialize the PCI subsystem.

The µHAL PCI extensions provide the following functionality to the PCI library:

Host bridge initialization

This system-dependent initialization is usually performed at
system startup and involves setting up the host bridge interface
(for example the V360EPC chip on the Integrator system) so that
the generic PCI library can access all three areas of PCI memory.
This code is held in board.c and driver.s (or b_pci.c and t_pci.s)
in the appropriate AFSv1_4\Source\uHAL\Boards\board_name
directory. For example, Integrator PCI code is in
AFSv1_4\Source\uHAL\Boards\INTEGRATOR.

Access primitives Access primitives allow access to the PCI memory spaces. These
are functions and C macros that allow code to access areas of PCI
memory without knowing how these areas of memory are mapped
to and from local bus memory.

Each PCI supporting target must supply a set of functions that
allow access to the three PCI address spaces. Within these
functions the target software might need to perform
system-specific operations. This system-specific code is external
to the PCI library. The set of functions that are supplied as
board-specific code (in AFSv1_4\Source\uHAL\Boards\board_name)
are described later in this section.

Interrupt routing Each PCI supporting board must supply a function that returns the
interrupt number that is associated with the given PCI slot and
interrupt pin. This information is used by the PCI library as it
assigns resources to individual PCI devices.

PCI resource allocation

The µHAL library for a PCI supporting board exports code and
definitions in the µHAL definition file
AFSv1_4\Source\uHAL\h\uhal.h.

8-16 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

PCI Management Library
8.6 µHAL PCI function descriptions

The standard µHAL library for a particular system includes system-specific PCI
extensions to µHAL and system-specific initialization code. This section describes the
following µHAL PCI functions:

• uHALir_PCIInit

• uHALr_PCIHost

• uHALr_PCICfgRead8 on page 8-18

• uHALr_PCICfgRead16 on page 8-18

• uHALr_PCICfgRead32 on page 8-19

• uHALr_PCICfgWrite8 on page 8-19

• uHALr_PCICfgWrite16 on page 8-19

• uHALr_PCICfgWrite32 on page 8-20

• uHALr_PCIIORead8 on page 8-20

• uHALr_PCIIORead16 on page 8-21

• uHALr_PCIIORead32 on page 8-21

• uHALr_PCIIOWrite8 on page 8-21

• uHALr_PCIIOWrite16 on page 8-22

• uHALr_PCIIOWrite32 on page 8-22

• uHALir_PCIMapInterrupt on page 8-22.

8.6.1 uHALir_PCIInit

This function initializes the host bridge, for example the V360EPC chip on the
Integrator. This board-specific code is not normally called by an application (therefore
it has a uHALir prefix). Rather, it is called by the PCI library initialization code
PCIr_Init().

Syntax

void uHALir_PCIInit(void)

8.6.2 uHALr_PCIHost

This function tests the board for PCI support.

Syntax

unsigned char uHALr_PCIHost(void)
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 8-17

PCI Management Library
Returns

TRUE If the system supports PCI.

FALSE If the system does not support PCI.

8.6.3 uHALr_PCICfgRead8

This function reads 8 bits from PCI Configuration space.

Syntax

unsigned char uHALr_PCICfgRead8(unsigned int bus, unsigned int slot,
unsigned int func, unsigned int offset)

where:

bus Is the PCI bus to which the device is attached.

slot Is the slot number of the device.

func Is the function of the device.

offset Is the register offset of the device.

Returns

The 8-bit char from the configuration space.

8.6.4 uHALr_PCICfgRead16

This function reads 16 bits from PCI Configuration space.

Syntax

unsigned short uHALr_PCICfgRead16(unsigned int bus, unsigned int slot,
unsigned int func, unsigned int offset)

where:

bus Is the PCI bus to which the device is attached.

slot Is the slot number of the device.

func Is the function of the device.

offset Is the register offset of the device.

Returns

The 16-bit short from the configuration space.
8-18 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

PCI Management Library
8.6.5 uHALr_PCICfgRead32

This function reads 32 bits from PCI Configuration space.

Syntax

unsigned int uHALr_PCICfgRead32(unsigned int bus, unsigned int slot,
unsigned int func, unsigned int offset)

where:

bus Is the PCI bus to which the device is attached.

slot Is the slot number of the device.

func Is the function of the device.

offset Is the register offset of the device.

Returns

The 32-bit word from the configuration space.

8.6.6 uHALr_PCICfgWrite8

This function writes 8 bits to PCI Configuration space.

Syntax

void uHALr_PCICfgWrite8(unsigned int bus, unsigned int slot, unsigned int func,
unsigned int offset, unsigned char data)

where:

bus Is the PCI bus to which the device is attached.

slot Is the slot number of the device.

func Is the function of the device.

offset Is the register offset of the device.

data Is the data written to the device.

8.6.7 uHALr_PCICfgWrite16

This function writes 16 bits to PCI Configuration space.

Syntax

void uHALr_PCICfgWrite16(unsigned int bus, unsigned int slot, unsigned int
func, unsigned int offset, unsigned short data)
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 8-19

PCI Management Library
where:

bus Is the PCI bus to which the device is attached.

slot Is the slot number of the device.

func Is the function of the device.

offset Is the register offset of the device.

data Is the data written to the device.

8.6.8 uHALr_PCICfgWrite32

This function writes 32 bits to PCI Configuration space.

Syntax

void uHALr_PCICfgWrite(unsigned int bus, unsigned int slot, unsigned int func,
unsigned int offset, unsigned int data)

where:

bus Is the PCI bus to which the device is attached.

slot Is the slot number of the device.

func Is the function of the device.

offset Is the register offset of the device.

data Is the data written to the device.

8.6.9 uHALr_PCIIORead8

This function reads 8 bits from PCI I/O space.

Syntax

unsigned char uHALr_PCIIORead8(unsigned int offset)

where:

offset Is the address.

Returns

The 8-bit char from the I/O space.
8-20 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

PCI Management Library
8.6.10 uHALr_PCIIORead16

This function writes 16 bits from PCI I/O space.

Syntax

unsigned short uHALr_PCIIORead16(unsigned int offset)

where:

offset Is the address.

Returns

The 16-bit short from the I/O space.

8.6.11 uHALr_PCIIORead32

This function reads 32 bits from PCI I/O space.

Syntax

unsigned int uHALr_PCIIORead32(unsigned int offset)

where:

offset Is the address.

Returns

The 32-bit int from the I/O space.

8.6.12 uHALr_PCIIOWrite8

This function writes 8 bits to PCI I/O space.

Syntax-

void uHALr_PCIIOWrite8(unsigned int offset, unsigned char data)

where:

offset Is the register offset of the device.

data Is the data written to the device.
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 8-21

PCI Management Library
8.6.13 uHALr_PCIIOWrite16

This function writes 16 bits to PCI I/O space. The address is given by the offset
argument.

Syntax

void uHALr_PCIIOWrite16(unsigned int offset, unsigned short data)

where:

offset Is the register offset of the device.

data Is the data written to the device.

8.6.14 uHALr_PCIIOWrite32

This function writes 32 bits to PCI I/O space. The address is given by the offset
argument.

Syntax

void uHALr_PCIIOWrite32(unsigned int offset, unsigned int data)

where:

offset Is the register offset of the device.

data Is the data written to the device.

8.6.15 uHALir_PCIMapInterrupt

This function returns the interrupt number associated with this PCI slot and interrupt
pin.

Syntax

unsigned char uHALir_PCIMapInterrupt(unsigned char pin, unsigned char slot)

where:

pin Is the bit position of the interrupt in the programmable interrupt
controller for the system.

slot Is the slot number of the device.

Returns

The interrupt number as an 8-bit char.
8-22 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

PCI Management Library
8.7 Example PCI device driver

The PCI component of the ARM Firmware Suite contains an example PCI device driver
(in AFSv1_4\Source\Pci\Sources\example-driver.c). This demonstrates how a device
driver:

• finds the device

• examines its registers

• takes control of its interrupt.

These steps are carried out as follows:

1. Check that the system supports PCI (or is a PCI host):

/* Must be PCI host to initialise the bus */
 if (!uHALr_PCIHost ()) {
 uHALr_printf ("Not PCI host - can't scan the bus \n");
 return (OK);
}

2. If the system is a PCI host, initialize the PCI subsystem:

/* initialise the bus */
 uHALr_printf ("Initialising PCI");
 PCIr_Init ();
 uHALr_printf ("...done \n");

3. Scan the system for the PCI device of interest. In this example, a Digital 21142
ethernet device (with a vendor ID of 0x1011 and a device ID of 0x0019):

/* look for the Digital 21142 ethernet device */
if (PCIr_FindDevice(DIGITAL, TULIP21142, 0, &bus, &slot,
 &func) == 0) {
 unsigned int ioaddr, memaddr, irq ;
 int i ;

The instance number in this case is 0 because the code is looking for the first
instance. To find the next instance, make another call to PCIr_FindDevice() but
with an instance of 1.

4. If the device is found, print out the location of its command and status registers
(CSRs) in PCI I/O and PCI Memory. The code is shown in Example 8-2 on
page 8-24.

The addresses are from the PCI configuration header for the device. The device is
addressed using the PCI bus number, slot number and function number returned
by the call to PCIr_FindDevice() in the previous step.
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 8-23

PCI Management Library
Example 8-2 Identifying PCI device

/* found it, tell the world */
uHALr_printf("Found Digital 21142 ethernet device [%02d:%02d:%02d]\n",
 bus, slot, func) ;
/* work out the location of its CSRs in PCI IO and PCI Memory */
ioaddr = uHALr_PCICfgRead32 (bus, slot, func, PCI_MEM_BAR);
ioaddr &= ~0x0F ;
memaddr = uHALr_PCICfgRead32 (bus, slot, func, PCI_MEM_BAR+ 4);
memaddr &= ~0xF ;
uHALr_printf("\tCSRs are at 0x%08X (IO) and 0x%08X (Memory)\n",ioaddr,
 memaddr) ;

5. Make calls to read the device CSRs from PCI I/O space. The CSRs are 64-bit
aligned:

/* print out its CSRs (all 15) */
for (i = 0; i < 15; i++) {

uHALr_printf("\t\tCSR %02d: %08X\n", i,
uHALr_PCIIORead32(ioaddr + (i << 3))) ;

}

6. Find the interrupt number associated with this device from the PCI configuration
header.

/* Find its interrupt number and assign it */
irq = uHALr_PCICfgRead8 (bus, slot, func,

PCI_INTERRUPT_LINE);
uHALr_printf("\tIRQ is @ %d\n", irq) ;

7. Initialize the µHAL interrupt subsystem and request control of the interrupts. At
this point, if the device generates an interrupt, tulipInterrupt() is called.

/* init the irq subsystem in uHAL */
uHALr_InitInterrupts() ;
/* assign the interrupt */
uHALr_RequestInterrupt(irq, tulipInterrupt,

(unsigned char *)"Digital 21142 interrupt handler") ;
8-24 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

PCI Management Library
When the above program is run on a PCI supporting system, the output is similar to that
shown in Example 8-3.

Example 8-3 PCI configuration output

ARM Firmware Suite (uHAL v1.4)
Copyright ARM Ltd 1999-2002. All rights reserved.
Initialising...done
Found Digital 21142 ethernet device [00:11:00]
CSRs are at 0x00000000 (IO) and 0x40000000 (Memory)
CSR 00: FE000000
CSR 01: FFFFFFFF
CSR 02: FFFFFFFF
CSR 03: B96998AD
CSR 04: 354F9D62
CSR 05: F0000000
CSR 06: 32000040
CSR 07: F3FE0000
CSR 08: E0000000
CSR 09: FFF483FF
CSR 10: FFFFFFFF
CSR 11: FFFE0000
CSR 12: 000000C6
CSR 13: FFFF0000
CSR 14: FFFFFFFF
IRQ is @ 15

This shows that the 21142 was found in slot 11 on bus 0. On this system (an Integrator)
this means that the device generates interrupts using bit 15 of the interrupt controller. If
it is moved to another PCI slot, it might generate a different interrupt.
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 8-25

PCI Management Library
8-26 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

Chapter 9
Using the DHCP Utility

This chapter describes the Dynamic Host Configuration Protocol (DHCP) utility and
how you can use it to load and run applications. It contains the following sections:

• DHCP overview on page 9-2

• Using DHCP on page 9-3

• Configuration files on page 9-4.
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 9-1

Using the DHCP Utility
9.1 DHCP overview

Included in the ARM Firmware Suite is a simple standalone application that downloads
a binary image over ethernet into memory on the Integrator development board. The
main use for this application is downloading large images of several megabytes or more.
The application uses the DHCP protocol to obtain the information required to download
the image.

DHCP is a super set of the Bootstrap Protocol (BOOTP). DHCP allows a central server
to allocate Internet Protocol (IP) addresses to clients on its network.

DHCP is defined by Dynamic Host Configuration Working Group of the Internet
Engineering Task Force. The RFC 1541 documentation is downloadable from
http://rfc.net/rfc1541.html.

9.1.1 Requirements

You must have a DHCP server for your host machine. Refer to the documentation for
your DHCP server for installation and setup details.

You must have a BOOTP client on the target machine. The BOOTP client requires:

• a DHCP server

• the Integrator/AP base platform and core module fitted with SDRAM

• an Intel i8255x based PCI ethernet network card

• Multi-ICE hardware and software.

The code runs standalone only. The standalone image is built to run from 0x8000. It can
be programmed into any flash block and the boot switcher will relocate it to 0x8000.
9-2 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

Using the DHCP Utility
9.2 Using DHCP

The DHCP application is supplied as a single executable image called dhcp.axf located
in the AFSv1_4\Images\Integrator directory. To run use DHCP:

1. Create a configuration file, see Configuration files on page 9-4.

2. Set up your DHCP server to use the configuration file.

3. To get the best performance, set the clock setting to appropriate values for the core
module in use. For further details, see Chapter 3 ARM Boot Monitor.

4. Use the ARM Flash Utility (AFU) to program the dhcp.axf image into flash.

5. Reset the development board. The boot switcher runs DHCP application. The
application:

a. gets an IP address.

b. gets the details of the file to download from the DHCP server.

c. downloads the file using the TFTP protocol.

d. checks to see if the contents of the file starts with the text string ARMBOOT and,
if it does, treats the file as a configuration file.

If the file does not start with ARMBOOT, it is treated as a plain binary file.

6. After an image has loaded, use the following steps to debug using Multi-ICE and
AXD:

a. Start the debugger.

b. Load the debug symbols.

c. Set the debugger internal variable $top_of_memory to reflect the size of the
SDRAM you have fitted.

d. Enter the start address of the image.
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 9-3

Using the DHCP Utility
9.3 Configuration files

A plain-text configuration file provides additional information on how to load an image
that is not available from DHCP. Example 9-1 and Example 9-2 show two different
configuration files.

Example 9-1 Configuration file for loading an image

ARMBOOT
Load binary-file load-address

Example 9-2 Configuration file for loading and running an image

ARMBOOT
Run binary-file load-address execute-address

Where:

binary-file Is the name of the binary image to load.

load-address Is the address in memory to load the image. The default is 0x8000.

execute-address

Is the address in memory where control is passed after the image is
loaded. The default is the value used for load-address.

If no configuration file is used, the image is loaded to 0x8000 and run it from this
address.

The DHCP application will only load binary images. Use the FromELF utility to
generate a binary file from an ELF image.
9-4 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

Chapter 10
Chaining Library

This chapter describes the chaining library and how you can use it to chain exception
vectors. Its contains the following sections:

• About exception chaining on page 10-2

• The SWI interface on page 10-3

• Chain structure on page 10-8

• Rebuilding the chaining library on page 10-14.
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 10-1

Chaining Library
10.1 About exception chaining

Some hardware and software combinations require that an exception vector (especially
an interrupt vector) is shared by different code modules. The chaining library provides
a mechanism for installing and updating chains of exception vectors. The RESET
vector, however, cannot be chained.

For example, the P720T and the VFP hardware require that the IRQ and UNDEF
vectors, respectively, must be shared with the debugger. In the P720T case, the serial
interrupt can only be directed to an IRQ source, therefore Angel is built to use IRQs for
serial interrupts. Hence the µHAL demonstration applications and Angel must share the
IRQ vector.

For the ARM10 VFP unit, any exceptions generated by the VFP hardware result in the
UNDEF vector being taken. Since RealMonitor uses this vector for breakpoints, it must
also be shared between the VFP support code and RealMonitor.

The RealMonitor environment also shares interrupts with the target application. For
more information on RealMonitor and chaining, see the RealMonitor Target Controller
User Guide.
10-2 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

Chaining Library
10.2 The SWI interface

The SWI interface is used to obtain information about the debugger in use and to install
the trap handler into the chain for a given vector.

There are two SWIs that are used for interrupt chaining:

SYS_AGENTINFO (0x35)

Initialize a structure detailing debugger information.

SYS_VECTORCHAIN (0x36)

Perform chaining action.

Chaining SWIs are implemented by the boot monitor SWI handler. The Multi-ICE SWI
does not support chaining.

10.2.1 0x35, SYS_AGENTINFO

The application uses this SWI to return a pointer to a structure detailing debugger
information.

Entry

On entry:

• r0 contains 0x35.

• r1 contains a pointer to two words of memory.

— word 1 is a pointer to a block of memory

— word 2 is the size in words of the memory structure.

Note
 If the size of the memory structure in word 2 is less than 20 words, the

returned values are limited to those that fit into the first size words of the
_Debugger_info structure and later values are not accessible.
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 10-3

Chaining Library
Return

For the Debugger Info SWI, if the call was successful on exit r0 contains a pointer to a
_Debugger_info structure:

struct _Debugger_info
{
 char Agent_ID[32];
 char Agent_Copyright[32];
 unsigned int id_version;
 unsigned int semihosting_version;
 unsigned int owned_defined_vectors;
};

Where:

Agent_ID

Is a zero-terminated string showing the ID code for the debugger in use.
For example, "Angel Debug Monitor v1.32" is returned for the Angel
debugger.

Agent_Copyright

Is a zero-terminated string showing the semihosted version number, for
example, "ARM Limited 1996-2000".

id_version Agent id and version number. The version number being the lower half
word encoded as 100 times the dotted number, for example 1.41 => 141.
The Agent id is the upper half word and is encoded as:

Multi-ICE 0x1001

Angel 0x2001

µHAL 0x2002.

semihosting_version

The version of the semihosting spec the agent supports, 100 times the
dotted number, for example A-06 is "1006".

owned_defined_vectors

Bit field denoting the vectors used and/or initialized by the owner. The
upper half word denotes vectors used by the owner and the lower half
word denotes the vectors initialized by the owner but not necessarily
used. If a bit is 0, the vector is unused.
10-4 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

Chaining Library
The vectors for each bit position are:

Bit 0 Reset Vector

Bit 1 UNDEFINED Vector

Bit 2 SWI Vector

Bit 3 Prefetch Abort Vector

Bit 4 Data Abort Vector

Bit 5 Reserved Vector

Bit 6 IRQ Vector

Bit 7 FIQ vector.

For example, 0x00FE00FE denotes that Angel provides chaining support
for each of the vectors except the reset vector and uses all but the reset
vector.

If the call was not successful, on exit r0 contains -1.

10.2.2 0x36, SYS_VECTORCHAIN

This SWI is used by the application to perform the required chaining task.

Entry

On entry:

• r0 contains 0x36.

• r1 contains a pointer to three words of memory.

— Word one contains the vector number to chain on. 0 is Reset, 1 is Undef,
and so on.

— Word two is the chaining task to perform:

0x0 Add element to the chain (see Adding a vector element on
page 10-6).

0x1 Remove element from the chain (see Removing a vector element
on page 10-6).

0x2 Update the chain (see Updating a vector element on page 10-7).

0x3 Initialize the chain (see Initializing the chain on page 10-7).

— Word three contains a pointer to the chain structure (see Chain structure on
page 10-8).
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 10-5

Chaining Library
Return

Register r0 contains:

0 The task was successfully performed, but no elements were removed.

pointer If the call was successful and resulted in the removal of a chain element,
a pointer to the removed element is returned.

-1 The call was not successful.

Adding a vector element

To install an element into the chain, the application must:

1. Set up a suitable chain structure.

2. Call SWI 0x36 with chaining task 0x0 to process the request.

There are three possible successful results from the attempt to add an element:

• If the element is already present in the chain, the new element replaces the
original element and a pointer to the original element structure is returned. (The
presence of the element is determined by comparing the exec_routine address and
the destination location of element.)

• If the priority of the new element is less than or equal to an existing element, the
new element is inserted into the chain ahead of the original element.

• If the end of the chain is reached, the element is added at the end of the chain.

A return value of either 0x0 or the address of the replaced element denotes success.

Removing a vector element

To remove an element from the chain, the application must:

1. Set up a suitable chain structure with the vector and exec_routine elements
describing the element to remove. If the structure pointer parameter is Null the
entire chain for that vector is removed.

2. Call SWI 0x36 with chaining task 0x1 to process the request.

A return value of 0x0 denotes success. The element was removed and the chain links
adjusted.

A value of -1 denotes failure. The element could not be removed from the chain.
10-6 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

Chaining Library
Note

 Only user elements may be removed from the chain using the remove element task.
Owner elements can only be removed by an initialize chain task.

Updating a vector element

The update task is used to change handler priority within the chain. To update an
element in the chain, the application must:

1. Set up a suitable chain structure. The exec_routine must match an element already
in the chain.

2. Call SWI 0x36 with chaining task 0x2 to update the chain.

The chain owner walks the chain for the given vector, if the exec_routine of a chain
element and the given chain structure match that element is removed and the new chain
element added to the chain automatically using the ADD_ELEMENT task.

A return value of -1 denotes failure and the element was not updated within the chain.

If successful, the return value points to the chain element that was removed from the
chain and replaced with the new element.

Initializing the chain

The initialize chain task is used to remove all links from the chain. To initialize the chain
the application must:

1. Setup a suitable chain structure with the vector_id element correctly set.

2. Use SWI 0x36 with a chaining task of 0x3.

A return value of 0x0 denotes success. The chain for the given vector is set to Null and
will not be used until a new element is added.

Note
 If the pointer to the chain element structure passed using SWI 0x22 is Null then nothing
is done and the return value from the SWI is 0x0 denoting success.
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 10-7

Chaining Library
10.3 Chain structure

The chain is a linked list. Each element of the chain has the following structure:

struct _ChainLink
{
 unsigned int owner;
 void (* test_routine)(void *);
 unsigned int priority;
 void (* exec_routine)(void);
 struct _ChainLink * next_element;
};

Where:

owner Identifies owner of the vector:

0 This is a user element added by an application.

1 This element was added by a vector owner.

test_routine

Pointer to the exception test routine. Control is passed to this routine with
r0 to r5, r12 and lr stacked, r0 contains a pointer to the stacked lr. On
return, r0 contains:

-1 The exception caused an error in the test routine.

0 The exception is for this chain and has been handled, the lr
must have been updated for return to the application.

1 The exception is for this chain element.

2 The exception is not for this chain element.

priority The required handler priority in the chain. The highest priority is zero and
increasing values indicate lower priority. There is not an upper limit to the
value of priority since there is not a limit to the number of elements in
the chain.

exec_routine

Pointer to the handler routine. Control is passed to this routine as if it had
been inserted into the vector table.

next_element

Pointer to the next element in the chain.
10-8 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

Chaining Library
10.4 Owners and users

The vector owner provides the SWI interface that maintains the vector chain. The
application uses the SWI interface to determine if the required vector is in use by the
debugger.

10.4.1 Element owners

The owner of the vectors, whether that is µHAL, RealMonitor, or Angel, provides the
interface described in The SWI interface on page 10-3 to return a pointer to the
DebuggerInfo structure and to support adding, removing, and updating of the vector
chain for each of the vectors.

Angel initialization

Angel boots from ROM and claims all of the vectors for itself. It calls angel_BootInit
to initialize the Debugger Info structure described in 0x35, SYS_AGENTINFO on
page 10-3 with:

Agent_ID "Angel Debug Monitor v1.32"
Agent_Copyright "ARM Limited 1998-2000"
id_version "2001"
semihosting_version "1006"
owned_defined_vectors 0x00FE00FE

At this point all of the vector chains are Null.
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 10-9

Chaining Library
Angel and chaining

Angel provides the owner side of the chaining mechanism since it is switched to at boot
and by default claims all of the vectors for itself, irrespective of whether or not it uses
them. However due to the complex nature of the Angel IRQ and FIQ interrupt handlers
there are two restrictions that are specific to Angel:

• The application being debugged might be an OS that is performing interrupt
driven context switches (for example the ping demo within µ/COS–II).

Because Angel re-enables interrupts while servicing the interrupt, two
applications would potentially be storing and swapping context in the same
processor mode at the same time.

This restriction is dealt with by masking the application interrupts when Angel
has stopped the application so that the chaining trap handler is executed on Angel
interrupts only. Angel simply stores the state of the interrupt controller mask and
masks all but the Angel interrupts when the application task is stopped. When
Angel then restarts the application task the original interrupt mask is returned.

• Angel has no way of knowing if the application has been reloaded, a new
application has been loaded or simply that some data has been modified at a
particular memory address. Angel views these as writes to memory and has no
way of distinguishing between them.

The second of the restrictions is dealt with by clearing the application interrupt
mask so that the application interrupts are not restarted until the application does
so. The chains for each of the vectors are removed so that the vector chains are
not used until the application re-initializes them. There are two situations that use
this process:

— the application is terminated, using angel_SWIreason_ReportException
(0x18) SWI with the reason code ADP_Stopped_ApplicationExit

— an application is loaded (or reloaded) resulting in a call to
angelOS_InitialiseApplication.

Chaining is provided within Angel only if it is built with the build option
CHAIN_VECTORS=1 set within devconf.h for the given board.
10-10 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

Chaining Library
µHAL initialization

Angel boots from ROM and claims all of the vectors for itself. It calls angel_BootInit
to initialize the Debugger Info structure described in 0x35, SYS_AGENTINFO on
page 10-3 with:

Agent_ID "uHAL v1.4"
Agent_Copyright "ARM Limited 1998-2002"
id_version "2002"
semihosting_version "1006"
owned_defined_vectors 0x00FE00FE

At this point all of the vector chains are Null. If Chainir_Init() is called by a semihosted
image that does not own the vectors, the standalone image has already initialized any
owner chained elements so only user chain elements are removed.
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 10-11

Chaining Library
µHAL and chaining

Because µHAL can be both the owner of the vectors and the application wishing to use
them, it must provide both sides of the chaining mechanism.

The owner side of the mechanism is supported by the boot monitor and boot switcher,
since this is run at boot and is the owner of the vectors. A standalone image wishing to
use the chaining mechanism, but not wishing to install its own SWI handler, can use the
SWI interface. The SWI can return information about the system and add or remove
elements from any vector chains as required.

However, any semihosted or standalone images might also be µHAL based. Therefore,
the application side of the chaining mechanism is also provided by µHAL. When a
request is made to µHAL to install IRQ and FIQ handlers, µHAL first determines if the
vectors are already in use by the image that was run at boot. If the vectors are in use, the
library code performs any suitable chaining requests as required.

The chaining code is provided as a library. To build an application to use the chaining
library the µHAL library must use the build option CHAIN_VECTORS=1. The µHAL library
then makes nonweak links to chaining routines requiring the chaining library AFS
component to be explicitly added to the application link stage

Handling exceptions

On an exception being taken, the exception vector causes a branch or a load pc to the
vector owners trap handler. If there is a chain installed for the exception vector, the first
test routine is called to determine if it is owner of the exception.

If the test routine returns success, control is passed to the exec routine as if it had been
called directly from the exception vector.

If the test routine returns failure, the next element in the chain is tested. The tests are
repeated until either one of the chain elements claims the exception or the last element
in the chain is reached. If none of the chained handlers claims the exception, or no
chains are installed, the exception is passed onto the debuggers trap handler to process.

The test routine might also return HANDLED, in this case the exception was dealt with, lr
updated, and control passed back to the application.

If an error occurred during the handler evaluation, the test routine returns an error.
10-12 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

Chaining Library
10.4.2 Element users

The application must use the SWI mechanism to determine if the given vector it requires
is in use by the debugger. The installation of the exception handler must be done
appropriately depending on whether there are other users of the vector.

Refer to the µHAL bubble demo in AFSv1_4\Demos for an example of interrupt
initialization:

1. The application attempts to initialize interrupts and install its trap handler using
uHALir_InitInterrupts().

2. uHALir_ResetInterrupts() sets up uHALiv_IRQMode to the correct state. In this case,
uHALiv_IRQMode is set to IRQMODE_CHAINED since the return value from the
Chainir_DebuggerFlags() routine shows that all vectors are claimed by the
debugger.

3. The trap handler is installed by uHALir_NewIRQ(). This uses uHALiv_IRQMode to
determine whether or not to chain the handler.

4. In this example, Chainir_Chain_Vectors() adds the trap handler to the IRQ chain.

Each of the vector chains are installed in the same manner.
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 10-13

Chaining Library
10.5 Rebuilding the chaining library

Use the project files or makefiles to rebuild the chaining library.

10.5.1 PC project files

You can build the library with ADS 1.0 (or higher) CodeWarrior IDE project files
(Chain_lib.mcp).

10.5.2 Unix makefile

The CD has a makefile for use on a Unix workstation. (You can also use the makefile
on a PC.)

There is a makefile for rebuilding the library for a single development board and
processor combination. For example, to rebuild the library for the Integrator board with
an ARM940T processor, use
AFSv1_4/Source/ChainLibrary/Build/Integrator940T.b/makefile.

If you have an Integrator board with an ARM7TDMI core, use the generic Integrator
files located in AFSv1_4/Source/ChainLibrary/Build/Integrator.b/makefile.

You must maintain the hierarchy of the CD directories when you copy the files from the
CD to your workstation. The makefile defines ROOT as the root of the build tree. TOOLS is
the tools directory that contains build tools of various kinds.
10-14 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

Chapter 11
Libraries and Support Code

This chapter describes some of the internal operation of the libraries and how they
support applications and hardware. It contains the following sections:

• Library naming on page 11-2

• Rebuilding libraries on page 11-3

• Support for VFP on page 11-5

• Support for the ADS C library on page 11-13.
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 11-1

Libraries and Support Code
11.1 Library naming

The prebuilt AFS libraries use the following scheme to identify build characteristics:

<Component>_<Stack><Run_mode><Endian>.a

Where:

Component The library component, for example:

uHAL The basic µHAL library.

PCI The library for PCI bus support.

Flash The library for Flash memory functions.

Chain The library for interrupt vector chaining.

Stack Indicates if software stack checking is used:

u No stack checking.

s Uses stack checking.

Run-mode Indicates how the image is run:

r ROM image, lives in flash or ROM.

_ Semihosted image, load and run through a debugger.

Endian Specifies how the software treats the byte order in words:

l Little-endian.

b Big-endian.

.a Indicates that the file is a library archive.

For example, uHAL_url.a is the µHAL library built little endian with no stack checking
and will be run from flash.

The name of the subdirectory within the lib directory identifies the board and processor.
If a library is in the directory AFSv1_4\lib\Integrator720T then it has been built for an
Integrator system with an ARM 720T header fitted. If you have an ARM 7TDMI core,
use the generic code in AFSv1_4\lib\Integrator.
11-2 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

Libraries and Support Code
11.2 Rebuilding libraries

There are three ways of building the AFS components:

• using ARM .mcp project files for the CodeWarrior IDE with ADS 1.0 or higher

• using GNU makefiles (Windows and Cygwin make or Unix gnumake).

The library components in the Source directory contain source code and build control
files for the library. There are build files for each development board and processor
combination. For example, to rebuild the µHAL library for an Integrator board with a
ARM 940T processor, use the build files in:
AFSv1_4\Source\uHAL\Build\Integrator940T.b\. To rebuild the library for an Integrator
board with an ARM 7TDMI core, use the generic code in
AFSv1_4\Source\uHAL\Build\Integrator.b\.

Note
 Some libraries are supplied prebuilt and without source code. For example, the flash
library has files for Integrator and Prospector boards in both semihosted and standalone
versions. The .a extension for these files indicates that they are in armar format.

11.2.1 Using the CodeWarrior IDE

The CodeWarrior IDE project files (.mcp extension) are the build files designed for use
with ADS. Operation instructions and help are available from the ADS manuals or
through the on-line help available within the CodeWarrior IDE.

The build system is initiated by either:

• using the Host PC point and click interface to select the .mcp file

• selecting the CodeWarrior icon and loading the required project file using
Project → Open from the CodeWarrior IDE Menu.

Either of these methods starts the IDE and makes the required project the focus window.

11.2.2 Using makefiles

To build µHAL and its associated components using makefiles use GNUmake.
GNUmake is available for UNIX, and for Windows 95 and Windows NT.

Note
 Before you can use GNUmake with Windows 95, Windows 98, or Windows NT, you
must first install CygWin. For more information about the Cygwin project, it is
recommended that you contact Redhat at: http://sources.redhat.com
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 11-3

Libraries and Support Code
11.2.3 Output formats

The CodeWarrior IDE, and GNUmake build ELF files for standalone and semihosted
operation. Some of the build tools also make other formats. The formats supported by
AFS are:

output.axf This is an ARM eXecutable Format (.axf) file that is an ELF format
image. This can be converted into other formats by using the fromELF
utility.

output.a This is an ARM library (armar) format image used with ADS. (This
format is used when a library is created that will be linked with other
code.)

output.bin This is a plain binary image.

Use the fromELF utility to produce other formats, for example Motorola S-record. For
more information on image formats, see the documentation for your ARM toolkit.
11-4 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

Libraries and Support Code
11.3 Support for VFP

This section describes how µHAL supports the ARM10 VFP unit.

Note

 Support for the ARM10 VFP unit is not available in all tool-chain versions.

11.3.1 Introduction

The Vector Floating-Point (VFP) unit is provided as a coprocessor extension to the
ARM10 core, providing both single and double precision floating-point arithmetic. It
supports five floating-point exceptions:

• Invalid Operation

• Division by Zero

• Overflow

• Underflow

• Inexact.

The support code that extends the µHAL library handles infrequently occurring values
and exceptions. This increases the execution speed of frequently encountered
operations. Therefore all operations on infinities, Not a Number (NaNs) and denormals,
as well as all floating-point operations, are handled by support code.

The support code:

• performs the function of compliant hardware

• is transparent to the user

• returns the required result to the destination register and might call the user trap
handler.

The support code has three distinct sections:

• an initialization routine that performs all system initialization required to use the
VFP unit

• an exception handler that determines if the VFP unit initiated the exception and
handles the exception if appropriate

• a library of routines that perform the required computations, such as divide with
unsupported types (NaN, denormals and infinities).
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 11-5

Libraries and Support Code
11.3.2 Implementation in µHAL

The libraries supplied with ADS 1.1 and later provide software implementation of the
required floating-point operations as well as VFP implementations. The VFP unit
signals an exception through the Undefined Exception Vector. It is the task of the
support code to determine if the exception originated from the VFP unit and perform
the required corrective action.

Initialization

By default the VFP unit is disabled, to enable it:

1. Clear the VFPTST[13:12] bits by writing to the hardware register CM_INIT.

2. Set EN[30] within the Exception Status Word FPEXC.

3. Calling VFPir_Init() installs the Undefined Exception Handler in the standalone
case.

All VFP initialization must be carried out prior to calling _fp_init(), since this clears
the hardware floating-point status register (FPSCR). Any access to the VFP unit before
it is initialized causes an Undefined Exception.

Exception handler

When an undefined exception is taken, VFPir_TestException is called to determine if the
VFP unit initiated the exception. The test uses either:

• the chaining mechanism

• the VFPir_execRoutine installed directly into the vector.

The sequence for exception handling is:

1. Status FPEXC[31] is examined to determine whether the VFP unit initiated the
exception. If clear, the instruction causing the exception is examined to determine
if the user application generated an undefined exception and is attempting to
install a default handler (see User trap handlers on page 11-11).
11-6 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

Libraries and Support Code
2. If the VFP unit did initiate the exception, control is passed onto the exception
handling routine VFPir_ExceptionHandler.

• On entry, the hardware floating point status word is copied into the software
floating point status word to ensure that all floating point operations are
carried out with the same starting status.

• On exit, the status after performing the exceptional operation, including any
cumulative exception flags, is saved back to the hardware. The support code
is therefore transparent to the user.

3. Having identified the exceptional instruction from FPINST it is executed using
the software floating point library. This:

• carries out the appropriate handling of unsupported data types

• sets the condition and cumulative exception flags appropriately within the
software floating point status word.

4. If the exception is enabled within the FPSCR, the support code:

• attempts to perform the exceptional operation itself

• passes control onto the users trap handler associated with that exception.

It must perform the instruction itself in order to ensure that it was exceptional and
to obtain the required VFP status.

5. Upon returning from the VFP exception, handler control is passed back to the
main application. The return value indicates how the exception was handled.

0 The exception has been handled and the correct status is restored.

-1 The exception has not been handled or the exception was not initiated
by the VFP unit. If present, the original undefined exception handling
code is resumed, otherwise control is passed back to the application.

1 Control is passed to the users trap handler using the mechanism
described in User trap handlers on page 11-11.

11.3.3 Library support for VFP

The ADS floating-point libraries are provided in a number of formats.

Each of the libraries provide the same overall functionality, in that all the routines
provided perform the same operation. However, the instruction sets used differ from
library to library. The linker selects the library variant best suited to the accumulated
ATPCS options.

The support code is linked against the IEEE floating-point libraries and provides full
IEEE rounding and exception options. (The IEEE floating-point libraries are prefixed
with the letter g.)
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 11-7

Libraries and Support Code
By using the software floating-point library to perform all exceptional operations within
the support code instead of using the VFP unit in intermediate operations, the VFP
status does not have to be saved.

VFP routines

Table 11-1 lists the routines that are provided for the user application.

Table 11-1 VFP routines

Function template Description

void VFPir_Init (void); Installs the VFP exception handler, either into a chain of
handlers for the UNDEF exception or into the vector itself.
Also enables the VFP unit by clearing the VFPTST bits in
CM_INIT and enabling the device in FP_EXC.

void VFPir_Disable (void); Removes the VFP exception handler from the chain of
handlers for the UNDEF exception. Also disables the VFP
unit by setting the VFPTST bits in CM_INIT and clearing
the FP_EXC register.

void VFPir_ExecRoutine (void); If chaining is not supported, determines if the exception is
a VFP exception passing control onto the exception
handling code, otherwise control is passed directly to the
handling code. Checks the return value for handled, not
handled or pass onto user handler.

unsigned int VFPir_ReadFPSCR(void); Reads the FPSCR VFP register.

unsigned int VFPir_ReadFPINST(void); Reads the FPINST VFP register.

unsigned int VFPir_ReadFPEXC(void); Reads the FPEXC VFP register.

void VFPir_WriteFPSCR(unsigned int); Writes the FPSCR register.

void VFPir_WriteFPEXC(unsigned int); Writes the FPEXC register.

unsigned int VFPir_ReadFPSID(void); Reads the FPSID register.

int VFPir_SaveContext

(VFP_Context *ptrVFPContext);

Saves the context of the VFP hardware, saving each of the
VFP registers.

void VFPir_RestoreContext

(VFP_Context *ptrVFPContext);

Restores the context of the VFP hardware, restoring each of
the VFP registers.
11-8 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

Libraries and Support Code
11.3.4 VFP images

The support code is assumed to be part of the hardware and as such must allow an image
built to use the VFP unit to run in all circumstances. However the concept of semihosted
and standalone images means that the location of the support code is different.

Semihosted

In the semihosted case, the support code is assumed to be part of the hardware. The boot
monitor image, that is the image run at reset, must contain the support code and carry
out all required VFP initialization. See Figure 11-1.

After loading an image into the debugger, the U bit in the vector_catch variable must
be cleared. This allows any VFP exceptions to be captured by the support code rather
than Multi-ICE. This also means that the debugger will not signify any undefined
exceptions. All undefined exceptions will be passed to the support code and only VFP
exceptions will be handled correctly.

Figure 11-1 Semihosted image using VFP

>6���"����
�����
�������
�����>6�
��(����

�������
������������
���������>6����(����

�
���������(��
�����
������ � �������
����������
������� �

>6����������

,)�&6
���
��
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 11-9

Libraries and Support Code
Standalone

In the standalone case, the image is executed from reset. The support code must,
therefore, be included as part of the image. This creates problems with linking the image
due to name space pollution caused by two versions of each VFP routine (one with
support for hardware and one with software support). See Figure 11-2.

Figure 11-2 Standalone image with VFP code

The VFP support code is built with the compiler and assembler option -fpu softVFP.
The remaining image code sections are built to use the compiler and assembler option
-fpu VFP, including the µHAL library. If at the link stage, the application contains a call
to fdiv(), this uses the VFP hardware. The support code also contains the call to fdiv()
to be able to handle exceptional division operations, however, this is implemented in
software. So in the same image many routines exist which require two different
implementations.

To overcome these problems, the support code is generated as a partially linked object
with all software floating point library symbols hidden. This object is then linked into
the standalone application, built to use hardware VFP, and provides the appropriate VFP
support code hooks, such as VFPir_Init(). Thus all of the floating point functionality
used within the application uses the VFP hardware and within the support code the
software floating point library implementations.

By using this mechanism to provide the required software floating point
implementation of the VFP support code, standalone µHAL applications always link
against the latest version of the floating point library.

The VFP support code is only included in the Integrator boot monitor, and in any
Integrator1020T µHALDemos, if they are built with FP_SUPPORT=1 with ADS 1.1 or later
tools.

>6���"����
�����
�������
�����>6�
��(����

�������
������������
���������>6����(����

�
����������������
������� �

>6����������

,)�&6
���
��
11-10 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

Libraries and Support Code
11.3.5 User trap handlers

You can install your own exception handlers so that a given exception is handled in a
user defined manner. This is done using the default exception handler provided by the
ADS C libraries. The default handler passes control onto the user’s exception handlers.

The first step is to present the default exception handler to the support code using the
Undefined exception handler. The address of the library exception handler is stored in
r1 and the exception code 0x1 in r0. The undefined instruction 0x56465031 (ASCII
"VFP1") is then executed.

The code segment in Example 11-1 installs the routine LibraryTrapHandler as the
default exception handler for enabled exceptions.

Example 11-1 Installing exception handler

; First define the required VFP instruction using the DCI assembler directive
 MACRO
 UNDEF_VFP_INST
 DCI 0x56465031 ; VFP1
 MEND

; Now use the defined macro as needed, setting up the required registers.
 LDR r1, =LibraryTrapHandler
 MOV r0, #1
undefined_label
 UNDEF_VFP_INST

This causes an undefined exception that is identified by the support code as the user
attempting to install its own exception handler. This requires that the support code
undefined exception handler has already been setup to capture the VFP exception, so all
VFP initialization must already have taken place.

Thus on an enabled exception now occurring the support code attempts to deal with the
exception in the usual manner. Once it has established the exception type and that it is
enabled, the required VFP status is saved and control passed onto LibraryTrapHandler
in the above case, in the processor mode prior to the exception.
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 11-11

Libraries and Support Code
The default library trap handler has the prototype void library_handler (unsigned int
num_of_exceptions, ExceptionStatusInfo *info, void * lr); where:

num_of_exceptions

defines the number of exceptions that occurred in the processing of the
exceptional operation. A vector operation might contain several
exceptional operations and might also contain intermediate exceptions
within each of the iterations.

info holds a pointer to an array of structures holding the required VFP status
for each of the exceptional operations.

The status structure is as shown in Example 11-2.

Example 11-2 Exception status structure

typedef struct
{
 unsigned int FPINST; //The exceptional instruction
 unsigned int iterations; // Exceptional iteration
 unsigned int Rd; // Destination register
 unsigned int opcode; // Exceptional opcode
 unsigned int opcode_ext; // Extended exceptional opcode
 unsigned int Primitive; // Intermediate operation (FMAC = FADD and FMUL)
 __ieee_value_t op1; // IEEE mandated information
 __ieee_value_t op2; // IEEE mandated information
 unsigned int edata; // IEEE mandated information
} _ExceptionStatusInfo;

Thus for each enabled exceptional operation including intermediate exceptions the
above status is saved in the array pointed to by info and num_of_exceptions is
incremented. The lr is the link register at entry to the support code, that is, the address
of the trigger instruction. Since three parameters are passed to the library handler in r0,
r1, and r2, the original registers are stacked to save their state and must be removed from
the stack prior to returning to the application.

If the user has enabled any or all of the exceptions but has not installed a handler, the
support code calls the default exception handler VFPir_fp_trap which handles the
exception in the default manner defined by the C library.
11-12 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

Libraries and Support Code
11.4 Support for the ADS C library

This section describes the effect of linking µHAL applications with the C library, the
differences between the build variants and how µHAL functions that are duplicated
within the C library are redirected to use C library implementations.

11.4.1 Introduction

All µHAL applications, by default, link against the C library. The linker therefore,
always scans the appropriate C library for any non-weak references not resolved by
µHAL library. Any µHAL application referencing C library functionality (such as
malloc()) causes the linker to include the library member, as well as all associated
library members, routines, and initialization code.

If required, initialization of the library routine is performed within µHAL startup code.
For example in the above case _init_alloc() is called within uHALir_ClibInit() to
initialize the library heap allocator.

If a routine, for example malloc(), is not used either directly by the application or by
any indirect calls such as getchar(), the library heap initialization is not included in the
image and is therefore not performed within µHAL startup.
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 11-13

Libraries and Support Code
Library members, routines, and definitions are included in the image if and only if they
are referenced by the application, directly or indirectly, including library initialization
routines.

Note

 There is a single exception to the standard initialization sequence. Floating-point
initialization is performed on the condition that the µHAL library has been built to use
only software floating point emulation. If hardware support were present in the target,
that would negate the requirement for the C library floating-point initialization code.

11.4.2 Build variants

Any µHAL application can be built to link against the C library in one of two ways:

• Use the helper functions provided by µHAL, such as __rt_udiv() and __raise().

• Use the helper functions provided by the C library. This selection is controlled by
the build option USE_C_LIBRARY.

If you use build option USE_C_LIBRARY=0, the µHAL helper functions are included. These
functions provide only minimal functionality from the C library. A single library
member is included:

• rt_memcpy_w.o (defines _memcpy_lastbytes and __rt_memcpy_w).

If you use build option USE_C_LIBRARY=1, any library members referenced by the µHAL
application and the following C library helper functions are included:

• _get_argv.o

• rt_memcpy_w.o

• callvia.o

• rt_raise.o

• rt_udiv.o

• sys_command.o

• __raise.o

• rt_div.o

• use_semi.o

• defsig.o

• sigdefs.o

• rt_memcpy.o

• sys_wrch.o.
11-14 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

Libraries and Support Code
In order to build µHAL applications that do not use the C library, the memcopy() routine
__rt_memcpy_w() must be provided (__16__rt_memcpy_w() must also be provided if built
to use interworking). However, if the application references any C library routine, all
associated library members are included in the output image, irrespective of
USE_C_LIBRARY. This can be prevented only by the use of the -noscanlib link option. This
option causes a link failure if non µHAL library functions are referenced.

11.4.3 Retargetting

If the µHAL application references C library functionality that is implemented within
µHAL, the µHAL duplication is retargetted and calls are redirected to the C library
implementation.

For example, in an application using the C library routine printf(), any subsequent calls
to uHALr_printf() are redirected to the C library implementation, printf(). This is
repeated for malloc(), free(), getchar(), putchar() and getc().

However, if the application links against the C library but makes no reference to non
µHAL functionality, none of the µHAL functions (for example, uHALr_printf() and
uHALr_malloc()) are retargetted and appropriate C library initialization is not performed.

Initialization

The C library provides all necessary startup and initialization code required to generate
a semihosted image. However, standalone program startup and initialization is not
supported by the C library, due to its target specific nature. For µHAL to remain in
control of the system, in both the standalone and semihosted cases, library initialization
is performed by µHAL during startup. The library initialization routines are:

• __rt_stackheap_init()

• _init_alloc()

• _initio().

On branching to main, both the heap and stacks and the standard input output streams
have been initialized.

The floating-point initialization must also be performed. (The VFP support code
performs the initialization if an image is built to use floating-point.)
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 11-15

Libraries and Support Code
Memory model

The locations of the stack and heap and their respective sizes are defined using the
interface provided by the library. Two memory models are supported by the default
implementation from the library:

• Single memory region allocated to both the stack and the heap.

• Two memory regions with one allocated to the stack and the other to the heap.

In the third customized option, a new memory model is defined using the library
interface provided. This is the option used by µHAL, since it is the most flexible and
µHAL retains control of memory management. The following functions are used to
customize the memory model.

__rt_stack_heap_init()

Is provided to define a new memory model.

__rt_stack_overflow()

Is also provided if the images are to be built with stack checking.

As µHAL initializes stacks separately, __rt_stack_heap_init() returns only the lower
and upper bounds of heap in registers r0and r1. _init_alloc() then uses this data to
initialize library heap management.

The stack pointers for the various processor modes are initialized during µHAL startup
and because the C library inherits these stacks, no further stack initialization is required.
By providing a valid heap and stack, as shown above, the library memory management
facilities, malloc(), realloc(), calloc() and free() are used unchanged from the library.

If the heap is fully allocated, __rt_heap_extend() is called. It attempts to return a pointer
to the location of the extended heap, this interface can be used to provide additional
noncontiguous blocks of memory to extend the heap. The library does not define a
default implementation of this, however, it is used by the memory manager if defined.
The current implementation simply returns zero in r0, denoting failure.
11-16 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

Libraries and Support Code
I/O

Each of the I/O functions is based on a SWI interface. Since there is no support within
µHAL for the SWI interface in the standalone case, some tailoring of the library is
necessary to present a common interface between the standalone and semihosted
images for the printf and scanf families. For the standalone case there is no file system
and file I/O requests are denied in a suitable manner.

The I/O support functions that have been modified to support standalone images are:

• _sys_open()

• _sys_close()

• _sys_read()

• _sys_write()

• _sys_ensure()

• _sys_flen()

• _sys_seek()

• _sys_iserror()

• _sys_seek()

• _sys_istty() implemented by sys_io.o

• _ttywrch() implemented by sys_wrch.o

• _sys_tmpnam() implemented by sys_tmpnam.o.

Also the standard streams:

• __stdin_name[]

• __stdout_name[]

• __stderr_name[].

These names are recognized by _sys_open() as denoting the files or devices to attach
standard streams to when a program starts executing.

The following dependencies between families also required tailoring for the standalone
case:

• printf() depends upon __FILE, fputc() and ferror()

• scanf() depends upon __FILE, __backspace, __stdin and fgetc().

By providing a SWI handler within µHAL to support the required SWI calls,
_sys_open() (only for the standard input and output streams), _sys_read(),
_sys_write(), and _ttywrch() (in the standalone case) the library interface for the printf
and scanf functions remains the same as the semihosted case. All standalone file I/O for
the nonstandard I/O streams are denied.
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. 11-17

Libraries and Support Code
Trap handling

Any run time errors found by the library are signalled through __rt_raise().
__rt_raise() calls __raise(). If there is no other signal handler available,
__default_signal_handler() is called. This handler prints a message detailing the error
discovered by the library. _ttywrch() uses a SWI interface to output the message a
character at a time.

The return value from __raise() indicates whether the exception has been handled and
if execution can continue. If the return value is nonzero the program exits through a call
to _sys_exit() with the return value as the exit code.

Program exit

Branching to exit() terminates the library. After library shutdown has been completed,
exit() eventually calls _sys_exit() to terminate the program. Modifications similar to
the library initialization modifications ensure that µHAL is in control of program
termination.

Therefore a return from main() using program startup results in fall through to
_sys_exit() within AFSboot.s. By shutting the library down from µHAL, the present
program termination code remains the same with the addition of the following calls to
library shutdown routines:

• _terminateio()

• _terminate_user_alloc().

Program termination within µHAL might be as shown in Example 11-3.

Example 11-3 Program termination

 BL main
_sys_exit
 BL _terminateio ;Close down any file I/O
 BL _terminate_user_alloc ;Free any allocated memory
 BL uHALir_DisableInt
IF :DEF: SEMIHOSTED
 LDR r0, =angel_SWIreason_ReportException
 LDR r1, =ADP_Stopped_ApplicationExit
 SWI SWI_Angel
ENDIF
0
 B %0 ; Loop forever
11-18 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

Appendix A
ARM Firmware Suite on Integrator

This appendix provides implementation-specific details about using the AFS on the
Integrator development system. All components of the AFS are supported. It contains
the following sections:

• About Integrator on page A-2

• Integrator-specific commands for boot monitor on page A-6

• Using the boot monitor on Integrator on page A-19

• The ProgCards Utility on page A-24.

• Using ProgCards on page A-27

• Angel on Integrator on page A-33

• PCI initialization on Integrator (Integrator/AP only) on page A-35.
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. A-1

ARM Firmware Suite on Integrator
A.1 About Integrator

This section provides an overview of the ARM Integrator development systems. The
ARM Integrator is a flexible development system that uses a modular design. The range
of modules includes:

• motherboards

• core modules

• logic modules.

All modules feature a system controller FPGA. This provides coupling between the
segments of the AMBA system bus on the different modules and distribute system
control functions between the modules in a rational way. The motherboards and core
modules provide separate reset controllers and clock domains which can be controlled
using registers within the FPGAs.

A.1.1 Integrator/AP

The Integrator/AP is an ATX form-factor motherboard that can be used to support the
development of applications and hardware with ARM processors.

Motherboard

The motherboard (Integrator/AP) provides the main system control functions, including
peripherals and interrupts, that are implemented within an FPGA. The motherboard
requires at least one core module to operate and will support up to four processors.

The Integrator/AP is designed for use in an ATX PC type enclosure. (Additional
connectors allow it to be installed into a CompactPCI card cage.) It provides mountings
for a combined total of up to five core modules and logic modules. It also provides three
on-board PCI expansion card slots.

Core modules

There are a range of core modules available which implement the different ARM
processors available. Modules in this range include:

• Integrator/CM-920T

• Integrator/CM-940T

• Integrator/CM-946T (preliminary support only)

• Integrator/CM-966T

• Integrator/CM-1020T

• Integrator/CM-720T

• Integrator/CM-740T
A-2 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

ARM Firmware Suite on Integrator
• Integrator/CM-7TDMI (generic Integrator).

This range allows systems to be modeled with the processor most suited to the target
application. All core modules provide volatile memory, clock generation, and reset
circuitry. The modules can be used standalone with power and a JTAG debugger, but
rely on being installed on a motherboard to access nonvolatile memory and interfaces.

For the Integrator/CM-7TDMI, use the generic code found in the Integrator.b or
IntegratorT.b subdirectories. For other core modules, use the name of the subdirectory
that identifies the board and processor combination. For example, an Integrator with a
CM-940T uses the source files located in the Integrator940T subdirectories and build
files from the Integrator940T.b subdirectories.

Some library code is not specific to an individual processor and uses the generic code
in the Integrator subdirectories for all build options.

A.1.2 Integrator/CP

The Integrator/CP is a compact development platform that provides a flexible
environment to enable rapid development of ARM-based devices.

There are two variants of the Integrator/CP:

• CP9x6E-S with one of the following cores:

— ARM966E-S

— ARM946E-S (some versions have ETM connections)

• CP920T.

The Integrator/CP comprises two boards:

• the baseboard that provides power, boot memory, and interfaces

• the core module that provides the ARM core, SDRAM, SSRAM, clocks, and an
FPGA containing peripheral devices.

Additional peripherals and interfaces can be added to your system by adding up to three
logic modules and one interface module.

The core module and baseboard are secured together. This enables you to add and
remove additional modules while protecting the connectors on the core module and
baseboard from excessive wear. The core module and baseboard boards only operate as
a unit and must not be separated.

You cannot use more than one core module with the Integrator/CP baseboard.
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. A-3

ARM Firmware Suite on Integrator
A.1.3 Logic modules

Logic modules are typically used for system prototyping and debugging. These include:

• Integrator/AM Analyzer module

• Integrator/LM XCV1000 Xilinx logic array.

A.1.4 Build variants

Table A-1 lists the build variants targeted at various Integrator/AP core modules.

If you try to run an incompatible image, for example an Integrator720T image on an
ARM940T, the red LED on the Integrator/AP motherboard flashes.

Boot monitor and Angel variants

There are two variants of Boot Monitor and Angel provided. The only difference
between the variants is their execution address:

angIntegrator.axf

Angel image linked to execute at 0x28000000. This address is in
motherboard SSRAM on the Integrator/AP. This image will not run on
the Integrator/CP.

Table A-1 Core module variants

Core module Image type

Integrator Runs on all supported processors (code is based on ARM 7 core)

IntegratorT Runs on all supported processors that can execute Thumb instructions
(code is based on ARM 7TDMI core)

Integrator720T ARM720T specific image

Integrator740T ARM740T specific image

Integrator920T ARM920T specific image
ARM926E-S (preliminary support)

Integrator940T ARM940T specific image

Integrator946T ARM946E-S specific image (this is a preliminary version and might
have limited functionality)

Integrator966T ARM966E-S specific image

Integrator1020T ARM1020T specific image
A-4 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

ARM Firmware Suite on Integrator
angIntegrator_SDRAM.axf

Angel image linked to execute in the top 64KB of SDRAM (0x0FFF0000).

bootMonitor.axf

Boot monitor image linked to execute at 0x20000000. This is boot flash on
the Integrator/AP, and the last block of flash on the Integrator/CP.

bootMonitor_SDRAM.axf

Boot monitor image linked to execute in the top 128KB of SDRAM
(0x0FFE0000). This image is required for the Integrator/CP because the
Integrator/CP contains only one flash device, and the boot monitor cannot
run from flash while it is performing flash programming operations.
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. A-5

ARM Firmware Suite on Integrator
A.2 Integrator-specific commands for boot monitor

The Integrator provides a set of system specific boot monitor commands. These are
listed in page A-6. Examples are provided in I, Initialize or re-initialize the PCI
subsystem on page A-7 to H or ?, Display help on page A-18. Commands are not
case-sensitive.

Table A-2 Integrator system-specific commands

Command Action

I Initialize or re-initialize the PCI subsystem

V Display V3 chip setup

P Display PCI topology

DPI hex Display PCI IO space (32-bit reads)

DPM hex Display PCI Memory space (32-bit reads)

DPC hex Display PCI Configuration space (32-bit reads)

SC module Set clock frequency in SIB

CC Set clocks from SIB

DC Display clock frequencies

DH Display hardware

G hex Go to address

PEEK address Display memory at address (use hex format)

POKE hex data Poke data at address (use hex format for both values)

MEM Enable on-chip memory

ESIB Erase the boot monitor SIB

R i Run image number i from flash

X Exit board-specific command mode

X command Exit board-specific mode or execute single non board-specific
command

H or ? Display help
A-6 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

ARM Firmware Suite on Integrator
A.2.1 I, Initialize or re-initialize the PCI subsystem

The response to this command depends on the type of Integrator board.

Integrator/AP

This command re-initializes the PCI subsystem. You are prompted to confirm the
command before re-initialization is carried out as shown in Example A-1.

Example A-1 Initialize result

[Integrator] boot Monitor > i
About to re-initialise PCI
Are you sure that you want to do this[Yn]? y
Initialising PCI...done

Integrator/CP

Prints PCI not supported.

A.2.2 V, Display V3 chip setup

The response to this command depends on the type of Integrator board.

Integrator/AP

This command displays the current set up of the V3 host bridge as shown in
Example A-2.

Example A-2 Display V3 result

[Integrator] boot Monitor > v
V3 PCI Host Bridge (@ 0x62000000)
 [0x00000078] SYSTEM : 0xC000(Locked, Reset output de-asserted)
 [0x0000007C] PCI_CFG : 0x1166
 [0x0000007A] LB_CFG : 0x00C0
 [0x00000004] PCI_CMD : 0x0006
Local --> PCI windows:
 [0x00000054] LB_BASE0 : 0x40000081
 [0x0000005E] LB_MAP0 : 0x4006
 [0x00000058] LB_BASE1 : 0x50000081
 [0x00000062] LB_MAP1 : 0x5006
 [0x00000064] LB_BASE2 : 0x6001
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. A-7

ARM Firmware Suite on Integrator
 [0x00000066] LB_MAP2 : 0x0000
PCI --> Local windows:
 [0x00000010] PCI_IO_BASE : 0x00000000
 [0x00000014] PCI_BASE0 : 0x20000000
 [0x00000040] PCI_MAP0 : 0x20000093
 [0x00000018] PCI_BASE1 : 0x80000000
 [0x00000044] PCI_MAP1 : 0x800000A3
FIFOs:
 [0x00000070] FIFO_CFG : 0x0000
 [0x00000072] FIFO_PRIORITY: 0x0000
 [0x00000074] FIFO_STAT : 0x0505
 [0x0000002C] SUB_VENDOR : 0x0000
 [0x0000002E] SUB_ID : 0x0000

Integrator/CP

Prints PCI not supported.

A.2.3 P, Display PCI topology

The response to this command depends on the type of Integrator board.

Integrator/AP

This command displays the topology of the PCI subsystem. It lists the devices found
and their locations in PCI address space as shown in Example A-3.

Example A-3 PCI topology result

[Integrator] boot Monitor > p
Bus Slot Func Vendor Device Rev Class Cmd
=== ==== ==== ====== ====== ==== ================ ====
 00 12 00 0x10EE 0x3FC2 0x00 Multimedia Audio 0x02

 Reg Address Type
 ==== ========== ======
 0x10 0x40000000 Memory
 0x14 0x00000000 Memory
 0x18 0x00000000 Memory
 0x1C 0x00000000 Memory
 0x20 0x00000000 Memory
 0x24 0x00000000 Memory
 0x30 0x00000000 ROM
 0x3D 0x00000001 Interrupt Pin
 0x3C 0x00000010 Interrupt Line
A-8 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

ARM Firmware Suite on Integrator
Bus Slot Func Vendor Device Rev Class Cmd
=== ==== ==== ====== ====== ==== ================ ====
 00 11 00 0x1011 0x0019 0x30 Ethernet 0x07

 Reg Address Type
 ==== ========== ======
 0x10 0x00004000 IO
 0x14 0x41000000 Memory
 0x18 0x00000000 Memory
 0x1C 0x00000000 Memory
 0x20 0x00000000 Memory
 0x24 0x00000000 Memory
 0x30 0x41040000 ROM
 0x3D 0x00000001 Interrupt Pin
 0x3C 0x0000000F Interrupt Line

Bus Slot Func Vendor Device Rev Class Cmd
=== ==== ==== ====== ====== ==== ================ ====
 00 10 00 0x5333 0x88D0 0x00 VGA Device 0x02

 Reg Address Type
 ==== ========== ======
 0x10 0x41800000 Memory
 0x14 0x00000000 Memory
 0x18 0x00000000 Memory
 0x1C 0x00000000 Memory
 0x20 0x00000000 Memory
 0x24 0x00000000 Memory
 0x30 0x42000000 ROM
 0x3D 0x00000000 Interrupt Pin
 0x3C 0x00000000 Interrupt Line

Bus Slot Func Vendor Device Rev Class Cmd
=== ==== ==== ====== ====== ==== ================ ====
 00 09 00 0x1011 0x0024 0x03 PCI->PCI Bridge 0x07

 Reg Address Type
 ==== ========== ======
 0x10 0x00000000 Memory
 0x14 0x00000000 Memory
 0x18 0x00010100 Memory
 0x1C 0x02804150 IO
 0x20 0x42004210 Memory
 0x24 0x00010000 IO
 0x30 0x00000000 ROM
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. A-9

ARM Firmware Suite on Integrator
 0x3D 0x00000000 Interrupt Pin
 0x3C 0x00000000 Interrupt Line
[Integrator] boot Monitor >

Integrator/CP

Prints PCI not supported.

A.2.4 DPI, Display PCI I/O space

The response to this command depends on the type of Integrator board.

Integrator/AP

This command displays contents of PCI I/O space at the address specified. Use hex
notation for the address as shown in Example A-4.

Example A-4 Display result

[Integrator] boot Monitor > dpi 0x100
Displaying PCI IO memory at 0x100
0x00000100: 0xFFFFFFFF
0x00000104: 0xFFFFFFFF
0x00000108: 0xFFFFFFFF
0x0000010C: 0xFFFFFFFF
0x00000110: 0xFFFFFFFF
0x00000114: 0xFFFFFFFF
0x00000118: 0xFFFFFFFF
0x0000011C: 0xFFFFFFFF

Integrator/CP

Prints PCI not supported.

A.2.5 DPM, Display PCI memory space

The response to this command depends on the type of Integrator board.

Integrator/AP

This command displays contents of PCI memory space at the address specified. Use hex
notation for the address as shown in Example A-5 on page A-11.
A-10 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

ARM Firmware Suite on Integrator
Example A-5 Display PCI memory result

[Integrator] boot Monitor > dpm 0x100
Displaying PCI Memory at 0x100
0x00000100: 0x00002378
0x00000104: 0x20000D5C
0x00000108: 0x20000D60
0x0000010C: 0x200016D0
0x00000110: 0x20000D70
0x00000114: 0x20000D74
0x00000118: 0x200016D0
0x0000011C: 0x20000D84

Integrator/CP

Prints PCI not supported.

A.2.6 DPC, Display PCI configuration space

The response to this command depends on the type of Integrator board.

Integrator/AP

This command displays contents of PCI configuration space at the address specified.
Use hex notation for the address as shown in Example A-6.

Example A-6 Display PCI configuration result

[Integrator] boot Monitor > dpc 0x100
Displaying PCI Configuration memory at 0x100
0x00000100: 0xFFFFFFFF
0x00000104: 0xFFFFFFFF
0x00000108: 0xFFFFFFFF
0x0000010C: 0xFFFFFFFF
0x00000110: 0xFFFFFFFF
0x00000114: 0xFFFFFFFF
0x00000118: 0xFFFFFFFF
0x0000011C: 0xFFFFFFFF

Integrator/CP

Prints PCI not supported.
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. A-11

ARM Firmware Suite on Integrator
A.2.7 CC, Set clocks from SIB

Enter the command CC to activate the settings from the boot monitor SIB. This copies
the clock settings from the SIB into the relevant hardware registers. If the exact
frequency values cannot be set due to dependencies within the core, a message is
displayed indicating the value used. See Example A-7. See also DC, Display clock
frequencies and SC, Set clock frequencies in SIB on page A-14.

Example A-7 Set clocks from SIB (Integrator/AP)

[Integrator] boot Monitor > cc
Setting clocks on core module 0

On the Integrator/CP, this command might reset the board.

Example A-8 Set clocks from SIB (Integrator/CP)

[Integrator] boot Monitor > cc
This may reset the system...
Setting clocks on core module 0

You are recommended to use this command after using SC to change the clock settings
to ensure that they work correctly on the hardware in use. Using the SC and CC command
to increase the clock settings also improves the performance of the S-record loader,
particularly at higher line speeds.

A.2.8 DC, Display clock frequencies

Displays the both the current clock settings and the clock settings stored in the boot
monitor SIB. If more than one core module is attached, the settings for each core
module is displayed.

Integrator/AP has two programmable system clocks:

• system bus clock

• PCI clock.
A-12 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

ARM Firmware Suite on Integrator
Each core module has two or three programmable clocks:

• core clock

• local memory bus clock (on some cores this is not independent of the core clock)

• local internal bus clock (this is not present on all cores).

The boot monitor stores settings for the clocks in the SIB. Use the DC command to
display both the current and stored SIB settings (see Example A-9).

Example A-9 Display settings (Integrator/AP)

[Integrator] boot Monitor > dc

Core Module Clocks
==================
 ------ SIB ----- ---- Current ---
CM Core Type Core IBus LBus Core IBus LBus PLL
-- --------- ---- ---- ---- ---- ---- ---- ---
0 ARM966 60 - 30 120 - 40 Off

LBus = Local Memory Bus
IBus = Internal Bus

System Clocks
=============
 ------ SIB ----- ---- Current ---
 System Bus PCI System Bus PCI
 ---------- --- ---------- ---
 20 33 20 33

On the Integrator/CP, only the core module clocks are displayed (see Example A-10).

Example A-10 Display settings (Integrator/CP)

[Integrator] boot Monitor > dc

Core Module Clocks
==================
 ------ SIB ----- ---- Current ---
CM Core Type Core IBus LBus Core IBus LBus PLL
-- --------- ---- ---- ---- ---- ---- ---- ---
0 ARM966 120 - 30 60 - 30 Off
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. A-13

ARM Firmware Suite on Integrator
LBus = Local Memory Bus
IBus = Internal Bus

When the boot switcher transfers control to an image in flash, these settings are read
from the SIB and written into the relevant hardware register in the system controller
FPGA. For more information on the SIB, see SIB functions on page 6-40.

When the system is reset, the boot monitor always starts running with the hardware
defaults. This ensures that the command interpreter operates, even if the SIB contains
incorrect values.

Enter the command CC to activate the settings from the SIB. This copies the clock
settings from the SIB into the relevant hardware registers. See also CC, Set clocks from
SIB on page A-12 and SC, Set clock frequencies in SIB.

A.2.9 SC, Set clock frequencies in SIB

This command sets the clock frequencies in the boot monitor SIB. Each of the
frequency settings is displayed. Enter a new value or press return to keep the current
value. See also CC, Set clocks from SIB on page A-12 and DC, Display clock
frequencies on page A-12. Sample output is shown in Example A-11.

Example A-11 Set clock

[Integrator] boot Monitor > sc
Core [120]: 30
Local Memory Bus [20]: 20
System Bus [20]:
PCI Bus Clock [33]:
[Integrator] boot Monitor > cc
Setting clocks on core module 0
 Core set to 40MHz instead of 30MHz
[Integrator] boot Monitor >

Entering SC without a module number sets the clocks of the core module that is running
boot monitor. Enter SC n, where n is the core module number, to change the clocks on a
different core module.

Enter the command CC to activate the settings from the SIB. This copies the clock
settings from the SIB into the relevant hardware registers. The settings in the SIB are
also activated when the boot switcher transfers control to an image.

On the Integrator/CP you can set core and local memory clocks only.
A-14 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

ARM Firmware Suite on Integrator
A.2.10 DH, Display hardware

This command displays information about the hardware core modules and core module
FPGAs. Sample output is shown in Example A-12 for the Integrator/AP, and in
Example A-13 for the Integrator/CP.

Example A-12 Display hardware result (Integrator/AP)

[Integrator] boot Monitor > dh

Core Modules
============
 ------ FPGA -------
CM Core Arch SSRAM SDRAM Bus Type Rev Build Silicon ID

-- ---- ---- ----- ----- --- ---- --- ----- ----------
0 ARM966 5TExP 1M 32M AHB XCV600 B 19 0x01

System
======

 ---- FPGA/PLD -----
Type Endian SSRAM Flash Bus Type Rev Build

---- ------ ----- ----- --- ---- --- -----
AP Little 512K 32M AHB XC4085XL B 26

Example A-13 Display hardware result (Integrator/CP)

[Integrator] boot Monitor > dh

Core Modules
============

 ------ FPGA -------
CM Core Arch SSRAM SDRAM Bus Type Rev Build Silicon ID
-- ---- ---- ----- ----- --- ---- --- ----- ----------
0 ARM966 5TExP 1M 32M AHB XCV600 D 03 0x01

System
======

 ---- FPGA/PLD -----
Type Endian SSRAM Flash Bus Type Rev Build
---- ------ ----- ----- --- ---- --- -----
CP Either 0 16M AHB EPM7256AE D 11
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. A-15

ARM Firmware Suite on Integrator
Details of each field are as follows:

Core Module CM Core Module.

Core Core name (as decoded from system identification
register).

Arch Architecture version of the code.

SSRAM Amount of SSRAM fitted.

SDRAM Amount od SDRAM fitted.

Bus Bus type of the local memory bus.

FPGA Type FPGA Part number.

FPGA Rev/Build Rev and build information of the FPGA.

Silicon ID Silicon identification as read from the CM_STAT
register.

System Type AP or CP.

Endian One of Little, Big, or Either depending on the
endian support of the system.

SSRAM Amount of SSRAM fitted to the motherboard.

Flash Amount of Flash fitted to the
motherboard/baseboard.

Bus Bus type of the system bus.

FPGA/PLD Type FPGA/PLD Part number.

FPGA/PLD Rev/Build Rev and build information of the FPGA.

Note

 The core module bus field refers to the bus local to the core module. This is also called
the local memory bus. The system bus field refers to the system bus. The type of bus
may be different. Upgrading the system with the AHB support supplied with AFS only
changes the type of the system bus. Existing core modules can be upgraded to change
the bridge between the local memory bus and system bus from ASB-ASB to ASB-AHB.
The local memory bus remains unchanged.

A.2.11 G, Go to address

This command transfers control to the address supplied. Use hex notation for the
address.
A-16 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

ARM Firmware Suite on Integrator
A.2.12 X, Exit board-specific command mode

Enter a single x to exit the board-specific command mode. Enter x followed by a
command to execute a single command and then return to board-specific mode.

A.2.13 PEEK, Display memory at address

This command displays the contents of memory. Sample output is shown in
Example A-14.

Example A-14 Peek

[Integrator] boot Monitor > peek 0x01000000
Displaying memory at 0x01000000
0x01000000: C8000000
0x01000004: 001800C1
0x01000008: 00180101
0x0100000C: 00200000
0x01000010: 008100C0
0x01000014: 2C030500
0x01000018: 00882A90
0x0100001C: 00040D78
[Integrator] boot Monitor >

A.2.14 POKE, Write memory at address

This command inserts the hex word data at the hex address in memory. Sample output
is shown in Example A-15.

Example A-15 Poke

[Integrator] boot Monitor > poke 0x01000010 0x12345678
Poking memory at 0x01000010 with value 0x12345678
[Integrator] boot Monitor >

A.2.15 MEM, Enable on-chip memory

This command writes to the boot monitor SIB to instruct the boot switcher to enable
on-chip memory before an image is relocated from flash. A correctly linked image will
then be copied into, and erased from, the on-chip memory.

This command is only supported with the ARM966 series core modules.
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. A-17

ARM Firmware Suite on Integrator
A.2.16 ESIB, Erase SIB

This command erases the boot monitor SIB.

A new SIB will be created with default values when any other command that references
the SIB (for example DC) is executed.

A.2.17 R, Run image from flash

This command transfers control to image number in flash. The image number is the
logical image number, and is not based on the order of the images in flash.

A.2.18 H or ?, Display help

This command lists the full set of board-specific commands for this mode.
A-18 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

ARM Firmware Suite on Integrator
A.3 Using the boot monitor on Integrator

This section describes how to use the system-specific aspects of the boot monitor on
Integrator. This includes specific boot monitor commands, boot switcher, and hardware
features as they affect components of the AFS.

See also Integrator-specific commands for boot monitor on page A-6.

A.3.1 Flash on Integrator

Integrator has two separate areas of flash designated as boot flash and application flash.
Table A-3 provides a summary of these flash areas.

Integrator/AP Application flash

The Integrator/AP application flash is a general purpose area that you can use to store
any images or data that must be held in nonvolatile memory. The ARM Flash Library
implements a simple mechanism for storing multiple images in flash. This structure
enables the boot switcher to select and run the correct boot image. The ARM Flash
Utility uses the flash library to program and delete images in application flash. In
Table A-3, a block is defined as the smallest area of flash that can be independently
deleted. The flash library supports storing an image in either a single block or in
contiguous multiple blocks.

Integrator/AP Boot flash

The Integrator/AP boot flash contains the default application (usually the boot monitor),
boot switcher, and the FPGA image for the system controller.

Table A-3 Flash device usage on Integrator

Device Size Organization Flash part Usage

Integrator/AP Boot
flash

512KB 1x512K block Atmel AT49LV040 Boot monitor System Controller
FPGA image

Integrator/AP
Application flash

32MB 256x128K blocks Intel 28F320S3 Angel, applications, and data

Integrator/CP
Boot/Application
flash

16MB 64x256K blocks Intel 28F640J3A Block 0-62 - Applications

Block 63 - Boot Monitor
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. A-19

ARM Firmware Suite on Integrator
Caution

 This device can be reprogrammed using BootFU. However, you must take care as
incorrect programming can corrupt the FPGA image and prevent the system from
booting. If the system controller FPGA image is corrupted, you must reprogram the
boot flash using the JTAG connector and Multi-ICE.

In the Images\Integrator subdirectory are files called bootPROM_AHB.mcs and
bootPROM_ASB.mcs. These are Intel hex format images that include both the boot monitor
and the system controller FPGA image. If the FPGA becomes corrupted, you can use
this to reprogram the boot flash over the JTAG connector.

Location of images in flash

The normal location for Angel is block 1 in the boot flash. However, because Angel
relocates itself to SDRAM there is no restriction on its location in flash. Run the Angel
image by selecting image 911 as the boot image and using the boot-from-flash switches.

The standalone variants of the µHAL demo programs are built to run from block 64 of
application flash (0x24800000). You can change this by changing the read-only base
address when linking the image. If the read-only base is an address in RAM the boot
switcher copies the image into RAM before transferring control to it.

A.3.2 Boot switcher

The boot switcher routine is embedded in the boot monitor and is the first thing that is
run after the board is powered on. It reads switch S1-1 and if it is OFF, the boot switcher
attempts to find and run the default image in flash.

If S1-1 is ON, control depends on the setting of switch S1-4. The boot monitor is run if
S1-4 is ON and the selected boot image if it is OFF. This is summarized in Table A-4.

Table A-4 Boot switch settings

S1-1 S1-4 Action

OFF ON or OFF Runs default application flash image at 0x24000000

ON ON System runs boot monitor

ON OFF System runs selected boot image
A-20 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

ARM Firmware Suite on Integrator
A.3.3 Safe mode

If switch S1-2 is ON, the boot monitor runs in safe mode. This means:

• Phase Locked Loop (PLL) is not enabled.

• The PS/2 keyboard controller is not initialized.

• VGA output is disabled.

A.3.4 Integrator clocks

The boot monitor stores settings for the clocks in the SIB. You can modify and display
them using the boot monitor command interpreter (see CC, Set clocks from SIB on
page A-12).

A.3.5 LEDs

If the boot switcher is unable to find or run an image in flash, the red LED on the
motherboard is illuminated.

If an attempt is made to run a µHAL image that is not compatible with the hardware (for
example, an image built for an ARM720T is run on an ARM920T) the red LED flashes
at one-second intervals.

On the Integrator/CP, the boot monitor requires that a SDRAM is fitted. If no SDRAM
is found, alpha LEDs will display SD.

A.3.6 Multiple core modules with the Integrator/AP

You can fit the Integrator/AP with up to four core modules. Each one is equipped with
a processor. If more than one core module is fitted to the Integrator motherboard, the
boot monitor only runs on the primary processor (on core module 0).

Note
 You cannot use multiple core modules with the Integrator/CP.

Some commands display additional information when multiple cores are present:

DH Display hardware shows details of each core module in the system,
including the core type, SSRAM and SDRAM fitted and FPGA version.
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. A-21

ARM Firmware Suite on Integrator
DC Display clocks displays both the current and SIB clock settings for all
core modules in the system. There are three clocks reported for each core
module, these are the core clock, core module bus clock and internal bus
clock. Not all core modules support all these clocks, for example
currently the only core module that has an internal bus is the CM10200.
Where a particular core module does not support a clock it is reported as
-1.

SC Set clocks prompts for the appropriate clock for the core module and
writes these values into the SIB. By default, this command prompts for
the clocks for the core module the boot monitor is running on and the two
system clocks (system bus and PCI). However, it can be used to set the
clock for another core module by specifying the core module number on
the command (for example, SC 2 to set the clocks for core module 2).

CC Set clocks from SIB sets the clocks using the data from the SIB for all the
core modules in the system, the system bus, and PCI clocks.

A.3.7 Loading images using the boot monitor

To load images using Motorola 32 S-record loader, you need a terminal emulator that
can send raw ASCII data files. In the ARM Firmware Suite, Motorola 32 S-record
images are built with the .m32 file extension. There are no prebuilt Motorola 32 S-record
Angel images.

You can build Motorola 32 S-record files for other images such as, for example, the
standalone µHAL demo programs, using the FromELF utility.

Use the Motorola 32 S-record loader as follows:

1. Set your terminal emulator to enable XON/XOFF flow control.

2. Reset the Integrator system with both switches S1-1 and S1-4 in the ON position.
This causes the boot monitor command interpreter to run.

3. At the command prompt type L to start the Motorola 32 S-record loader. The
following dialog is displayed:

boot Monitor > l
Load Motorola S Records into flash
Deleting Image 0
Type Ctrl/C to exit loader.

Any image the boot monitor loads is numbered image 0. If an image 0 already
exists, it is deleted first.

4. Use the send file option on your terminal emulator to download the Motorola 32
S-record image.
A-22 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

ARM Firmware Suite on Integrator
The boot monitor transmits a dot for every 64 records received from the terminal
emulator.

5. When the terminal emulator has finished sending the file, type Ctrl+C to exit the
loader. On exit the loader displays the number of records loaded, the time the load
took. It also lists any blocks it has overwritten.

6. Enter BI 0 to select image number 0 as the image to run on reset.

7. Now move switch S1-4 to the OFF position and reset the system to run the image.

After the boot monitor has loaded the image, it sets the boot image number to 0. When
the system restarts, the boot switcher finds and boots the last image loaded.

Note
 Many of the newer development boards have Angel preloaded in ROM as image
number 911.
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. A-23

ARM Firmware Suite on Integrator
A.4 The ProgCards Utility

This section describes how to use the ProgCards utility to change programmable
hardware components, FPGAs and PLDs for example, of the Integrator platform and its
core modules. This utility is used during board manufacture and to carry out field
upgrades.

A.4.1 The data files

All FPGA and PLD files are named to identify the PCB, device and revision. Names are
in lower case with _ separating the fields, with the following format.

boardname_boardnumber_device_description_revision_buildnum.extension

where:

boardname_boardnumber

describes the development board and board version number:

• ap_48d

• sp_49c

• cm7tdmi_56b

• cm720t_50b

• cm740t_58a

• cm9x0t_47b

• cm966es_66b.

Note
 The full board number is HPI-XXXXR, this is abbreviated to just the

significant digits and revision. For example, HPI-0047B becomes 47b.

device The name of the programmable device:

• xc4036xla

• xc4062xla

• xc4085xla

• xcv600

• xc9536

• xc9572

• xc9536xl

• xc9572xl.
A-24 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

ARM Firmware Suite on Integrator
description A code that describes the function of the file or programmable device:

syscon system controller

pciarb PCI arbiter

cpciarb CPCI arbiter

cmfpga core module FPGA

ssram core module SSRAM controller PLD

bitstreamer
streams configuration data serially into FPGAs

bytestreamer
streams configuration byte-wide data into FPGAs

via helper file for downloading configurations.

revision Consists of the letters rev and a revision letter. a is the first revision.

buildnum Consists of the letters build and a build number. 0 is the first build.

extension An extension that identifies the file type:

mcs flash hex programming file

svf PLD programming file

cpciarb FPGA programming file.

Example files names are shown in Example A-16.

Example A-16 Data filenames

cm7tdmi_56b_xc4062xla_cmfpga_reva_build61.mcs
ap_48d_xc4085xla_syscon_reva_build55.mcs
cm720t_50b_xc9572_bitstreamer_reva_build3.svf

A.4.2 The board description file

ProgCards reads a description of the board JTAG scan chain and list of operations from
a board description file (*.brd). The file describes which bitstream and configuration
files (*.mcs, *.bit, *.svf) should be downloaded to devices on the board.

The source for a typical board description file is shown in Example A-17 on page A-26.
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. A-25

ARM Firmware Suite on Integrator
Example A-17 Board description file

 [General]
 Name = Integrator/AP (HPI-0048D) ASB System Controller Rev A Build 55
 Priority = 5

 [ScanChain]
 TAPs = 3
 TAP0 = XC9572
 TAP1 = XC9572
 TAP2 = XC4085XL,XC4085XLA

 [Program]
 SequenceLength = 4
 Step1Method = FPGA
 Step1TAP = 2
 Step1File = via\ap_48d_xc4085xla_via_build1.bit
 Step2Method = Flash
 Step2TAP = 2
 Step2File = ap\ap_48d_xc4085xla_syscon_reva_build55.mcs
 Step3Method = FlashVerify
 Step3TAP = 2
 Step3File = ap\ap_48d_xc4085xla_syscon_reva_build55.mcs
 Step4Method = PLD
 Step4TAP = 1
 Step4File = ap\ap_48d_xc9572_cpciarb_reva_build4.svf

The upgrade package for any board contains the new files and all previously released
versions so that the user can always return to the original configuration.
A-26 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

ARM Firmware Suite on Integrator
A.5 Using ProgCards

To use ProgCards you must have installed the Multi-ICE Server revision 1.4 or later.
ProgCards is a TAPOp program that runs on a PC host in a DOS window and
communicates with the Multi-ICE server.

Core Modules can be upgraded standalone or on an SP or AP platform. Platforms
require a module to be fitted so that there is a connection for the Multi-ICE unit. If you
have more than one core module, you must upgrade each one individually.

A.5.1 Upgrade procedure

Follow the steps below to upgrade your hardware.

1. Prepare the board for programming.

a. Mount your core module onto your platform board.

b. Connect the Multi-ICE 20-way JTAG cable to the box header on the core
module.

c. Turn on the power.

d. Fit the CONFIG jumper link (next to the Multi-ICE connector) on your core
module. The orange LED turns on.

2. Start the Multi-ICE server.

a. Select File → Auto-Configure. The display shows a number of FPGA and
PLD devices in the scan chain.

b. Select Settings → JTAG Settings and set JTAG Bit Transfer Timing to
1MHz. If you do not set the transfer timing to 1MHz, the upgrade procedure
will fail with a warning.

Note
 If autoconfiguration fails, you must manually load an appropriate

configuration. Select File → Load Configuration and then choose one of
the files from the multi-ice subdirectory. For further details refer to
Manually configuring Multi-ICE on page A-30. The configuration files
provided will automatically set the transfer timing to 1MHz, so this step is
not necessary.

3. Start a DOS window, change to the board files directory and invoke ProgCards
by typing:

C:\> cd AFSv1_4\Boards\integrator\Components\boardfiles
C:\AFSv1_4\Boards\integrator\Components\boardfiles\> progcards server
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. A-27

ARM Firmware Suite on Integrator
Where server is the name of the Multi-ICE server. The local host is the default,
so you are not required to enter a server name if the Multi-ICE server is running
on the same machine.

4. Usually, you get one menu for the core module and one for the platform board. If
only one board description matches, it is automatically selected and no menu is
presented. If a menu is displayed with multiple components, select the component
to program.

a. ProgCards searches for board description files that match the scan chain
shown on the Multi-ICE server window. All board descriptions matching
the first part of the chain are presented as a menu and you can select which
to use.

b. If you do not want to upgrade the board that has been identified you can
ignore it by selecting the skip option.

c. ProgCards looks for board description files that match the next segment of
the scan chain and re-displays the information.

5. After programming has completed, remove the CONFIG jumper link and power
cycle the board.

Note

 Platform boards upgraded to Rev A Build 49 or higher show S on the
alpha-numeric display denoting ASB operation. Platform boards upgraded to Rev
B Build 14 or higher show H on the alpha-numeric display denoting AHB
operation.

A.5.2 Example programming sequence

Example A-18 shows the text displayed and entered for a typical programming session.

Example A-18 Typical programming output

C:\BoardFiles> progcards
ARM Development Card Logic Programmer
Version 2.00

Attempting to connect to Multi-ICE server
Multi-ICE reports 7 TAP controllers

Several possible boards detected at TAP position 0:-
1: Integrator/AP (Skip)
2: Integrator/AP (HPI-0048D) ASB System Controller Rev A Build 46, CPCI Arbiter Rev A Build 4
3: Integrator/AP (HPI-0048D) AHB System Controller Rev B Build 14, CPCI Arbiter Rev B Build 4
A-28 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

ARM Firmware Suite on Integrator
4: Integrator/AP (HPI-0048D) PCI Arbiter Rev A Build 1
5: Integrator/AP (HPI-0048D) ASB System Controller Rev A Build 55, CPCI Arbiter Rev A Build 4
6: Integrator/AP (HPI-0048D) AHB System Controller Rev B Build 23, CPCI Arbiter Rev B Build 4

Make a choice: 5

Step 1: FPGA download of via\ap_48d_xc4085xla_via_build1.bit
Progress: 100.00%, Throughput: 30.89k/s

Step 2: Atmel flash download of ap\ap_48d_xc4085xla_syscon_reva_build53.mcs
Progress: 100.00%, Throughput: 14.00k/s

Step 3: Atmel flash verify against ap\ap_48d_xc4085xla_syscon_reva_build53.mcs
Progress: 100.00%, Throughput: 10.81k/s, Failed: 0%

Step 4: PLD download of ap\ap_48d_xc9572_cpciarb_reva_build4.svf
Progress: 100.00%

Several possible boards detected at TAP position 3:-
1: Generic Core Module (Skip)
2: Integrator/CM740T (HPI-0058A), ASB Rev A Build 61, AHB Rev B Build 9, PLD Build 4
3: Integrator/CM740T (HPI-0058A), ASB Rev A Build 48, PLD Build 3
4: Integrator/CM9x0T (HPI-0047B), ASB Rev A Build 48, PLD Build 3
5: Integrator/CM9x0T (HPI-0047B), ASB Rev A Build 61, AHB Rev B Build 9, PLD Build 4

Make a choice: 5

Step 1: PLD download of via\cm9x0t_47b_xc9572_via_build1.svf
Progress: 100.00%

Step 2: FPGA download of via\cm9x0t_47b_xc4036xla_via_build1.bit
Progress: 100.00%, Throughput: 30.37k/s

Step 3: Atmel flash download of cm9x0t\cm9x0t_47b_xc4036xla_cmfpga_reva_build61_revb_build9.mcs
Progress: 100.00%, Throughput: 16.50k/s

Step 4: Atmel flash verify against cm9x0t\cm9x0t_47b_xc4036xla_cmfpga_reva_build61_revb_build9.mcs
Progress: 100.00%, Throughput: 10.79k/s, Failed: 0%

Step 5: PLD download of cm9x0t\Cm9x0t_47b_xc9572_ssram_build4.svf
Progress: 100.00%

Step 6: PLD download of cm9x0t\cm9x0t_47b_xc9572_bitstreamer_build1.svf
Progress: 100.00%
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. A-29

ARM Firmware Suite on Integrator
A.5.3 Manually configuring Multi-ICE

Under certain circumstances it might not be possible to autoconfigure the Multi-ICE
server. In this case, manually load a configuration from the multi-ice subdirectory.
Configurations are provided for all boards, both standalone and mounted on an AP or
SP. Examples of the file names are shown in Table A-5.

When the CM966E-S is in configuration mode, the ARM966E-S test chip presents an
alternative boundary scan TAP controller. This is supplied by the silicon partner and so
varies between suppliers. Multi-ICE requires only the length of the instruction register
(IR). Table A-6 shows IR values for known silicon.

All the supplied configuration files set the JTAG transfer speed to 1MHz. If the speed
is greater than 1MHz, ProgCards reports the following error when attempting to
program or verify:

ERROR: Unable to identify flash interface - check TCK frequency is 1MHz or less

If autoconfiguration was used, the ARM test chip usually shows up as UNKNOWN. This
means that the scan chain will match board description files for more than one type of
core module. You must carefully select the menu option to match your board. If you
have manually loaded the correct configuration file, only applicable board description
files will be matched and listed in the menu.

Table A-5

Filename Description

cm920t_47b.cfg CM920T (HPI-0047B) stand-alone

sp_49c_cm720t_50b.cfg CM720T (HPI-0050B) on an SP (HPI-0049C)

ap_48d_cm940t_47b.cfg CM940T (HPI-0047B) on an AP (HPI-0048D)

Table A-6

 Manufacturer IR length Multi-ICE configuration file

 LSI 2 cm966_bs2_66b.cfg

 Lucent 3 cm966_bs3_66b.cfg
A-30 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

ARM Firmware Suite on Integrator
A.5.4 Troubleshooting

If the upgrade process fails, or ProgCards reports an error, check that:

• The CONFIG link is inserted and the orange LED is on.

• The Multi-ICE server is showing the correct scan chain for the board combination
in configuration mode.

• The JTAG Bit Transfer Timing is set to 1MHz or less.

• There is only one core module attached to a platform board.

• Power is turned on and the power LED on the Multi-ICE unit is on.

• When upgrading platform boards, the core module is placed on the HDRA/HDRB
connectors. It is possible to configure core modules on the EXPA/EXPB
connectors, but this is a separate scan chain and the platform FPGAs and PLDs
will not be visible.

If the upgrade still fails, refer to the other troubleshooting tips in this section.

DONE or FPGA_OK LED does not light

The FPGA configuration has not loaded at power on. This may be because the platform
board is configured for AHB, but the core module has not been upgraded to support
ASB and AHB.

Platform does not show S or H in alphanumeric display

A core module must be attached. Even though no code is run to generate the display, a
core module must be present to pull-up the global DONE signal otherwise the platform
board will not come out of reset.

Code will not run on upgraded boards

Ensure that the CONFIG link has been removed and the power has been cycled. If the
core module is on a platform board, ensure that the SW1 switches are set as shown in
Table A-7.

Table A-7 SW1 switch settings for ProgCards

1 2 3 4

on off off on
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. A-31

ARM Firmware Suite on Integrator
All three green LEDs on the core module should turn on as the boot monitor runs and
communication should be possible using a serial cable and terminal emulator software.

The debugger (AXD, ADW) can not find the processor

After the upgrade process remember to power cycle the board, remove the CONFIG
link and autoconfigure the Multi-ICE server so that it shows just the ARM in the scan
chain.

The boot monitor hangs

Under certain circumstances the system information block (SIB) in the flash may
become corrupted. If the SIB block contains invalid information, the boot monitor may
become confused. The solution is to erase the offending SIB block using the ARM Flash
Utility.

The ARM Flash Utility does not work on an upgraded board

This could be due to an out of date flash utility. Versions of the system controller after
RevA Build46 include a lock register in the EBI register space at address 0x12000020.
Writing 0xA05F to this register will unlock the EBI registers and they can be modified.
The ARM Flash Utility supplied with AFS 1.1 and above correctly drives the lock
register.

Error on CM966E-S

If the error No entry for driver ARM966_BS2 in file IRlength.arm is displayed when
loading the configuration file for an CM966E-S, add the following lines to the file
IRlength.arm in the Multi-ICE installation directory:

;ARM966 devices in config mode
ARM966_BS2=2
ARM966_BS3=3

ARM966E-S not supported

If you are using Multi-ICE 1.4 you need an update package to use the CM966E-S. If
you are using a more recent revision of Multi-ICE, the ARM966E-S is supported. If you
are using an earlier revision, request an upgrade to 1.4. Contact your local sales office
for details if you are unsure.
A-32 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

ARM Firmware Suite on Integrator
A.6 Angel on Integrator

This section provides an overview of Angel on the ARM Integrator development
system. You can use Angel to load and debug programs over a serial port.

A.6.1 Location in memory

There are two variants of Angel supplied, linked with different execution addresses.

angIntegrator.axf (Integrator/AP only)

The angIntegrator.axf variant of Angel is linked to run at address 0x28000000. This is
in the motherboard SSRAM. The image itself is stored in boot flash. Execution starts in
boot flash, and the image relocates itself to the motherboard SSRAM.

The Integrator/CP cannot run angIntegrator.axf.

angIntegrator_SDRAM.axf (Integrator/AP and Integrator/CP)

The angIntegrator_SDRAM.axf variant of Angel is linked to run at address 0x20000000.
This is the top 64KB of SDRAM on the Integrator/CP (0x0FFF000).

You can run angIntegrator_SDRAM.axf on both the Integrator/CP and Integrator/AP.

A.6.2 Caches

Angel for Integrator runs without enabling caches. To get the maximum performance
from the system, you must enable caches. This requirement on the application is also
true for Multi-ICE. See uHALr_EnableCache() on page 2-12 for details on enabling
caches.

Applications built against µHAL can use µHAL functions to control the cache. See
Simple API MMU and cache functions on page 2-11 and Extended API MMU and cache
functions on page 2-39.

A.6.3 Line speed

The maximum line speed that Angel supports depends on factors such as the clock
settings for the processor and buses. A maximum line speed of 38,400bps is supported
for a system with the optimum clock settings and caches disabled.
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. A-33

ARM Firmware Suite on Integrator
A.6.4 Downloading Angel

The Integrator boards normally have Angel preinstalled in the flash memory boot ROM.
If you have rebuilt the Angel image, use the boot monitor to load the new image as
image 0 or use BootFU to load the image as image 911.
A-34 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

ARM Firmware Suite on Integrator
A.7 PCI initialization on Integrator (Integrator/AP only)

The Integrator/AP system uses a V3 Semiconductor V360EPC to provide PCI host
bridge support. The system-specific µHAL code must initialize this device and provide
PCI access mechanisms.

A.7.1 Integrator PCI subsystem overview

The V3 PCI interface chip in an Integrator provides several windows from local bus
memory into the PCI memory areas. Because there are too few windows, one of the
windows is reused for access to PCI configuration space. The memory map is shown in
Table A-8.

There are three V3 windows, each described by a pair of V3 registers. These are:

• LB_BASE0 and LB_MAP0

• LB_BASE1 and LB_MAP1

• LB_BASE2 and LB_MAP2.

You can use Base0 and Base1 for any type of PCI memory access. You can use Base2
either for PCI I/O or for I20 accesses. By default, µHAL uses this only for PCI I/O
space.

Note
 PCI Memory is mapped so that assigned addresses in PCI memory match local bus
memory addresses.

If a PCI device is assigned address 0x40200000, that address is a valid local bus address
as well as a valid PCI memory address. PCI I/O addresses are mapped to start at 0. This
means that local bus address 0x60000000 maps to PCI I/O address 0x00000000 for
example.

Table A-8 PCI memory map

Local bus memory Function Size

0x40000000 – 0x4FFFFFFF PCI memory, nonprefetchable 256MB

0x50000000 – 0x5FFFFFFF PCI memory, prefetchable 256MB

0x60000000 – 0x60FFFFFF PCI I/O 16MB

0x61000000 – 0x61FFFFFF PCI Configuration 16MB

0x62000000 V3 internal registers -
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. A-35

ARM Firmware Suite on Integrator
Table A-9 shows base registers used for mapping the PCI spaces.

This causes I20 and PCI configuration space accesses to fail. When PCI configuration
accesses are required (using the µHAL PCI configuration space primitives) the spaces
are remapped as shown in Table A-10.

In order for this to work, the code requires overlapping windows working. The V3 chip
translates an address by checking its range within each of the BASE/MAP pairs in turn
(in ascending register number order). It uses the first matching pair. So, for example, if
the same address is mapped by both LB_BASE0/LB_MAP0 and
LB_BASE1/LB_MAP1, the V3 uses the translation from LB_BASE0/LB_MAP0.

To allow PCI configuration space access, the code enlarges the window mapped by
LB_BASE0/LB_MAP0 from 256MB to 512MB. This occludes the windows currently
mapped by LB_BASE1/LB_MAP1 so that it can be remapped for use by configuration
cycles. At the end of the PCI configuration space accesses, LB_BASE1/LB_MAP1 is
reset to map PCI memory.

Finally, the window mapped by LB_BASE0/LB_MAP0 is reduced in size from 512MB
to 256MB to reveal the now restored LB_BASE1/LB_MAP1 window.

Table A-9 Base register mapping

Local Bus Memory Purpose Base/map registers

0x40000000 – 0x4FFFFFFF Memory LB_BASE0, LB_MAP0

0x50000000 – 0x5FFFFFFF Memory LB_BASE1, LB_MAP1

0x60000000 – 0x60FFFFFF I/O LB_BASE2, LB_MAP2

0x61000000 – 0x61FFFFFF Configuration -

Table A-10 Base register remapping

Local bus memory Usage Base/map registers used

0x40000000 – 0x4FFFFFFF Memory LB_BASE0, LB_MAP0

0x50000000 – 0x5FFFFFFF Memory LB_BASE0, LB_MAP0

0x60000000 – 0x60FFFFFF I/O LB_BASE2, LB_MAP2

0x61000000 – 0x61FFFFFF Configuration LB_BASE1, LB_MAP1
A-36 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

ARM Firmware Suite on Integrator
Note

 I20 mapping is not set up because using I2O disables most of the mappings into PCI
memory.

A.7.2 Initializing the host bridge

The PCI initialization code is an assembly macro in target.s. Example A-19 shows the
code.

Example A-19 PCI initilization code

 ; NOTE: load $w1 with the base address of the V3's register set
 ; at the start of the macro and expect it not to change!
 MACRO
$label SETUP_PCI $w1, $w2, $w3, $w4

 ; first turn on PCI
 LDR $w1, =INTEGRATOR_SC_PCIENABLE
 LDR $w2, =0x1
 STR $w2, [$w1]
 ; Load up the base address of the V3 register set
 LDR $w1, =PCI_V3_BASE

 ; can NOT try ANY reads from the V3 bridge chip until LB_IO_BASE is written
 ; we ASSUME that we've already waited for >=230us (@PCLK 25MHz) since reset
 ; so that this write WILL have an effect on the V3 chip
 ; Set up where the V3 registers appear in the memory map (PCI_V3_BASE)
 LDR $w2, =PCI_V3_BASE
 MOV $w2, $w2, LSR #16
 STRH $w2, [$w1, #V3_LB_IO_BASE]

 ; Wait for the V3 to realise that there is no SROM
 LDR $w2, =0xAA
 LDR $w3, =0x55
30 STRB $w2, [$w1, #V3_MAIL_DATA]
 STRB $w3, [$w1, #V3_MAIL_DATA + 4]
 LDRB $w4, [$w1, #V3_MAIL_DATA]
 CMP $w4, #0xAA
 BNE %b30
 LDRB $w4, [$w1, #V3_MAIL_DATA + 4]
 CMP $w4, #0x55
 BNE %b30

 ; Make sure that V3 register access is not locked, if it is, unlock it.
 LDRH $w2, [$w1, #V3_SYSTEM]
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. A-37

ARM Firmware Suite on Integrator
 AND $w2, $w2, #V3_SYSTEM_M_LOCK
 CMP $w2, #V3_SYSTEM_M_LOCK
 LDREQ $w2, =0xA05F
 STREQH $w2, [$w1, #V3_SYSTEM]

 ; ensure that slave accesses from PCI are DISabled while we set up windows
 LDRH $w2, [$w1, #V3_PCI_CMD] ; get current CMD register
 BIC $w2, $w2, #(V3_COMMAND_M_MEM_EN :OR: V3_COMMAND_M_IO_EN)
 STRH $w2, [$w1, #V3_PCI_CMD] ; MEM & IO now BOTH bounce

 ; Clear RST_OUT to 0: keep the PCI bus in reset until we're finished
 LDRH $w2, [$w1, #V3_SYSTEM]
 BIC $w2, $w2, #V3_SYSTEM_M_RST_OUT
 STRH $w2, [$w1, #V3_SYSTEM]

 ; Make all accesses from PCI space retry until we're ready for them
 LDRH $w2, [$w1, #V3_PCI_CFG]
 ORR $w2, $w2, #V3_PCI_CFG_M_RETRY_EN
 STRH $w2, [$w1, #V3_PCI_CFG]

 ; Set up any V3 PCI Configuration Registers that we absolutely have to
 ; LB_CFG controls Local Bus protocol.
 ; enable LocalBus byte strobes for READ accesses too
 LDRH $w2, [$w1, #V3_LB_CFG]
 ORR $w2, $w2, #0x0C0 ; set bit7 BE_IMODE & bit6 BE_OMODE
 STRH $w2, [$w1, #V3_LB_CFG]

 ; PCI_CMD controls overall PCI operation
 ; enable PCI bus master;
 ; for memory but NOT I/O
 LDRH $w2, [$w1, #V3_PCI_CMD]
 ORR $w2, $w2, #0x04 ; set bit2 MASTER_EN
 STRH $w2, [$w1, #V3_PCI_CMD]

 ; PCI_HDR_CFG controls PCI master timeouts etc.
 ; PCI_SUB_VENDOR contains an info field for other masters

 ; PCI_SUB_ID contains an info field for other masters

 ; PCI_MAP0 controls where the PCI to CPU memory window is on the Local Bus
 LDR $w2, =INTEGRATOR_BOOT_ROM_BASE ; start of EBI memory
 MOV $w2, $w2, LSR #20 ; clip to 12-bit field
 MOV $w2, $w2, LSL #20 ; at top of word wide reg
 ; aperture size is 512M
 ORR $w2, $w2, #V3_PCI_MAP_M_ADR_SIZE_512M
 ; PCI_BASE0 reg MUST be enabled before writing it
 ; aperture itself enabled too
 ORR $w2, $w2, #V3_PCI_MAP_M_REG_EN :OR: V3_PCI_MAP_M_ENABLE
 STR $w2, [$w1, #V3_PCI_MAP0] ; finally write the reg
 ; PCI_BASE0 is the PCI address of the start of the window
A-38 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

ARM Firmware Suite on Integrator
 LDR $w2, =INTEGRATOR_BOOT_ROM_BASE ; 1:1 mapping to start of EBI memory
 MOV $w2, $w2, LSR #20 ; clip to 12-bit field
 MOV $w2, $w2, LSL #20 ; at top of word wide reg
 ; read may NOT be prefetched for this aperture (MAY change for later FPGA)
 ; BIC $w2, $w2, #V3_PCI_BASE_M_PREFETCH bit already 0 => NO pre-fetch
 STR $w2, [$w1, #V3_PCI_BASE0]

 ; PCI_MAP1 is LOCAL address of the start of the window
 LDR $w2, =INTEGRATOR_HDR0_SDRAM_BASE ; start of aliassed header memory
 MOV $w2, $w2, LSR #20 ; clip to 12-bit field
 MOV $w2, $w2, LSL #20 ; at top of word wide reg
 ; aperture size is 1024M
 ORR $w2, $w2, #V3_PCI_MAP_M_ADR_SIZE_1024M
 ; PCI_BASE1 reg MUST be enabled before writing it
 ; aperture itself enabled too
 ORR $w2, $w2, #(V3_PCI_MAP_M_REG_EN :OR: V3_PCI_MAP_M_ENABLE)
 STR $w2, [$w1, #V3_PCI_MAP1] ; finally write the reg
 ; PCI_BASE1 is the PCI address of the start of the window
 LDR $w2, =INTEGRATOR_HDR0_SDRAM_BASE
 ; 1:1 mapping to start of header memory
 MOV $w2, $w2, LSR #20 ; clip to 12-bit field
 MOV $w2, $w2, LSL #20 ; at top of word wide reg
 ; read may NOT be prefetched for this aperture (MAY change for later FPGA)
 ; BIC $w2, $w2, #V3_PCI_BASE_M_PREFETCH ;### bit already 0
 STR $w2, [$w1, #V3_PCI_BASE1]
 ; PCI_INT_CFG controls PCI interrupt pins
 ; FIFO_CFG controls V3 FIFOs in both directions

 ; FIFO_PRIORITY controls V3 FIFOs in both directions
 ; Set up the windows from local bus memory into PCI configuration, I/O
 ; and Memory
 ; ... PCI I/O, LB_BASE2 and LB_MAP2 are used exclusively for this
 LDR $w2, =PCI_IO_BASE
 MOV $w2, $w2, LSR #24 ; clip to 8-bit field
 MOV $w2, $w2, LSL #8 ; at top of half-word reg
 ORR $w2, $w2, #V3_LB_BASE_M_ENABLE
 STRH $w2, [$w1, #V3_LB_BASE2]
 LDR $w2, =0 ; map to I/0 address 0 and above
 STRH $w2, [$w1, #V3_LB_MAP2]

 ; ...PCI Configuration, use LB_BASE1/LB_MAP1. Set up on the fly by
 ; the PCI Configuration access code in board.c
 ; ...PCI Memory, use LB_BASE0/LB_MAP0 and LB_BASE1/LB_MAP1
 ; Map first 256Mbytes as non-prefetchable via BASE0/MAP0
 LDR $w2, =PCI_MEM_BASE
 MOV $w2, $w2, LSR #20 ; clip to 12-bit field
 MOV $w2, $w2, LSL #20 ; at top of word wide reg
 ORR $w2, $w2, #0x80 ; Window size is 256 Mbytes (7:4 = 1000)
 ORR $w2, $w2, #V3_LB_BASE_M_ENABLE
 STR $w2, [$w1, #V3_LB_BASE0]
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. A-39

ARM Firmware Suite on Integrator
 LDR $w2, =PCI_MEM_BASE ; PCI_MEM_BASE maps to PCI MEM
 ; address at PCI_MEM_BASE
 MOV $w2, $w2, LSR #20 ; clip to 12-bit field
 MOV $w2, $w2, LSL #4 ; at top of half-word reg
 ORR $w2, $w2, #0x0006 ; 3:0 = 0110 = PCI Memory read/write
 STRH $w2, [$w1, #V3_LB_MAP0]
 ; Map second 256Mbytes as prefetchable via BASE1/MAP1
 LDR $w2, =PCI_MEM_BASE+SZ_256M
 MOV $w2, $w2, LSR #20 ; clip to 12-bit field
 MOV $w2, $w2, LSL #20 ; at top of word wide reg
 ORR $w2, $w2, #0x84 ; Window size is 256 Mbytes
 ; 7:4 = 1000), prefetchable
 ORR $w2, $w2, #V3_LB_BASE_M_ENABLE
 STR $w2, [$w1, #V3_LB_BASE1]
 LDR $w2, =PCI_MEM_BASE+SZ_256M
 MOV $w2, $w2, LSR #20 ; clip to 12-bit field
 MOV $w2, $w2, LSL #4 ; at top of half-word reg
 LDR $w2, =0x0006 ; 3:0 = 0110 = PCI Memory read/write
 STRH $w2, [$w1, #V3_LB_MAP1]

 ; Allow accesses to Configuration space,
 ; set up A1,A0 for type 1 config cycles
 LDRH $w2, [$w1, #V3_PCI_CFG]
 BIC $w2, $w2, #V3_PCI_CFG_M_RETRY_EN
 BIC $w2, $w2, #V3_PCI_CFG_M_AD_LOW1 ; force A1=0 and
 ORR $w2, $w2, #V3_PCI_CFG_M_AD_LOW0 ; A0=1 for config type 1
 STRH $w2, [$w1, #V3_PCI_CFG]

 ; now we can allow in PCI MEMORY accesses
 LDRH $w2, [$w1, #V3_PCI_CMD] ; get current CMD register
 ORR $w2, $w2, #(V3_COMMAND_M_MEM_EN+V3_COMMAND_M_IO_EN)
 STRH $w2, [$w1, #V3_PCI_CMD] ; MEM now accepted
 ; IO still bounced)
 ; Set RST_OUT to take the PCI bus is out of reset,
 ; PCI devices can initialise
 : and lock the V3 system register so that no one else can play with it
 LDRH $w2, [$w1, #V3_SYSTEM]
 ORR $w2, $w2, #V3_SYSTEM_M_RST_OUT
 STRH $w2, [$w1, #V3_SYSTEM]
 ORR $w2, $w2, #V3_SYSTEM_M_LOCK
 STRH $w2, [$w1, #V3_SYSTEM]
MEND
A-40 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

ARM Firmware Suite on Integrator
A.7.3 PCI configuration cycles

The PCI configuration cycle access routines are in the Integrator board.c file. Access
macros are defined for reading and writing registers within the V3 device as shown in
Example A-20.

Example A-20 Defining access macros

// V3 access routines
 #define _V3Write16(o,v) (*(volatile unsigned short *)(PCI_V3_BASE + \
 (unsigned int)(o)) = (unsigned short)(v))
 #define _V3Read16(o) (*(volatile unsigned short *)(PCI_V3_BASE + \
 (unsigned int)(o)))
 #define _V3Write32(o,v) (*(volatile unsigned int *)(PCI_V3_BASE + \
 (unsigned int)(o)) = (unsigned int)(v))
 #define _V3Read32(o) (*(volatile unsigned int *)(PCI_V3_BASE + \
 (unsigned int)(o)))

The PCI configuration window is opened and closed as show in Example A-21. Without
these routine calls, PCI configuration is not accessible.

Example A-21 Opening and closing the PCI config window

void _V3OpenConfigWindow(void) {
 //Set up base0 to see all 512Mbytes of memory space
 //(not prefetchable), this frees up base1 for re-use by
 // configuration memory
 _V3Write32(V3_LB_BASE0,((PCI_MEM_BASE & 0xFFF00000)| 0x90 | \\
 V3_LB_BASE_M_ENABLE)) ;
 //Set up base1 to point into configuration space, note that
 //MAP1 register is set up by uHALir_PCIMakeConfigAddress().
 _V3Write32(V3_LB_BASE1, ((PCI_CONFIG_BASE & 0xFFF00000) | 0x40 | \\
 V3_LB_BASE_M_ENABLE)) ;
}
void _V3CloseConfigWindow(void) {
 //Reassign base1 for use by prefetchable PCI memory
 _V3Write32(V3_LB_BASE1, (((PCI_MEM_BASE + SZ_256M) & 0xFFF00000) | 0x84 | \\
 V3_LB_BASE_M_ENABLE)) ;
 _V3Write16(V3_LB_MAP1, (((PCI_MEM_BASE + SZ_256M) & 0xFFF00000) >> 16) | \\
 0x0006) ;
 // And shrink base0 back to a 256M window (NOTE: MAP0 already correct)
 _V3Write32(V3_LB_BASE0, ((PCI_MEM_BASE & 0xFFF00000) | 0x80 | \\
 (pointer unsigned char)V3_LB_BASE_M_ENABLE)) ;
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. A-41

ARM Firmware Suite on Integrator
The routine in Example A-22 is used each time access is made to the PCI Configuration
space. This maps the offset into PCI Configuration space to a local bus address. It copes
with whether or not the bus is the local bus and also with addresses that have bits
A31:A24 set. As a side-effect, this routine might alter the contents of LB_MAP1 so that
the V3 can generate the correct addresses.

Example A-22 Configuration space offset mapping

 unsigned int uHALir_PCIMakeConfigAddress(unsigned int bus,
 unsigned int device,
 unsigned int function,
 unsigned int offset) {
 unsigned int address, devicebit ;
 unsigned short mapaddress ;

 if (bus == 0) {
 /* local bus segment so need a type 0 config cycle */
 /* build the PCI configuration "address" with one-bit in A31-A11 */
 address = PCI_CONFIG_BASE ;
 address |= ((function & 0x07) << 8) ;
 address |= offset & 0xFF ;
 mapaddress = 0x000A ; /* 101=>config cycle, 0=>A1=A0=0 */
 devicebit = (1 << (device + 11)) ;
 if ((devicebit & 0xFF000000) != 0) {
 /* high order bits are handled by the MAP register */
 mapaddress |= (devicebit >>16) ;
 } else {
 /* low order bits handled directly in the address */
 address |= devicebit ;
 } else { /* bus !=0 */
 /* not the local bus segment so need a type 1 config cycle */
 /* A31-A24 are don't care (so clear to 0) */
 mapaddress = 0x000B ; /* 101=>config cycle,
 1=>A1&A0 from PCI_CFG */
 address = PCI_CONFIG_BASE ;
 address |= ((bus & 0xFF) <<16) ; /* bits 23..16 = bus number */
 address |= ((device & 0x1F) << 11) ; /* bits 15..11 = device number */
 address |= ((function & 0x07) << 8) ; /* bits 10..8 = function number */
 address |= offset & 0xFF ; /* bits 7..0 = register number */
 }
 _V3Write16(V3_LB_MAP1, mapaddress) ;

 return address ;
}

A-42 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

ARM Firmware Suite on Integrator
Example A-23 shows a typical usage of the configuration routines. In this example, a
byte is read from PCI Configuration space:

Example A-23 Reading a byte from PCI configuration space

unsigned char uHALr_PCICfgRead8(unsigned int bus, unsigned int device,\\
 unsigned int function, unsigned int offset) {
pointer unsigned char pAddress ;
unsigned char data ;
 // open the (closed) configuration window from local bus memory
_V3OpenConfigWindow() ;

 /* generate the address of correct configuration space */
 pAddress = (pointer unsigned char)(uHALir_PCIMakeConfigAddress(bus, \\
 device, function, offset)) ;

 /* now that we have valid params, go read the config space data */
 data = *pAddress ;

 // close the window
 _V3CloseConfigWindow() ;

 return(data) ;
}

ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. A-43

ARM Firmware Suite on Integrator
A.7.4 Interrupt routing

The Integrator-specific interrupt routing code uses a static routing table, as shown in
Example A-24. This provides the generic PCI code with mapping of the interrupt
numbers, the slot a device occupies, and the interrupt pin it uses.

Example A-24 Interrupt mapping

unsigned char uHALir_PCIMapInterrupt(unsigned char pin, unsigned char slot) {
 #define INTA IRQ_PCIINT0
 #define INTB IRQ_PCIINT1
 #define INTC IRQ_PCIINT2
 #define INTD IRQ_PCIINT3

//DANGER! For now this is the SDM interrupt table...
 char irq_tab[12][4] = {
 // INTA INTB INTC INTD
 { INTA, INTB, INTC, INTD }, // idsel 20, slot 9
 { INTB, INTC, INTD, INTA }, // idsel 21, slot 10
 { INTC, INTD, INTA, INTB }, // idsel 22, slot 11
 { INTD, INTA, INTB, INTC }, // idsel 23, slot 12
 { INTA, INTB, INTC, INTD }, // idsel 24, slot 13
 { INTB, INTC, INTD, INTA }, // idsel 25, slot 14
 { INTC, INTD, INTA, INTB }, // idsel 26, slot 15
 { INTD, INTA, INTB, INTC }, // idsel 27, slot 16
 { INTA, INTB, INTC, INTD }, // idsel 28, slot 17
 { INTB, INTC, INTD, INTA }, // idsel 29, slot 18
 { INTC, INTD, INTA, INTB }, // idsel 30, slot 19
 { INTD, INTA, INTB, INTC } // idsel 31, slot 20
} ;
uHALr_printf("pin = %d, slot = %d\n", pin, slot) ;

 if (pin == 0) pin = 1 ; //if PIN = 0, default to A
 return irq_tab[slot-9][pin-1] ; //return the magic number
}

A-44 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

Appendix B
ARM Firmware Suite on Prospector

This appendix provides implementation-specific details about using the AFS on the
Prospector development system. All components of the AFS are supported. It contains
the following sections:

• About Prospector on page B-2

• Prospector-specific commands for boot monitor on page B-3

• Using boot monitor on Prospector on page B-6

• Angel on Prospector on page B-10.
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. B-1

ARM Firmware Suite on Prospector
B.1 About Prospector

This section provides an overview of the ARM Prospector development system. The
Prospector development system is available in two versions:

• The Prospector P1100 uses the StrongARM SA1100 processor.

• The Prospector P720 uses a Cirrus Logic 7212 (an ARM720T processor variant).

Table B-1 lists the differences between the P1100 and P720T development boards. By
including all of these features, along with a reusable pool of software, Prospector allows
rapid porting, evaluation, and development of derivative products.

Table B-1 Comparison of P1100 and P720T boards

Feature P1100 P720T

Processor StrongARM SA1100 190MHz
maximum clock

ARM720T-based ASSP (EP7212)
74MHz maximum clock

Flash memory 32MB 32MB

DRAM 32MB 16MB

Display LCD VGA Color TFT (available
with touchscreen and backlight)

LCD 1/2 VGA mono STN (available
with touchscreen)

Power Battery (3V) or external power
supply (6 to 12V at 1.5A)

Battery (3V) or external power
supply (6 to 12V at 1A)

IO on SPI bus Keyboard, pointing device
(PixiPointer) touchscreen
support, MMC storage card

Keyboard, pointing device
touchscreen support, MMC storage
card

Serial port Two (with flow control) Two (with flow control)

Audio CODEC
(UCB1200)

Stereo in and out Stereo in and out

Infrared port IrDA, FIR, MIR, SIR IrDA, SIR

Expansion SPI port SPI port and two compact flash slots

JTAG Programming of flash and PLD ICE support and programming of
flash and PLD
B-2 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

ARM Firmware Suite on Prospector
B.2 Prospector-specific commands for boot monitor

The Prospector platforms provide a set of system-specific boot monitor commands.
These are listed in Table B-2. Commands are not case-sensitive.

B.2.1 D, Display memory at address

This command displays memory at hex address as shown in Example B-1.

Example B-1 Display memory

[Prospector P-1100] boot Monitor > d 0x01000000
Displaying memory at 0x1000000
0x01000000: C8000000
0x01000004: 001800C1
0x01000008: 00180101
0x0100000C: 00200000
0x01000010: 008100C0
0x01000014: 2C030500
0x01000018: 00882A90
0x0100001C: 00040D78

B.2.2 G, Go to address

This command transfers control to the hex address supplied.

Table B-2 Prospector system-specific commands

Command Action

D address Display memory at address (use hex format)

G address Go to address (use hex format)

H or ? Display help

P address data Poke data at address (use hex format for both values)

R number Run image number from flash

V View images in flash (boot and application flash)

X command Exit board-specific command mode
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. B-3

ARM Firmware Suite on Prospector
B.2.3 H or ?, Display help

This lists the full set of board-specific commands for this mode.

B.2.4 P, Poke memory at address

This command inserts the hex word data at hex address in memory as shown in
Example B-2.

Example B-2 Poke

[Prospector P-1100] boot Monitor > p 0x01000010 0x12345678
Poking memory at 0x1000010 with value 0x12345678

B.2.5 R, Run image from flash

This command transfers control to image number in flash. The image number is the
logical image number, and is not based on the order of the images in flash.

B.2.6 V, View images in flash

This command displays information on the images stored in boot and application flash
memory as shown in Example B-3 on page B-5.
B-4 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

ARM Firmware Suite on Prospector
Example B-3 View output

[Prospector P-1100] boot Monitor > v

There are 2 256KByte blocks of Boot Flash:
Images found
============
Block Size ImageNo Name Compress
----- ---- ------- ---- --------
 0 1 4,280,910 bootPROM (0x04000000-0x0403FFEC)
 1 1 911 Angel (0x04040000-0x0407FFEC)

There are 126 256KByte blocks of Application Flash:
Images found
============
Block Size ImageNo Name Compress
----- ---- ------- ---- --------
 0 1 1 Bubble (0x04080000-0x040BFFEC)
 62 5 62 Pics (0x05000000-0x0513FFEC)
 110 4 110 TopCat (0x05C00000-0x05CFFFEC)
 114 5 120 slideshow Y (0x05D00000-0x05EFFFEC)

System Information Blocks
=========================
Block Owner Index Size
----- ----- ----- ----
 125 ARM Boot Monitor 0 260 (0x5FC0000)

B.2.7 X, Exit board-specific command mode

Enter a single X to exit the board-specific command mode. Enter X followed by a
command to execute a single command and then return to board-specific mode.
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. B-5

ARM Firmware Suite on Prospector
B.3 Using boot monitor on Prospector

This section describes the power-on sequence for the Prospector boards. The boot
switcher is embedded in the boot monitor and is the first thing that is run. It reads switch
U25-5 and, if it is on, passes control to the default application (boot monitor). If it is off,
the boot switcher attempts to find and run an image in flash. See Flash on Prospector
for a description of flash memory on Prospector systems.

B.3.1 Connecting to boot monitor

The boot monitor uses the serial port connected to COM1. The settings are 38,400 bps,
8 data bits, and 1 stop bit.

B.3.2 Flash on Prospector

Prospector flash memory is logically divided into two areas:

• Application flash.

• Boot flash.

Application flash

The application flash is a general-purpose area that you can use to store any images or
data that require to be held in nonvolatile memory. The Flash Library implements a
simple mechanism for storing multiple images in flash. This structure enables the boot
switcher to select and run the correct boot image. The ARM Flash Utility uses the Flash
Library to program and delete images in application flash. The Flash Library supports
storing an image in either a single block or multiple blocks (although they must be
contiguous).

Boot flash

The boot flash contains the boot monitor and switcher. This device can be
reprogrammed using BootFU.

B.3.3 Image formats

AFS uses the following image formats:

.axf ELF

.bin Plain binary file

.m32 Motorola 32 S Record

.i32 Intel Hex.
B-6 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

ARM Firmware Suite on Prospector
For Prospector, the µHAL demos CodeWarrior project files always build .axf format
images. However, the makefile also builds .axf and .bin format images. This is because
the makefile is generic across all platforms and the .bin format image is required for
other platforms. Images for both the P1100 and the P720T are found in the Build
subdirectories of the uHALDemos directory.

The images for the Prospector P1100 are in AFSv1_4\Images\Prospector1100.

The images for the Prospector P720T are in AFSv1_4\Images\Prospector720T.

Location of images in flash

The standalone variants of the µHAL demo program are built to run from block 0 of
application flash (0x4080000). You can change this by changing the read-only base
address when linking the image. If the read-only base is an address in RAM the boot
switcher copies the image into RAM before transferring control to it. Semihosted
programs always run from DRAM at 0x8000.

B.3.4 Start-up sequence

The boot switcher allows you to program multiple executable images into flash and
provides a simple mechanism to run them. When power is applied to Prospector, the
following steps occur:

1. The boot switcher code is executed. This code looks at switch U25-5 to determine
whether the default application (boot monitor) or a user-selected image must be
run.

2. If the user-selected image must be run, the boot switcher looks for a SIB which
contains the image number. Then flash is scanned for a matching image number
and the image checksum is calculated and validated.

3. If the image footer indicates that it must run from RAM, then memory is
initialized before the image is copied into place.

4. Control is passed to the selected image.

If the image cannot be found, or the checksum fails, control is passed back to the boot
monitor, which sends an appropriate message out of the serial port before printing the
banner. If the boot switcher is unable to find or run an image in flash, the red LED on
the motherboard is illuminated.
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. B-7

ARM Firmware Suite on Prospector
B.3.5 Prospector system-specific boot monitor

The Prospector boot monitor is programmed into the boot flash as image 4280910
(0x41524E or ’ARM’+1). This allows the boot switcher code to copy the image to RAM
before executing it.

The boot monitor has to run from RAM in order to program data into flash, as the flash
does not allow read access when programming. The top 32KB of RAM is reserved for
the MMU Lookup Tables.

The Prospector provides a set of system-specific boot monitor commands. See
Prospector-specific commands for boot monitor on page B-3.

B.3.6 Loading images using boot monitor

Use a terminal emulator that is able to send raw ASCII data files to load Motorola 32
S-record images. In the ARM Firmware Suite, Motorola 32 S-record images are built
with the .m32 file extension. Motorola 32 S-record files can be built for images such as,
for example, the standalone µHAL demo programs, using the FromELF utility.

Use the Motorola 32 S-record loader as follows:

1. Set your terminal emulator to enable XON/XOFF flow control.

2. Reset the Prospector system with switch U25-5 in the ON position. This causes
the boot monitor command interpreter to run.

3. At the command prompt type L to start the Motorola 32 S-record loader. The
following text is displayed:

boot Monitor > l
Load Motorola S Records into flash
Deleting Image 0
Type Ctrl/C to exit loader.

Any image the boot monitor loads is numbered image 0. If an image 0 already
exists it is deleted first. See L, Load S-records into flash on page 3-7 for more
information on the load command.

4. Use the send text file option to download the Motorola 32 S-record image.

The boot monitor transmits a dot for every 64 records received from the terminal
emulator.
B-8 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

ARM Firmware Suite on Prospector
5. When the terminal emulator has finished sending the file, type Ctrl+C to exit the
loader. On exit the loader displays the number of records loaded and the time the
load took. It also lists any blocks it has overwritten.

6. Move switch U25-5 to the OFF position and reset the system to run the image.

7. After the boot monitor has loaded the image, it sets the boot image number to
zero. When the system restarts, the boot switcher finds and boots the last image
loaded.
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. B-9

ARM Firmware Suite on Prospector
B.4 Angel on Prospector

This section provides an overview of Angel on the Prospector development systems.

B.4.1 Image format

The Angel build for Prospector builds .axf and .bin format images.

The images for the Prospector P1100 are in AFSv1_4\Images\Prospector1100.

The images for the Prospector P720T are in AFSv1_4\Images\Prospector720T.

B.4.2 Location in memory

Angel is linked to run from DRAM. For the P1100, the actual address it is linked at is
0x01FE8000 which is near the top of the 32MB DRAM region.

For the P720T, the actual address it is linked at is 0x00FE8000 which is near the top of
the 16MB DRAM region.

The top 32KB of DRAM is reserved for the MMU lookup tables and the boot monitor.
The Angel executable occupies the memory below them.

B.4.3 Caches

Angel for Prospector runs with caches and MMU enabled. This allows applications to
get the maximum performance from the system. Use the µHAL functions to control the
cache. See Simple API MMU and cache functions on page 2-11 and Extended API
MMU and cache functions on page 2-39.

B.4.4 Line speed

The maximum line speed that Angel supports depends on factors such as the clock
settings for the processor, and on whether caches are enabled. Running on a 190MHz
system with caches enabled, a maximum line speed of 115,200bps is supported.
B-10 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

Appendix C
ARM Firmware Suite on the Intel IQ80310 and
IQ80321

This appendix provides implementation-specific details about using the AFS on the
following development systems:

• Intel IQ80310 Software Development and Processor Evaluation Kit (IQ80310)

• Intel IQ80321 Evaluation Platform and Customer Reference Board(IQ80321).

These are referred to collectively in this appendix as the Intel IQ systems. All
components of the AFS are supported.

This appendix contains the following sections:

• About the IQ80310 development kit on page C-2

• IQ-specific commands for boot monitor on page C-4

• Using boot monitor on the Intel IQ systems on page C-7

• Angel on the Intel IQ systems on page C-10.
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. C-1

ARM Firmware Suite on the Intel IQ80310 and IQ80321
C.1 About the IQ80310 development kit

This section provides an overview of the IQ80310 development kit. The IQ80310 is a
PCI plug-in card with extra connectors to allow access to the secondary PCI bus.

The Intel IOP310 I/O chip-set includes

• The Intel 80200 microprocessor, featuring a 600 MHz Intel XScale core. The
XScale core is compliant with ARM v5TE architecture and includes 32Kbytes of
instruction and 32Kbytes of data cache.

• The Intel 80312 I/O companion chip with an integrated PCI-to-PCI bridge, 100
MHz SDRAM interface, and I2O support.

C.1.1 AFS support

The ARM Firmware Suite on the IQ80310 supports system initialization, ECC memory,
MMU and cache setup. The LEDs, serial ports and PCI sub-systems are also supported.

AFS arranges the IQ80310 memory map in the same manner as other board ports:

RAM Starts at address 0.

Flash Starts at 64Mb (address 0x04000000).

Other Mapped to the same virtual address as their physical locations.

Because there are no discrete LEDs on the IQ80310, AFS uses the numeric LED
horizontal elements as six LEDs. AFS also supports writing hexadecimal values to the
numeric LEDs.

Contact your vendor for support on this platform.
C-2 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

ARM Firmware Suite on the Intel IQ80310 and IQ80321
C.2 About the IQ80321 development kit

This section provides an overview of the IQ80321 development kit. The IQ80321 is a
PCI plug-in card with extra connectors to allow access to the secondary PCI bus.

The Intel IQ80321 board includes

• The Intel 80321 Verde IO microprocessor, featuring a 600 MHz Intel XScale
core. The XScale core is compliant with ARM v5TE architecture and includes
32Kbytes of instruction and 32Kbytes of data cache.

• Intel 82544 Giga Ethernet controller.

• TI TL16C550C UART.

• 16MB of flash memory (28F640J3A).

• 32KB of instruction cache and 32KB of data cache.

• PCI bus application bridge.

• Socket for PC200 DDR memory.

C.2.1 AFS support

The ARM Firmware Suite on the IQ80321 supports system initialization, ECC memory,
MMU and cache setup. The LEDs, serial ports and PCI sub-systems are also supported.

AFS arranges the IQ80321 memory map in the same manner as other board ports:

RAM Starts at address 0.

Flash Starts at 128Mb (address 0x08000000) and is 8Mb in size .

Other Mapped to the same virtual address as their physical locations.

Because there are no discrete LEDs on the IQ80321, AFS uses the two numeric LED
horizontal elements as individual LEDs. AFS also supports writing hexadecimal values
to the numeric LEDs.
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. C-3

ARM Firmware Suite on the Intel IQ80310 and IQ80321
C.3 IQ-specific commands for boot monitor

The Intel IQ systems provide a set of system-specific boot monitor commands. These
are listed in Table C-1. Examples are provided in H or ?, Display help on page C-5 to
X, Exit board-specific command mode on page C-6.

C.3.1 D, Display memory at address

This command displays memory at hex address as shown in Example C-1.

Example C-1 Display memory

[Coyanosa] boot Monitor > d 0x01000000
Displaying memory at 0x1000000
0x01000000: C8000000
0x01000004: 001800C1
0x01000008: 00180101
0x0100000C: 00200000
0x01000010: 008100C0
0x01000014: 2C030500
0x01000018: 00882A90
0x0100001C: 00040D78

C.3.2 G, Go to address

This command transfers control to the hex address supplied.

Table C-1 IQ80310 system-specific commands

Command Action

D address Display memory at address (use hex format)

G address Go to address (use hex format)

H or ? Display help

P address data Poke data at address (use hex format for both values)

R number Run image number from flash

V View images in flash (boot and application flash)

X command Exit board-specific command mode
C-4 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

ARM Firmware Suite on the Intel IQ80310 and IQ80321
C.3.3 H or ?, Display help

This lists the full set of board-specific commands for this mode.

C.3.4 P, Poke memory at address

This command inserts the hex word data at hex address in memory as shown in
Example C-2.

Example C-2 Poke

[Coyanosa] boot Monitor > p 0x01000010 0x12345678
Poking memory at 0x1000010 with value 0x12345678

C.3.5 R, Run image from flash

This command transfers control to image number in flash. The image number is the
logical image number, and is not based on the order of the images in flash.

C.3.6 V, View images in flash

This command displays information on the images stored in boot and application flash
memory as shown in Example C-3 on page C-6.
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. C-5

ARM Firmware Suite on the Intel IQ80310 and IQ80321
Example C-3 View output

[Coyanosa] boot Monitor > v

There are 4 128KByte blocks of Boot Flash:
Images found
============
Block Size ImageNo Name Compress
----- ---- ------- ---- --------
 0 1 4,280,910 bootMonitor (0x04000000-0x0401FFEC)
 1 1 911 Angel (0x04020000-0x0403FFEC)
 2 2 411 RedBoot (0x04040000-0x0407FFEC)

There are 60 128KByte blocks of Application Flash:
Images found
============
Block Size ImageNo Name Compress
----- ---- ------- ---- --------
 0 1 1 Bubble (0x04080000-0x040BFFEC)
 62 5 62 Pics (0x05000000-0x0513FFEC)
 110 4 110 TopCat (0x05C00000-0x05CFFFEC)
 114 5 120 slideshow Y (0x05D00000-0x05EFFFEC)

System Information Blocks
=========================
Address Owner Size Idx Rev
----- ----- ----- --- ---
0x47e0000 ARM Boot Monitor 312 0 0

C.3.7 X, Exit board-specific command mode

Enter a single X to exit the board-specific command mode. Enter X followed by a
command to execute a single command and then return to board-specific mode.
C-6 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

ARM Firmware Suite on the Intel IQ80310 and IQ80321
C.4 Using boot monitor on the Intel IQ systems

This section describes the power-on sequence for the boards.

C.4.1 Connecting to boot monitor

The boot monitor uses the serial port (J9 on the IQ80310) . The settings are 115,200bps,
8 data bits, and 1 stop bit.

C.4.2 Flash memory

Flash memory is logically divided into two areas:

• application flash

• boot flash.

µHAL maps the flash from physical address 0 to virtual address:

• 64Mbytes (0x04000000) for the IQ80310

• 128Mbytes (0x08000000) for the IQ80321.

This area is set as cacheable in order to maximize performance of applications running
directly from flash. A second virtual area is defined, just above this, as non-cacheable.
This area is used only for programming flash.

Application flash

The application flash is a general-purpose area that can be used to store any images or
data that require to be held in nonvolatile memory. The Flash Library implements a
simple mechanism for storing multiple images in flash. This structure enables the boot
switcher to select and run the correct boot image. The ARM Flash Utility (AFU) uses
the Flash Library to program and delete images in application flash. The Flash Library
supports storing an image in either a single block or multiple blocks (although they must
be contiguous).

Boot flash

The boot flash contains the boot monitor and switcher, the Angel Debug Monitor and
Redboot. This device can be reprogrammed using BootFU.

Redboot is an acronym for “Red Hat Embedded Debug and Bootstrap” and is the
standard embedded system debug/bootstrap environment from Red Hat. It replaces the
previous Red Hat debug/boot tools.
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. C-7

ARM Firmware Suite on the Intel IQ80310 and IQ80321
C.4.3 Boot switcher

The boot switcher is embedded in the boot monitor and is the first thing that is run.
Action taken depends on the setting of switch S1:

0 or 1 Control passes to Redboot.

2 Control passes to the default ARM application (boot monitor).

Other The boot switcher attempts to find and run an image in flash.

C.4.4 Start-up sequence

The boot switcher allows the user to program multiple executable images into flash and
provides a simple mechanism to run them. When power is applied to the board, the
following steps occur:

1. The boot switcher code is executed. This code looks at switch S1 (the rotary
switch) to determine whether Redboot, the default ARM application (boot
monitor), or a user-selected image must be run.

2. If the user-selected image must be run, the boot switcher looks for a SIB which
contains the image number. Then flash is scanned for a matching image number
and the image checksum is calculated and validated.

3. If the image footer indicates that it must run from RAM, then memory is
initialized before the image is copied into place.

4. Control is passed to the selected image.

If the image cannot be found, or the checksum fails, control is passed back to the boot
monitor, which sends an appropriate message out of the serial port before printing the
banner. If the boot switcher is unable to find or run an image in flash, the numeric LED
on the motherboard is illuminated.

C.4.5 System-specific boot monitor

The Intel IQ systems boot monitor is programmed into the boot flash as image 4280910
(that is, 'ARM'+1). This allows the boot switcher code to copy the image to RAM before
executing it.

The boot monitor has to run from RAM in order to program data into flash, as the flash
does not allow read access when programming. The actual address it is linked at is

• 0x01FD0000 for the IQ80310. This is near the top of the 32MB DRAM region.

• 0x07F80000 for the IQ80321. This is near the top of the 128MB DRAM region.

The top 32KB of RAM is reserved for the MMU Lookup Tables.
C-8 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

ARM Firmware Suite on the Intel IQ80310 and IQ80321
C.4.6 Loading images using boot monitor

Use a terminal emulator that is able to send raw ASCII data files to load Motorola 32
S-record images. In the ARM Firmware Suite, Motorola 32 S-record images are built
with the .m32 file extension. Motorola 32 S-record files can be built for images such as,
for example, the standalone µHAL demo programs, using the FromELF utility.

Use the Motorola 32 S-record loader as follows:

1. Set your terminal emulator to enable XON/XOFF flow control.

2. Reset the Intel IQ system with the rotary switch set to 2. This causes the boot
monitor command interpreter to run.

3. At the command prompt type L to start the Motorola 32 S-record loader. The
following text is displayed:

boot Monitor > l
Load Motorola S Records into flash
Deleting Image 0
Type Ctrl/C to exit loader.

Any image the boot monitor loads is numbered image 0. If an image 0 already
exists it is deleted first. See L, Load S-records into flash on page 3-7 for more
information on the load command.

4. Use the send text file option to download the Motorola 32 S-record image.

The boot monitor transmits a dot for every 64 records received from the terminal
emulator.

5. When the terminal emulator has finished sending the file, type Ctrl+C to exit the
loader. On exit the loader displays the number of records loaded and the time the
load took. It also lists any blocks it has overwritten.

6. Move the rotary switch to 3 and reset the system to run the image.

7. After the boot monitor has loaded the image, it sets the boot image number to
zero. When the system restarts, the boot switcher finds and boots the last image
loaded.
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. C-9

ARM Firmware Suite on the Intel IQ80310 and IQ80321
C.5 Angel on the Intel IQ systems

This section provides an overview of Angel on the Intel IQ development systems.

C.5.1 Image format

The Angel builds for the Intel IQ systems build ELF (.axf) and binary (.bin) format
images.

The images for the Intel IQ80310 system is in AFSv1_4\Images\Coyanosa.

The images for the Intel IQ80321 system is in AFSv1_4\Images\Worcester.

C.5.2 Location in memory

Angel is linked to run from DRAM. The top of DRAM is reserved for the MMU
Lookup Tables and the boot monitor. The Angel executable occupies the memory below
that.

The actual address Angel is linked at is:

• 0x01FB8000 for the IQ80310. This is near the top of the 32MB DRAM region.

• 0x07FB8000 for the IQ80321. This is near the top of the 128MB DRAM region.

C.5.3 Caches

Angel for the Intel IQ systems run with caches and MMU enabled. This allows
applications to obtain the maximum performance from the system. Use the µHAL
functions to control the cache. See Simple API MMU and cache functions on page 2-11
and Extended API MMU and cache functions on page 2-39.

C.5.4 Line speed

When it starts, Angel communicates at 9600bps. On the Intel IQ systems, the maximum
line speed of 115,200bps is supported. On the IQ80310 Angel uses J9 for serial
communication.

C.5.5 Initial loading of Angel into flash

Angel is pre-loaded into boot-flash block 1 as image 911. The boot switcher relocates
the image from flash to RAM. If the Angel image needs to be rebuilt, it can be
programmed into any flash block and the boot switcher will execute it when the new
image number has been programmed into the SIB.
C-10 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

ARM Firmware Suite on the Intel IQ80310 and IQ80321
C.6 Flash recovery

If for any reason the contents of flash becomes corrupt or is deleted use the following
procedures to restore it:

• IQ80310 Coyanosa

• IQ80321 Worcester on page C-12.

C.6.1 IQ80310 Coyanosa

To re-initialise the board:

1. Connect Multi-ICE to the board, turn on the power and configure your Multi-ICE
server.

2. Start a command prompt window and go to the Images\Coyanosa directory.

3. Start the debugger and connect to the Coyanosa board.

4. Ensure that Hot Debug is disabled.

5. Exit the debugger. (This sets the default connection for the debugger to be to the
Coyanosa board.)

6. Start the debugger from a command prompt with the appropriate script file:

a. For ADW, enter adw -script coyanosa_adw.li

Click Yes at the prompt asking if you want to debug using the Multi-ICE
DLL.

b. For AXD, enter axd -script coyanosa_axd.li

7. The script performs the following actions:

a. The board is initialized.

b. recovery.bin is loaded and executed.

c. bootFU.axf is loaded and executed.

8. Use the bootFU commands to reload flash images.

9. The debugger exits after bootFU terminates. The system is now restored to its
initial state.
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. C-11

ARM Firmware Suite on the Intel IQ80310 and IQ80321
C.6.2 IQ80321 Worcester

To re-initialise the board:

1. Connect Multi-ICE to the board, turn on the power and configure your Multi-ICE
server.

2. Start the debugger and connect to the Worcester board.

3. Ensure that Hot Debug is disabled.

4. Exit the debugger. (This sets the default connection for the debugger to be to the
Worcester board.)

5. Start a DOS window and go to the Images\Worcester directory.

6. Type recover.bat. The script performs the following actions:

a. Starts AXD.

b. Erases the flash and reprograms it with a recovery image

c. Executes the recovery image and, on exiting, loads and executes
bootFU.axf.

7. Use the bootFU commands to reload the flash images.

8. AXD exits after bootFU terminates. The system is now restored to its previous
state.
C-12 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

Appendix D
ARM Firmware Suite on the ARM Evaluator-7T

This appendix provides implementation-specific details about using the AFS on the
ARM Evaluation Board (Evaluator-7T) development system. It contains the following
sections:

• About Evaluator-7T on page D-2

• Evaluator-7T-specific commands for boot monitor on page D-3

• Using boot monitor on the Evaluator-7T on page D-6

• Angel on the Evaluator-7T on page D-8

• Manufacturing image on page D-9.
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. D-1

ARM Firmware Suite on the ARM Evaluator-7T
D.1 About Evaluator-7T

This section provides an overview of the Evaluator-7T development system.

Evaluator-7T is a complete target ARM development platform and, with the exception
of the host PC, includes all the components required to evaluate a simple ARM system.
A software development environment is included with the kit.

The Evaluator-7T is uses a Samsung ASIC and supports the architecture v4T instruction
set, operating at speeds of up to 50 MHz, with 512Kb of Flash and 512Kb of SRAM. It
has an additional 8Kb of internal SRAM that can be configured either as an 8Kb unified
cache or internal memory.

D.1.1 AFS on the Evaluator-7T

The ARM Firmware Suite supports system initialization and memory initialization
including internal SRAM. Interrupts, LEDs and serial ports are also configured.

AFS arranges the Evaluator memory map in the same manner as other board ports:

RAM Starts at address 0.

Flash Starts at 24Mb (address 0x01800000).

SRAM The ARM Firmware Suite configures the cache as internal SRAM
mapped to 0x03FE0000.

See the ARM Evaluator-7T User Guide for more hardware details.
D-2 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

ARM Firmware Suite on the ARM Evaluator-7T
D.2 Evaluator-7T-specific commands for boot monitor

The Evaluator-7T platform provides a set of system-specific boot monitor commands.
These are listed in Table D-1. Commands are not case-sensitive.

D.2.1 D, Display memory at address

This command displays memory at hex address as shown in Example D-1.

Example D-1 Display memory

[Evaluator7T] boot Monitor > d 0x01000000
Displaying memory at 0x1000000
0x01000000: C8000000
0x01000004: 001800C1
0x01000008: 00180101
0x0100000C: 00200000
0x01000010: 008100C0
0x01000014: 2C030500
0x01000018: 00882A90
0x0100001C: 00040D78

Table D-1 IQ80310 system-specific commands

Command Action

D address Display memory at address (use hex format)

G address Go to address (use hex format)

H or ? Display help

P address data Poke data at address (use hex format for both values)

R number Run image number from flash

V View images in flash (boot and application flash)

X command Exit board-specific command mode
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. D-3

ARM Firmware Suite on the ARM Evaluator-7T
D.2.2 G, Go to address

This command transfers control to the hex address supplied.

D.2.3 H or ?, Display help

This lists the full set of board-specific commands for this mode.

D.2.4 P, Poke memory at address

This command inserts the hex word data at hex address in memory as shown in
Example D-2.

Example D-2 Poke

[Evaluator7T] boot Monitor > p 0x01000010 0x12345678
Poking memory at 0x1000010 with value 0x12345678

D.2.5 R, Run image from flash

This command transfers control to image number in flash. The image number is the
logical image number, and is not based on the order of the images in flash.

D.2.6 V, View images in flash

This command displays information on the images stored in boot and application flash
memory as shown in Example D-3 on page D-5.
D-4 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

ARM Firmware Suite on the ARM Evaluator-7T
Example D-3 View output

[Evaluator7T] boot Monitor > v

There are 32 4KByte blocks of Boot Flash:
Images found
============
Block Size ImageNo Name Compress
----- ---- ------- ---- --------
 0 14 4,280,910 bootMonitor (0x01800000-ox0180DFEC)
 1 11 911 angel (0x04020000-0x0403FFEC)

There are 96 4KByte blocks of Application Flash:
Images found
============
Block Size ImageNo Name Compress
----- ---- ------- ---- --------
 0 1 1 Bubble (0x01820000-0x01823FEC)

System Information Blocks
=========================
Address Owner Size Idx Rev
----- ----- ----- --- ---
0x0187F000 ARM Boot Monitor 312 0 0

D.2.7 X, Exit board-specific command mode

Enter a single X to exit the board-specific command mode. Enter X followed by a
command to execute a single command and then return to board-specific mode.
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. D-5

ARM Firmware Suite on the ARM Evaluator-7T
D.3 Using boot monitor on the Evaluator-7T

This section describes the boot monitor supplied with the Evaluator-7T board.

D.3.1 Connecting to boot monitor

The boot monitor uses the serial port DEBUG COM1. The settings are 38,400bps, 8 data bits,
and 1 stop bit.

D.3.2 Flash memory

Evaluator-7T has 512KB of flash memory logically divided into two areas:

• application flash

• boot flash.

µHAL maps the flash from physical address 0 to virtual address 24Mbytes (0x01800000).

Application flash

The application flash is a general-purpose area that can be used to store any images or
data that require to be held in nonvolatile memory. The Flash Library implements a
simple mechanism for storing multiple images in flash. This structure enables the boot
switcher to select and run the correct boot image. AFU uses the Flash Library to
program and delete images in application flash. The Flash Library supports storing an
image in either a single block or multiple blocks (although they must be contiguous).

Boot flash

The boot flash contains the boot monitor and switcher and the Angel Debug Monitor.
This device can be reprogrammed using BootFU.

D.3.3 Boot switcher

The boot switcher routine is embedded in the boot monitor and is the first thing that is
run. The action taken depends on the value of DIP switch S4:

1 The default ARM image (boot monitor) runs.

0 The boot switcher attempts to find and run the user selected image in
flash.
D-6 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

ARM Firmware Suite on the ARM Evaluator-7T
D.3.4 Start-up sequence

The boot switcher allows the user to program multiple executable images into flash and
provides a simple mechanism to run them. When power is applied to the board, the
following steps occur:

1. The boot switcher code is executed. This code reads the value for switch S4 and
determines whether the default ARM application (boot monitor) or a
user-selected image must be run.

2. If the user-selected image must be run, the boot switcher looks for a SIB that
contains the image number. Then flash is scanned for a matching image number
and the image checksum is calculated and validated.

3. If the image footer indicates that it must run from RAM, then memory is
initialized before the image is copied into place.

4. Control is passed to the selected image.

If the image cannot be found, or the checksum fails, control is passed back to the boot
monitor which sends an appropriate message to the serial port before printing the
banner.

D.3.5 System-specific boot monitor

The boot monitor is programmed into the boot flash as image 4280910 (that is, 'ARM'+1).

The boot monitor must run from RAM in order to program data into flash, as the flash
does not allow read access when programming. The actual address it is linked at is
0x0400000.

The Motorola 32 S-record download does not provide timing information. The
Evaluator-7T does not have enough bandwidth to service the timer and serial interrupts
at the same time.
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. D-7

ARM Firmware Suite on the ARM Evaluator-7T
D.4 Angel on the Evaluator-7T

This section provides an overview of Angel on the Evaluator-7T development system.

D.4.1 Image format

The Angel build for the Evaluator-7T builds .axf and .bin format images.

The images for the board are in AFSv1_4\Images\evaluator7T.

D.4.2 Caches

Angel for Evaluator-7T runs with the SRAM cache disabled.

D.4.3 Location in memory

Angel is linked to run from SRAM. The actual address it is linked at is 0x00074000
which is near the top of the 512kB SRAM region.

D.4.4 Line speed

When it starts, Angel communicates at 9600bps on the DEBUG COM1 serial port. The
Evaluator-7T supports a maximum line speed of 38,400bps.

D.4.5 Setting up Angel

The boot switcher relocates the Angel image from flash to RAM.

If the Angel image needs to be re-built, it can be programmed into any flash block. The
boot switcher will execute it if the new image number has been programmed into the
SIB.
D-8 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

ARM Firmware Suite on the ARM Evaluator-7T
D.5 Manufacturing image

A manufacturing image is provided on the CD as
\Images\evaluator7t\evaluator7t.bin.

This image can be used to reprogram the entire contents of the Evaluator-7T flash. The
image contains bootMonitor, Angel and a SIB with the boot image set to the Angel
image (911).

Follow the steps below to program the image into flash:

1. If you are using Multi-ICE, connect Multi-ICE to the board, turn on the power,
and configure your Multi-ICE server.

2. Connect to the Evaluator board with either ADW or AXD.

3. Exit the debugger and then restart the debugger. This sets the Evaluator
connection as the default connection for the debugger.

4. Start a DOS window and change to the \Images\evaluator7t directory on the CD.

5. Start either ADW or AXD with the appropriate script file

• for ADW, enter adw -script evaluator_adw.li

Click Yes at the prompt asking if you are sure you want to debug using the
Multi-ICE DLL.

• for AXD, enter axd -script evaluator_axd.li.

AXD starts with the default connection without prompting you.

6. The debugger will exit after the programming is completed.

The board now has the default bootMonitor and Angel images in flash.
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. D-9

ARM Firmware Suite on the ARM Evaluator-7T
D-10 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

Appendix E
ARM Firmware Suite on the Agilent AAED-2000

This appendix provides implementation-specific details about using the AFS on the
Agilent AAED-2000 development system. All components of the AFS are supported.
It contains the following sections:

• About AAED-2000 on page E-2

• AAED-2000-specific commands for boot monitor on page E-3

• Using boot monitor on AAED-2000 on page E-6

• Angel on the AAED-2000 on page E-9.
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. E-1

ARM Firmware Suite on the Agilent AAED-2000
E.1 About AAED-2000

This section provides an overview of the AAED-2000 development system.Table E-1
lists the main characteristics of the board.

Table E-1 AAED-2000 summary

Feature AAED-2000

Processor Agilent AAEC-2000 190MHz maximum clock

Flash memory 32MB

SDRAM 32MB

Display Color VGA TFT LCD (with touchscreen and backlight)

Keyboard 61-key

Serial port Two (with flow control)

Audio CODEC AC97 with stereo in and out

Infrared port SIR IrDA

Ethernet 10Base-T

USB USB 1.1 high-speed peripheral

Expansion MMC, compact flash slot, PCMCIA slot, smart battery, and SPI port

JTAG ICE support and programming of flash
E-2 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

ARM Firmware Suite on the Agilent AAED-2000
E.2 AAED-2000-specific commands for boot monitor

The AAED-2000 boards provide a set of system-specific boot monitor commands.
These are listed in Table E-2. Commands are not case-sensitive.

E.2.1 D, Display memory at address

This command displays memory at hex address as shown in Example E-1.

Example E-1 Display memory

[AAED-2000] boot Monitor > d 0x01000000
Displaying memory at 0x1000000
0x01000000: C8000000
0x01000004: 001800C1
0x01000008: 00180101
0x0100000C: 00200000
0x01000010: 008100C0
0x01000014: 2C030500
0x01000018: 00882A90
0x0100001C: 00040D78

Table E-2 AAED-2000 system-specific commands

Command Action

D address Display memory at address (use hex format)

G address Go to address (use hex format)

H or ? Display help

P address data Poke data at address (use hex format for both values)

R number Run image number from flash

V View images in flash (boot and application flash)

X command Exit board-specific command mode
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. E-3

ARM Firmware Suite on the Agilent AAED-2000
E.2.2 G, Go to address

This command transfers control to the hex address supplied.

E.2.3 H or ?, Display help

This lists the full set of board-specific commands for this mode.

E.2.4 P, Poke memory at address

This command inserts the hex word data at hex address in memory as shown in
Example E-2.

Example E-2 Poke

[AAED-2000] boot Monitor > p 0x01000010 0x12345678
Poking memory at 0x1000010 with value 0x12345678

E.2.5 R, Run image from flash

This command transfers control to image number in flash. The image number is the
logical image number, and is not based on the order of the images in flash.

E.2.6 V, View images in flash

This command displays information on the images stored in boot and application flash
memory as shown in Example E-3 on page E-5.
E-4 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

ARM Firmware Suite on the Agilent AAED-2000
Example E-3 View output

[AAED-2000] boot Monitor > v

There are 2 256KByte blocks of Boot Flash:
Images found
============
Block Size ImageNo Name Compress
----- ---- ------- ---- --------
 0 1 4,280,910 bootPROM (0x04000000-0x0403FFEC)
 1 1 911 Angel (0x04040000-0x0407FFEC)

There are 126 256KByte blocks of Application Flash:
Images found
============
Block Size ImageNo Name Compress
----- ---- ------- ---- --------
 0 1 1 Bubble (0x04080000-0x040BFFEC)
 62 5 62 Pics (0x05000000-0x0513FFEC)
 110 4 110 TopCat (0x05C00000-0x05CFFFEC)
 114 5 120 slideshow Y (0x05D00000-0x05EFFFEC)

System Information Blocks
=========================
Block Owner Index Size
----- ----- ----- ----
 125 ARM Boot Monitor 0 260 (0x5FC0000)

E.2.7 X, Exit board-specific command mode

Enter a single X to exit the board-specific command mode. Enter X followed by a
command to execute a single command and then return to board-specific mode.
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. E-5

ARM Firmware Suite on the Agilent AAED-2000
E.3 Using boot monitor on AAED-2000

This section describes the power-on sequence for the AAED-2000 board. The boot
switcher is embedded in the boot monitor and is the first thing that is run. If there is a
bootable image in flash, the boot switcher attempts to run that image, otherwise it passes
control to the default application (boot monitor). See Flash on AAED-2000 for a
description of flash memory on AAED-2000 systems.

E.3.1 Connecting to boot monitor

The boot monitor uses the serial port COM-A. The settings are 38,400bps, 8 data bits,
and 1 stop bit.

E.3.2 Flash on AAED-2000

AAED-2000 flash memory is logically divided into two areas:

• application flash

• boot flash.

Application flash

The application flash is a general-purpose area that you can use to store any images or
data that require to be held in nonvolatile memory. The Flash Library implements a
simple mechanism for storing multiple images in flash. This structure enables the boot
switcher to select and run the correct boot image. The ARM Flash Utility uses the Flash
Library to program and delete images in application flash. The Flash Library supports
storing an image in either a single block or multiple blocks (although they must be
contiguous).

Boot flash

The boot flash contains the boot monitor and switcher. This device can be
reprogrammed using BootFU.

E.3.3 Image formats

AFS uses the following image formats:

.axf ELF

.bin Plain binary file

.m32 Motorola 32 S Record

.i32 Intel Hex.
E-6 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

ARM Firmware Suite on the Agilent AAED-2000
For the AAED-2000, the µHAL demos CodeWarrior project files always build .axf
format images. However, the makefile also builds .axf and .bin format images. This is
because the makefile is generic across all platforms and the .bin format images are
required for other platforms. Images for the AAED-2000 are in the AFSv1_4\Demos\P920T
directory.

Location of images in flash

The standalone variants of the µHAL demo program are built to run from block 0 of
application flash. You can change this by changing the read-only base address when
linking the image. If the read-only base is an address in RAM the boot switcher copies
the image into RAM before transferring control to it. Semihosted programs always run
from SDRAM.

E.3.4 Start-up sequence

The boot switcher allows you to program multiple executable images into flash and
provides a simple mechanism to run them. When power is applied to AAED-2000, the
following steps occur:

1. The boot switcher code is executed. The code checks if a key is pressed to
determine whether the default ARM application (boot monitor) or a user-selected
image must be run.

2. If the user-selected image must be run, the boot switcher looks for a SIB which
contains the image number. Then flash is scanned for a matching image number
and the image checksum is calculated and validated.

3. If the image footer indicates that it must run from RAM, then memory is
initialized before the image is copied into place.

4. Control is passed to the selected image.

If the image cannot be found, or the checksum fails, control is passed back to the boot
monitor, which sends an appropriate message out of the serial port before printing the
banner.

E.3.5 AAED-2000 system-specific boot monitor

The AAED-2000 boot monitor is programmed into the boot flash as image 4280910
(0x41524E or ’ARM’+1). This allows the boot switcher code to copy the image to RAM
before executing it.
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. E-7

ARM Firmware Suite on the Agilent AAED-2000
The boot monitor has to run from RAM in order to program data into flash, as the flash
does not allow read access when programming. The top 1MB of RAM is reserved for
the MMU Lookup Tables.

The AAED-2000 provides a set of system-specific boot monitor commands. See
AAED-2000-specific commands for boot monitor on page E-3.

E.3.6 Loading images

Use a terminal emulator that is able to send raw ASCII data files to load Motorola 32
S-record images. In the ARM Firmware Suite, Motorola 32 S-record images are built
with the .m32 file extension. Motorola 32 S-record files can be built for images such as,
for example, the standalone µHAL demo programs, using the FromELF utility.

Use the Motorola 32 S-record loader as follows:

1. Set your terminal emulator to enable XON/XOFF flow control.

2. Reset the AAED-2000 system with switch U25-5 in the ON position. This causes
the boot monitor command interpreter to run.

3. At the command prompt type L to start the Motorola 32 S-record loader. The
following text is displayed:

boot Monitor > l
Load Motorola S Records into flash
Deleting Image 0
Type Ctrl/C to exit loader.

Any image the boot monitor loads is numbered image 0. If an image 0 already
exists it is deleted first. See L, Load S-records into flash on page 3-7 for more
information on the load command.

4. Use the send text file option to download the Motorola 32 S-record image.

The boot monitor transmits a dot for every 64 records received from the terminal
emulator.

5. When the terminal emulator has finished sending the file, type Ctrl+C to exit the
loader. On exit the loader displays the number of records loaded and the time the
load took. It also lists any blocks it has overwritten.

6. Reset the system to run the image.

7. After the boot monitor has loaded the image, it sets the boot image number to
zero. When the system restarts, the boot switcher finds and boots the last image
loaded.
E-8 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

ARM Firmware Suite on the Agilent AAED-2000
E.4 Angel on the AAED-2000

This section provides an overview of Angel on the AAED-2000 development system.

E.4.1 Image format

The Angel build for the AAED-2000 builds ELF (.axf) and binary (.bin) format
images.

The images for the board are in AFSv1_4\Images\P920t.

E.4.2 Location in memory

Angel is linked to run from SRAM. The actual address it is linked at is 0x01FB8000 which
is near the top of the 32MB DRAM region. The top of DRAM is reserved for the MMU
Lookup Tables and the boot monitor. The Angel executable occupies the memory below
the reserved area.

E.4.3 Caches

Angel for the AAED-2000 runs with the SRAM cache enabled. This allows applications
to obtain the maximum performance from the system. Use the µHAL functions to
control the cache. See Simple API MMU and cache functions on page 2-11 and
Extended API MMU and cache functions on page 2-39.

E.4.4 Line speed

When it starts, Angel communicates at 9600bps. The AAED-2000 supports a maximum
line speed of 115,200bps. Angel uses COM-A for serial communication.

E.4.5 Initial loading of Angel into flash

Angel is pre-loaded into boot-flash block 1 as image 911. The boot switcher relocates
the image from flash to RAM. If the Angel image needs to be rebuilt, it can be
programmed into any flash block and the boot switcher will execute it when the new
image number has been programmed into the SIB.
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. E-9

ARM Firmware Suite on the Agilent AAED-2000
E-10 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

Appendix F
API Quick Reference

This appendix provides a simplified reference to the AFS APIs. It contains the
following sections:

• µHAL on page F-2

• Flash APIs on page F-8

• PCI APIs on page F-13.
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. F-1

API Quick Reference
F.1 µHAL

This section provides an overview of the µHAL API.

F.1.1 µHAL-specific function types

µHAL uses three function types that are abstracted to make interface routines easier to
use. These are described in Table F-1.

For example, with the uHALr_RequestTimer() declaration:

int uHALr_RequestTimer(PrHandler handler,
 const unsigned char *devname)

an interrupt handler can be declared as:

void TickTimer(unsigned int interrupt)

and registered with µHAL using:

uHALr_RequestSystemTimer(TickTimer, "test");

Table F-1 Parameter types

Description Syntax

A pointer to a function with no argument. The
function does not return a value.

typedef void (*PrVoid)(void);

A pointer to a function with one integer
argument. The function does not return a
value.

typedef void (*PrHandler)(unsigned int);

A pointer to a function with no argument. The
function returns a PrVoid pointer to a
function.

typedef PrVoid (*PrPrVoid)(void);
F-2 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

API Quick Reference
F.1.2 µHAL APIs

Table F-2 lists the uHALr_ and uHALir_ API functions for µHAL. See Table F-5 on
page F-13 for the uHALr_ and uHALir_ functions used with the PCI library.

Table F-2 µHAL Functions

Function syntax Description See

int uHALir_CacheSupported(void) Tests for cache support, returns 0 if no support page 2-52

int uHALir_CheckUnifiedCache(void) Tests for unified cache support, returns 0 if
not unified

page 2-53

void uHALir_CleanCache(void) Synchronizes cached data page 2-40

void uHALir_CleanDCache(void) Cleans the data cache page 2-41

void uHALir_CleanDCacheEntry(void *address) Cleans data cache entry for address page 2-41

unsigned int uHALir_CpuControlRead(void) Reads current state of the MMU and caches
from coprocessor

page 2-49

void uHALir_CpuControlWrite(unsigned int controlState) Sets the state of the MMU and caches page 2-50

unsigned int uHALir_CpuIdRead(void) Reads the processor ID page 2-49

unsigned int uHALr_CountLEDs(void) Returns the number of LEDs page 2-22

unsigned int uHALir_CountTimers(void) Returns the number of timers page 2-13

void uHALir_DefineIRQ(PrVoid Start, PrPrVoid Finish,

PrVoid Trap)

Defines functionality of the low-level IRQ
handler

page 2-35

void uHALr_DisableCache(void) Disables all caches page 2-12

void uHALir_DisableDCache(void) Disables the data cache only page 2-40

void uHALir_DisableICache(void) Disables the instruction cache page 2-40

void uHALr_DisableInterrupt(unsigned int intNum) Disables the specified interrupt page 2-10

void uHALir_DisableTimer(unsigned int timer) Disables the specified timer page 2-48

void uHALir_DisableWriteBuffer(void) Disables the write buffer page 2-41

void uHALir_DispatchIRQ(unsigned int irqflags) High-level interrupt handler that scans the
IRQ flags to find interrupt (not a user-called
function)

page 2-36

void uHALr_EnableCache(void) Enables all caches page 2-12
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. F-3

API Quick Reference
void uHALir_EnableDCache(void) Enables the data cache page 2-39

void uHALir_EnableICache(void) Enables the instruction cache page 2-39

void uHALr_EnableInterrupt(unsigned int intNum) Enables the specified interrupt page 2-10

void uHALir_EnableWriteBuffer(void) Enables the write buffer page 2-41

void uHALr_EnableTimer(unsigned int timer) Reloads interval and enables timer page 2-18

void *uHALr_EndOfFreeRam(void) Returns address of the last available RAM
location

page 2-4

void *uHALr_EndOfRam(void) Returns address of last RAM location page 2-5

unsigned int uHALir_EnterLockedSvcMode(void) Switches into Supervisor mode and disables
interrupts, returns original SPSR

page 2-44

unsigned int uHALir_EnterSvcMode(void) Goes to Supervisor mode from any mode,
returns SPSR

page 2-43

void uHALir_ExitSvcMode(unsigned int spsr) Restores the original mode page 2-44

void uHALr_free(void *memPtr) Frees allocated memory (memPtr must not be
-1)

page 2-6

int uHALr_FreeInterrupt(unsigned int intNum) Removes the high-level handler page 2-9

int uHALr_FreeTimer(unsigned int timer) Disables the timer, frees the interrupt, and
updates the structure

page 2-16

int uHALr_getchar(void) Waits for character from default port page 2-25

unsigned int uHALir_GetSystemTimer(void) Returns the timer number defined as the
system timer

page 2-48

int uHALir_GetTimerInterrupt(unsigned int timer) Allows the application to determine the
correct interrupt for the specified timer

page 2-48

int uHALr_GetTimerInterval(unsigned int timer) Gets the interval in microseconds page 2-48

int uHALr_GetTimerState(unsigned int timer) Gets the current state, one of:
T_FREE Available

T_ONESHOT Single-shot timer (in use)

T_INTERVAL Repeating timer (in use)

T_LOCKED Not available for use by µHAL

page 2-17

Table F-2 µHAL Functions (continued)

Function syntax Description See
F-4 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

API Quick Reference
int uHALr_HeapAvailable(void) Identifies support for heap management, 0 if
none

page 2-5

void uHALir_InitBSSMemory(void) Initializes any platform-specific systems that
must be setup before control is passed to the
application

page 2-32

void uHALr_InitHeap(void) Initializes the heap (must be called before any
memory allocation or de-allocation is
attempted)

page 2-5

void uHALr_InitInterrupts(void) Initializes the µHAL internal interrupt
structures

page 2-8

unsigned int uHALr_InitLEDs(void) Initializes the LEDs to OFF, returns number
of LEDs

page 2-22

void uHALr_InitMMU(int mode) Initializes the MMU to a default one-to-one
mapping

page 2-11

void uHALr_InitSerial(unsigned int port,

unsigned int baudRate)

Initializes the specified port (specified by its
base address) to the specified baud rate

page 2-26

void *uHALir_InitTargetMem(void *) Checks and initializes memory system and
returns the top of memory address (do not call
from C)

page 2-32

void uHALr_InitTimers(void) Initializes interrupt structure and reset timers page 2-13

void uHALr_InstallSystemTimer(void) Starts the system timer page 2-14

void uHALr_InstallTimer(unsigned int timer) Starts the specified timer page 2-14

void uHALr_LibraryInit(void) Performs system-specific initialization of
µHAL when an application is linked to
another library, such as the ADS C runtime
library

page 2-51

void *uHALr_malloc(unsigned int size) Allocates contiguous storage, returns NULL
if fails

page 2-5

int uHALr_memcmp(char *cs, char *ct, int n) Compares characters
1: cs>ct, 0: cs=ct, -1: cs<ct

page 2-19

void *uHALr_memcpy(char *s, char *ct, int n) Copies characters from ct to s,
returns first address copied

page 2-20

Table F-2 µHAL Functions (continued)

Function syntax Description See
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. F-5

API Quick Reference
void *uHALr_memset(char *s, int c, int n) Places characters into memory, returns s page 2-19

int uHALir_MMUSupported(void) Tests library for MMU support. page 2-52

int uHALir_MPUSupported(void) Tests library for MPU support. page 2-52

PrVoid uHALir_NewIRQ(PrHandler HighLevel,

PrVoid LowLevel)

Installs both the high-level and low-level IRQ
routines

page 2-35

unsigned int uHALir_NewVector(void *Vector,

PrVoid LowLevel)

Replaces exception vector with the given
routine pointer

page 2-34

void uHALir_PlatformInit(void) Initializes any platform-specific systems that
must be setup before control is passed to the
application.

page 2-32

void uHALr_printf(char *format, ...) Formats and writes to standard out,
format must be one of: %i, %c, %s, %d, %u,
%o, %x, or %X

page 2-26

void uHALr_putchar(char c) Sends to the default port page 2-26

unsigned int uHALir_ReadCacheMode(void) Reads MMU and cache modes page 2-42

int uHALr_ReadLED(unsigned int led) Returns TRUE if the LED is on page 2-22

unsigned int uHALir_ReadMode(void) Reads the execution mode, returns CPSR page 2-44

int uHALr_RequestInterrupt(unsigned int intNum,

PrHandler handler, const unsigned char *devname)

Assigns a high-level handler routine to the
specified interrupt

page 2-9

int uHALr_RequestSystemTimer(PrHandler handler,

const unsigned char *devname)

Installs a handler for the system timer page 2-14

int uHALr_RequestTimer(PrHandler handler,

const unsigned char *devname)

Gets the next available timer and installs a
handler

page 2-15

void uHALr_ResetLED(unsigned int led) Turns the specified LED off page 2-23

void uHALr_ResetMMU(void) Resets the MMU (and caches) to a fully
disabled state

page 2-11

void uHALr_ResetPort(void) Sets default serial port to default baud rate page 2-25

void uHALr_SetLED(unsigned int led) Turns the specified LED on page 2-23

int uHALr_SetTimerInterval(unsigned int timer,

unsigned int interval)

Sets the interval, in microseconds page 2-17

Table F-2 µHAL Functions (continued)

Function syntax Description See
F-6 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

API Quick Reference
int uHALr_SetTimerState(unsigned int timer,

enum uHALe_TimerState state)

Sets the timer state to one of:
T_ONESHOT for single-shot timer (in use)
T_INTERVAL for repeating timer (in use)

page 2-18

void *uHALr_StartOfRam(void) Returns the address of the first free
uninitialized RAM location

page 2-4

int uHALr_strlen(const char *s) Returns the length of s page 2-20

void uHALir_TimeHandler(unsigned int irqflags) Find timer that caused interrupt, calls handler,
and cancels or re-enables timer (not user
callable)

page 2-47

void uHALir_TrapIRQ(void) Saves registers and handles IRQ page 2-34

void uHALir_TrapSWI(void) handles SWI exceptions (SWI_EnterOS) page 2-38

void uHALir_UnexpectedIRQ(unsigned int irq) Prints a debug message for received interrupt
without installed handler

page 2-37

void uHALir_WriteCacheMode(unsigned int mode) Updates the processor MMU and cache state
mode is any combination of the flags:
EnableMMU to enable the MMU
IC_ON to turn the ICache on
DC_ON to turn the DCache on
WB_ON to turn the Write Buffer on

page 2-42

int uHALr_WriteLED(unsigned int led,

unsigned int state)

Writes a value to the LED page 2-23

void uHALir_WriteMode(unsigned int cpsr) Changes the execution mode page 2-45

Table F-2 µHAL Functions (continued)

Function syntax Description See
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. F-7

API Quick Reference
F.2 Flash APIs

The following examples (Example F-1 to Example F-4 on page F-9) show the flash
structure definitions.

Example F-1 FlashPhysicalType structure

typedef struct flashPhysicalType
{
char *base; // Virtual address of flash for reads (normal access)
char *writeBase; // Virtual address of flash for writes
char *physicalBase; // This is the location where flash can be accessed
 // _before_ any memory management is enabled
unsigned32 width; // Width of flash access on this platform (bits)
unsigned32 parallel; // Number of devices in parallel across databus
unsigned32 size; // Size of flash, in bytes
unsigned32 type; // Atmel / Intel (CFI) / AMD / Unknown
unsigned32 writeSize; // Size of physical block
unsigned32 eraseSize; // Size of block erase
unsigned32 logicalSize; // Size of logical block

 // Pointers to routines which perform operations on this device
flFlash_WriteProc *write; // Write one word
flFlash_WriteBlockProc *writeBlock; // Write a block of writeSize bytes
flFlash_ReadProc *read; // Read one word
flFlash_ReadBlockProc *readBlock; // Read a block of writeSize bytes
flFlash_EraseProc *erase; // Erase a block of eraseSize bytes
flFlash_InitProc *init; // Unlock a flash device
flFlash_CloseProc *close; // Lock a flash device
flFlash_QueryProc *query; // Query a flash device (reads size etc)
char info[64]; // Null terminated Info string
struct flashPhysicalType *next; // Pointer to next flash device
}
tPhysicalFlash;
F-8 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

API Quick Reference
Example F-2 FlashType structure

typedef struct flashType
{
struct flashPhysicalType *devices; // Pointer to physical device list
unsigned32 offset; // Number of blocks into the device
unsigned32 bsize; // Size of flash, in blocks
unsigned32 type; // Boot/Application type
struct flashType *next; // Pointer to next flash device
}
tFlash;

Example F-3 Footer structure

typedef struct FooterType {
 void *infoBase; // Address of first word of ImageFooter
 char *blockBase; // Start of area reserved by this footer
 unsigned int signature; // 'Magic' number to prove it's a footer
 unsigned int type; // Area type: ARM image, SIB, customer
 unsigned int checksum; // Checksum of this structure only
}
tFooter;

Example F-4 SIB structure

typedef struct SIBInfoType
{
 unsigned32 SIB_number; // Unique number of SIB Block
 unsigned32 SIB_Extension; // Base of SIB flash block
 char Label[16]; // String space for ownership string
 unsigned32 checksum; // SIB Image checksum
}
tSIBInfo;
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. F-9

API Quick Reference
Table F-3 describes functions related to the flash library.

Table F-3 Flash library functions

Function syntax Description See

int fLib_BuildFooter(tFooter *foot, tFlash *flashmem) Builds a footer for the specified
image

page 6-34

int fLib_ChecksumFooter(tFooter *foot, unsigned int *foot_sum,

unsigned int *image_sum, tFlash *flashmem)

Calculates the checksum for the
specified image footer

page 6-29

int fLib_ChecksumImage(tFooter *foot, unsigned int *image_sum,

tFlash *flashmem)

Calculates the checksum for the
specified image

page 6-29

int fLib_CloseFile(File *file, tFile_Io *file_IO) Closes the file on the host page 6-37

int fLib_CloseFlash(tFlash *flashmem) Finalizes the flash device for this
platform

page 6-21

int fLib_DeleteArea(unsigned int *address, unsigned int size,

tFlash *flashmem)

Deletes (erases) an area of flash
memory

page 6-24

int fLib_DefinePlat(tFooter *foot) Defines logical structures used by the
library

page 6-28

int fLib_DeleteImage(tFooter *foot) Deletes the image in flash page 6-28

int fLib_ExecuteImage(tFooter *foot) Executes the image selected page 6-27

unsigned int fLib_FindFlash(tFlash **tf) Locates the flash devices page 6-20

unsigned int fLib_FindFooter(unsigned int *start,

unsigned int size, tFooter *list[], tFlash *flashmem)

Scans flash memory and returns a list
of pointers to image footers

page 6-33

int fLib_FindImage(tFooter **list, unsigned int imageNo,

tFooter *foot, tFlash *flashmem)

Scans flash footers for a footer with
matching image number

page 6-27

unsigned int fLib_GetBlockSize(tFlash *flashmem) Returns size, in bytes, of the logical
block

page 6-24

int fLib_GetEmptyArea(tFooter **list, unsigned int empty,

tFlash *flashmem)

Scans flash footers for empty area page 6-31

int fLib_GetEmptyFlash(tFooter **list, unsigned int *start,

unsigned int *location, unsigned int empty, tFlash *flashmem)

Scans the list of flash footers, looking
for an empty area from start, of at
least unused size

page 6-30

int fLib_initFooter(tFooter *foot, int ImageSize, int type) Initializes the footer with known
values

page 6-31
F-10 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

API Quick Reference
File *fLib_OpenFile(char *filename, char *mode,

tFile_IO *file_IO)

Opens a file page 6-36

int fLib_OpenFlash(tFlash *flashmem) Initializes the flash device for this
platform

page 6-21

int fLib_ReadArea(unsigned int *address, unsigned int *data,

unsigned int size, tFlash *flashmem)

Reads an area of size bytes from
flash memory

page 6-23

unsigned int fLib_ReadFile(unsigned int *value,

unsigned int size, tImageInfo *image, tFile_IO *file_IO)

Reads (and converts) an area of size
bytes from the open file

page 6-38

unsigned int fLib_ReadFileHead(File *file, tImageInfo *image,

unsigned int *size, tFile_IO *file_IO)

Reads the file header, determines the
file type, and sets fields in image from
the data

page 6-37

unsigned int fLib_ReadFileRaw(unsigned int *value,

unsigned int size, tFile_IO *file_IO, tFILE *fp)

Reads up to size bytes from the open
file fp

page 6-35

int fLib_ReadFlash32(unsigned int *address,

unsigned int *value, tFlash *flashmem)

Reads one 32-bit word from the flash
at given address

page 6-22

int fLib_ReadFooter(unsigned int *start, tFooter *foot,

tFlash *flashmem)

Reads the footer at start in flash to
foot in memory

page 6-32

int fLib_ReadImage(tFooter *foot, tFlash *flashmem) Reads the image from flash page 6-25

int fLib_UpdateChecksum(tFooter *foot, unsigned int im_check,

unsigned int ft_check, tFlash *flashmem)

Verifies the footer at foot page 6-33

int fLib_VerifyFooter(tFooter *foot, tFlash *flashmem) Verifies the footer at foot page 6-33

int fLib_VerifyImage(tFooter *foot, tFlash *flashmem) Verifies that image structure matches
programmed image

page 6-26

int fLib_WriteArea(unsigned int *address, unsigned int *data,

unsigned int size, tFlash *flashmem)

Writes an area of size bytes to flash
memory

page 6-23

int Flash_Write_Disable(int type) Locks all devices of type page 6-19

int Flash_Write_Enable(int type) Unlocks all devices of type page 6-19

unsigned int fLib_WriteFile(unsigned int *value,

unsigned int size, tImage *image, tFile_IO *file_IO)

Converts and writes from the open
file

page 6-39

unsigned int fLib_WriteFileHead(File *file,

tImageInfo *image, tFile_IO *file_IO)

Writes the header in image->footer to
file

page 6-38

Table F-3 Flash library functions (continued)

Function syntax Description See
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. F-11

API Quick Reference
Table F-4 lists the SIB functions.

unsigned int fLib_WriteFileRaw(unsigned int *value,

unsigned int size, tFile_IO *file_IO, tFILE *fp)

Writes up to size bytes to the open
file fp

page 6-35

int fLib_WriteFlash32(unsigned int *address,

unsigned int value, tFlash *flashmem)

Writes one 32-bit word to the flash at
the given address

page 6-22

int fLib_WriteFooter(tFooter *foot, tFlash *flashmem,

unsigned int *foot_data, unsigned int *image_data)

Writes a footer to flash memory page 6-32

int fLib_WriteImage(tFooter *foot, tFlash *flashmem) Writes image selected by structure page 6-25

Table F-3 Flash library functions (continued)

Function syntax Description See

Table F-4 SIB functions

Function syntax Description See

int SIB_Close(char *idString) Frees SIB access page 6-43

int SIB_Copy(int sibIndex, void *dataBlock, int dataSize) Gets a local copy of the user data in a
SIB

page 6-44

int SIB_Erase(int sibIndex) Erases the SIB page 6-46

int SIB_GetPointer(int sibIndex, void **dataBlock) Gets the start address of SIB user
data

page 6-43

int SIB_GetSize(int sibIndex, int *dataSize) Gets the size of SIB data page 6-45

int SIB_Open(char *idString, int *sibCount, int privFlag) Scans flash for SIB blocks and
indexes the SIBs in a linked list for
faster access

page 6-42

int SIB_Program(int sibIndex, void *dataBlock, int dataSize) Creates a new SIB or updates an
existing SIB with new user data

page 6-44

int SIB_Verify(int sibIndex) Verifies the SIB by checking the
signature and checksum

page 6-45
F-12 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

API Quick Reference
F.3 PCI APIs

Table F-5 and Table F-6 on page F-14 describe functions related to the PCI library.

Table F-5 µHAL PCI functions

Function syntax Description See

volatile unsigned char uHALr_PCICfgRead8(unsigned int bus,

unsigned int slot, unsigned int func, unsigned int offset)

Reads 8 bits from PCI
Configuration space

page 8-18

volatile unsigned short uHALr_PCICfgRead16(unsigned int bus,

unsigned int slot, unsigned int func, unsigned int offset)

Reads 16 bits from PCI
Configuration space

page 8-18

volatile unsigned int uHALr_PCICfgRead32(unsigned int bus,

unsigned int slot, unsigned int func, unsigned int offset)
Reads 32 bits from PCI
Configuration space

page 8-19

void uHALr_PCICfgWrite8(unsigned int bus, unsigned int slot,

unsigned int func, unsigned int offset, unsigned char data)

Writes 8 bits to PCI
Configuration space

page 8-19

void uHALr_PCICfgWrite16(unsigned int bus, unsigned int slot,

unsigned int func, unsigned int offset, unsigned short data)

Writes 16 bits to PCI
Configuration space

page 8-19

void uHALr_PCICfgWrite32(unsigned int bus, unsigned int slot,

unsigned int func, unsigned int offset, unsigned int data)

Writes 32 bits to PCI
Configuration space

page 8-20

unsigned char uHALr_PCIHost(void) Tests the board for PCI support page 8-17

void uHALir_PCIInit(void) Initializes the host bridge page 8-17

volatile unsigned char uHALr_PCIIORead8(unsigned int offset) Reads 8 bits from PCI I/O space page 8-20

volatile unsigned short uHALr_PCIIORead16(unsigned int offset) Writes 16 bits from PCI I/O space page 8-21

volatile unsigned int uHALr_PCIIORead32(unsigned int offset) Reads 32 bits from PCI I/O space page 8-21

void uHALr_PCIIOWrite8(unsigned int offset, unsigned char data) Writes 8 bits to PCI I/O space page 8-21

void uHALr_PCIIOWrite16(unsigned int offset, unsigned short data) Writes 16 bits to PCI I/O space. page 8-22

void uHALr_PCIIOWrite32(unsigned int offset, unsigned int data) Writes 32 bits to PCI I/O space. page 8-22

unsigned char uHALir_PCIMapInterrupt(unsigned char pin,

unsigned char slot)

Returns interrupt number for PCI
slot and interrupt pin

page 8-22
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. F-13

API Quick Reference
Table F-6 PCI functions

Function syntax Description See

int PCIr_FindDevice(unsigned short vendor,
unsigned short device, unsigned int instance,
unsigned int *bus, unsigned int *slot,
unsigned int *func)

Finds a particular instance of the PCI device
given its vendor and device identifier

page 8-14

void PICir_ForEveryDevice (void (action) (unsigned int,

unsigned int, unsigned int))

Calls the given function once for every PCI
device in the system passing the bus, slot, and
function numbers for the device

page 8-14

void PCIr_Init(void) Initializes the PCI subsystem by calling the
system-specific uHALir_PciInit() function

page 8-14
F-14 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

Glossary

ADS See ARM Developer Suite.

ADU See ARM Debugger for UNIX.

ADW See ARM Debugger for Windows.

AFU See ARM Flash Utility.

AFS See ARM Firmware Suite.

Angel Angel is a program that enables you to develop and debug applications running on
ARM-based hardware. Angel can debug applications running in either ARM state or
Thumb state.

ANSI American National Standards Institute.

API See Application Programming Interface.

Application
Programming
Interface

The syntax of the functions and procedures within a module or library.

ARM Boot Flash
Utility

The ARM Boot Flash Utility (BootFU) allows modification of the specific boot flash
sector on the system.
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. Glossary-1

Glossary
ARM Debugger for
UNIX

The ARM Debugger for UNIX (ADU) and ARM Debugger for Windows (ADW) are two
versions of the same ARM debugger software, running under UNIX or Windows
respectively.

ARM Debugger for
Windows

See ARM Debugger for Unix.

ARM Developer
Suite

A suite of applications, together with supporting documentation and examples, that
enable you to write and debug applications for the ARM family of RISC processors.

ARM eXtendable
Debugger

The ARM eXtendable Debugger (AXD) is the latest debugger software from ARM that
enables you to make use of a debug agent in order to examine and control the execution
of software running on a debug target. AXD is supplied in both Windows and UNIX
versions.

ARM Firmware Suite A collection of utilities to assist in developing applications and operating systems on
ARM-based systems.

ARM Flash Utility The ARM Flash Utility (AFU) is an application for manipulating and storing data within
a system that uses the flash library.

armsd The ARM Symbolic Debugger (armsd) is an interactive source-level debugger
providing high-level debugging support for languages such as C, and low-level support
for assembly language. It is a command-line debugger that runs on all supported
platforms.

ARMulator ARMulator is an instruction set simulator. It is a collection of modules that simulate the
instruction sets and architecture of various ARM processors.

ATPCS The ARM and Thumb Procedure Call Standard (ATPCS) defines how registers and the
stack are used for subroutine calls.

AXD See ARM eXtendable Debugger.

Big-Endian Memory organization where the least significant byte of a word is at a higher address
than the most significant byte. See also Little-Endian.

BootFU See ARM Boot Flash Utility.

Boot monitor A ROM-based monitor that communicates with a host computer using simple
commands over a serial port. Typically this application is used to display the contents
of memory and provide system debug and self-test functions.

Boot switcher The boot switcher selects and runs an image in application flash. You can store one or
more code images in flash memory and use the boot switcher to start the image at reset.

Canonical Frame
Address

In DWARF 2, this is an address on the stack specifying where the call frame of an
interrupted function is located.
Glossary-2 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

Glossary
CFA See Canonical Frame Address.

CodeWarrior IDE The development environment for the ARM Developer Suite.

Coprocessor An additional processor which is used for certain operations. Usually used for
floating-point math calculations, signal processing, or memory management.

Debugger An application that monitors and controls the execution of a second application. Usually
used to find errors in the application program flow.

Double word A 64-bit unit of information. Contents are taken as being an unsigned integer unless
otherwise stated.

DWARF Debug With Arbitrary Record Format (DWARF) is a format for debug tables.

EC++ A variant of C++ designed to be used for embedded applications.

ELF Executable and Linking Format

Environment The actual hardware and operating system that an application will run on.

Execution view The address of regions and sections after the image has been loaded into memory and
started execution.

Flash memory Nonvolatile memory that is often used to hold application code.

HAL See Hardware Abstraction Layer.

Halfword A 16-bit unit of information. Contents are taken as being an unsigned integer unless
otherwise stated.

Hardware
Abstraction Layer

Code designed to conceal hardware differences between different processor systems.

Host A computer which provides data and other services to another computer.

ICE In Circuit Emulator.

IDE Integrated Development Environment, for example the CodeWarrior IDE in ADS.

Image An executable file which has been loaded onto a processor for execution.

Inline Functions that are repeated in code each time they are used rather than having a
common subroutine. Assembler code placed within a C or C++ program.

See also Output sections

Input section Contains code or initialized data or describes a fragment of memory that must be set to
zero before the application starts.

See also Output sections
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. Glossary-3

Glossary
Interworking Producing an application that uses both ARM and Thumb code.

Library A collection of assembler or compiler output objects grouped together into a single
repository.

Linker Software which produces a single image from one or more source assembler or
compiler output objects.

Little-endian Memory organization where the least significant byte of a word is at a lower address
than the most significant byte. See also Big-endian.

Load view The address of regions and sections when the image has been loaded into memory but
has not yet started execution.

Local An object that is only accessible to the subroutine that created it.

Memory
management unit

Hardware that controls caches and access permissions to blocks of memory, and
translates virtual to physical addresses.

Memory protection
unit

Hardware that controls permissions to blocks of memory. Unlike an MMU, a MPU does
not translate virtual addresses to physical addresses.

MMU See Memory Management Unit.

MPU See Memory Protection Unit.

Multi-ICE Multi-processor JTAG emulator. ARM registered trademark.

Output section Is a contiguous sequence of input sections that have the same Read Only, Read Write,
or Zero Initialized attributes. The sections are grouped together in larger fragments
called regions. The regions will be grouped together into the final executable image.

See also Region

PCI See Peripheral Component Interconnect.

PCS Procedure Call Standard.

See also ATPCS

Peripheral
Component
Interconnect

An expansion bus used with PCs and workstations.

PIC Position Independent Code.

See also ROPI

PID Position Independent Data.

See also RWPI
Glossary-4 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

Glossary
Profiling Accumulation of statistics during execution of a program being debugged, to measure
performance or to determine critical areas of code.

Call-graph profiling provides great detail but slows execution significantly. Flat
profiling provides simpler statistics with less impact on execution speed.

For both types of profiling you can specify the time interval between
statistics-collecting operations.

Program image See Image.

Reentrancy The ability of a subroutine to have more that one instance of the code active. Each
instance of the subroutine call has its own copy of any required static data.

Regions In an Image, a region is a contiguous sequence of one to three output sections (Read
Only, Read Write, and Zero Initialized).

Remapping Changing the address of physical memory or devices after the application has started
executing. This is typically done to allow RAM to replace ROM once the initialization
has been done.

Retargeting The process of moving code designed for one execution environment to a new execution
environment.

ROPI Read Only Position Independent. Code and read-only data addresses can be changed at
run-time.

RTOS Real Time Operating System.

RWPI Read Write Position Independent. Read/write data addresses can be changed at
run-time.

Scatter loading Assigning the address and grouping of code and data sections individually rather than
using single large blocks.

Scope The accessibility of a function or variable at a particular point in the application code.
Symbols which have global scope are always accessible. Symbols with local or private
scope are only accessible to code in the same subroutine or object.

Section A block of software code or data for an Image.

See also Input sections

Semihosting A mechanism whereby the target communicates I/O requests made in the application
code to the host system, rather than attempting to support the I/O itself.

SIB See System Information Block.

SWI Software Interrupt. An instruction that causes the processor to call a
programer-specified subroutine. Used by ARM to handle semihosting.
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. Glossary-5

Glossary
System Information
Block

A block of user-defined nonvolatile storage.

Target The actual target processor, real or simulated, on which the application is running.

Thread A context of execution on a processor. A thread is always related to a processor and may
or may not be associated with an image.

Vector Floating
Point

VFP instructions use a single instruction to perform an arithmetical operation on more
than one floating point value.

VFP See Vector Floating Point.

Veneer A small block of code used with subroutine calls when there is a requirement to change
processor state or branch to an address that cannot be reached from the current
processor state.

Watchpoint A location within the image which will be monitored and which will cause execution to
break when it changes.

Word A 32-bit unit of information. Contents are taken as being an unsigned integer unless
otherwise stated.
Glossary-6 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

Index

The items in this index are listed in alphabetical order, with symbols and numerics appearing at the end. The
references given are to page numbers.
A
AAED-2000 board

boot monitor E-6
image formats E-6
using Flash memory E-6

Access primitives, PCI 8-16
Accessing flash 6-5
ADP 5-46
AFS

about 1-2
AFU

operation 7-3
user commands 7-4

AFU commands
Delete All 7-13
Delete Block command 7-12
Diagnostic List 7-6
Diagnostic List Footer 7-7
Help command 7-18
Identify 7-19
List 7-5
List All 7-6

Program Image 7-13
Read image 7-17
Test Block 7-11

ambauart.h source file 5-10
Angel

AAED-2000 E-9
and exception handling 5-29
angel_SWIChain 10-5
angel_SWIInfo 10-3
Boot channel 5-46
boot support 5-47
breakpoint restrictions 5-36
breakpoint setting 5-30
buffer lifecycle 5-49
buffer management 5-48
building 5-11
C library support 5-30
cache memory 5-4
chain initialization 10-9, 10-11
channel restrictions 5-48
channels layer 5-48
channels packet format 5-50
communications layers 5-46

communications support 5-6, 5-31
context switching 5-41
DCC 5-32
debug support 5-5
debugger functions 5-35
device driver layer 5-51
downloading A-34
enabling assertions 5-30
Evaluator-7T D-8
exception handling 5-7
exception vectors 5-3
HAL 5-2
heartbeat mechanism 5-50
initialization 5-33
Integrator A-33
interrupt table 5-29
IQ80310 C-10
memory requirements 5-3
planning development 5-26
programming restrictions 5-27
Prospector B-10
raw serial drivers 5-31
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. Index-1

Index
reporting memory and processor
status 5-35

and RTOSes 5-27
semihosting support 5-5, 5-27
setting breakpoints 5-36
source file descriptions 5-13
sources and definitions 5-10
stacks 5-4, 5-43
supervisor mode 5-28
supervisor stack 5-27
task management 5-6, 5-34, 5-37,

5-42
task management functions 5-39
task priorities 5-37
task queue 5-42
Task Queue Items 5-41
Thumb debug communications

channel 5-32
undefined instruction 5-27

Angel source file
banner.h 5-13
devices.c 5-14
makelo.c 5-16
serial.c 5-17
target.s 5-17
timerdev.c 5-16

Angel_BlockApplication() 5-39
Angel_NewTask() 5-38, 5-39, 5-43
Angel_NextTask() 5-38, 5-40, 5-45
Angel_QueueCallback() 5-38
Angel_SelectNextTask() 5-40, 5-43,

5-45
Angel_SerialiseTask() 5-37, 5-42,

5-43, 5-45
Angel_Signal() 5-39, 5-40
Angel_TaskID() 5-39, 5-41
angel_TQ_Pool 5-42
Angel_Wait() 5-39, 5-40, 5-42
Angel_Yield() 5-39, 5-40, 5-42
API

extemded functions 2-3
extended coprocessor functions

2-49
extended initialization 2-31
extended MMU functions 2-39
extended timer functions 2-46
flash library 6-14
MMU and cache 2-11
PCI 8-8

processor mode functions 2-43
simple functions 2-3
simple interrupt functions 2-33
simple LED functions 2-21
simple serial I/O functions 2-25
simple support functions 2-19
simple timer functions 2-13
SWI function 2-38

ARM Boot Monitor, see Boot monitor
ARM Flash Library 6-2
ARM Flash Utility, see AFU
ARM Project files 11-3
ARM support xiii
Assertions, and Angel debugging 5-30
ASSERT_ENABLED macro 5-30
Assigning PCI interrupt numbers 8-13
Assigning resources to PCI devices

8-11

B
banner.h source file 5-10
Base address for PCI IO space 8-12
Base address for PCI Memory space

8-12
Baud rate, setting 3-5
Board-specific command mode 3-11
Boot monitor

functions 3-3
hardware accesses 3-2
Integrator A-6
overview 3-2

Boot monitor commands
AAED-2000-specific E-3
display AAED-2000 help E-4
display Evaluator-7T help D-4
display help 3-7
display Integrator clocks A-12
display Integrator hardware A-15
display Integrator help A-18
display IQ80310 help C-5
display memory B-3, C-4, D-3, E-3
display PCI configuration A-11
display PCI I/O A-10
display PCI memory A-10
display PCI topology A-8, A-10,

A-11
display Prospector help B-4

display system memory 3-6
display V3 setup A-7
enter board specific command mode

3-11
erase system flash 3-6
Evaluator-7T-specific D-3
exit command mode B-5, C-6, D-5,

E-5
go to address A-16, B-3, C-4, D-4,

E-4
identify the system 3-7
initialize PCI subsystem A-7
IQ80310-specific C-4
load S-records into flash 3-7
poke memory B-4, C-5, D-4, E-4
Prospector-specific B-3
run image A-18, B-4, C-5, D-4, E-4
set baud rate 3-5
set core clock A-14, A-17
set default flash boot image number

3-5
set Integrator clocks A-12
system self tests 3-9
upload an image into memory 3-8
validate flash 3-10
view images B-4, C-5, D-4, E-4

Boot switcher
set default boot image 3-5

BootFU commands
clear 7-28
diagnosticList 7-23
help 7-22
identify 7-27
list 7-23
messages 7-28
overview 7-22
program 7-24
quit 7-27
read 7-27

BOOTP 9-2
Breakpoints

and Angel 5-36
Angel restrictions 5-36
MultiICE and EmbeddedICE 5-36

Building
boot monitor 3-12
HAL-based Angel 5-11
libraries 11-3
using GNU make 11-3
Index-2 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

Index
C
C library

and Angel 5-30
support 11-13

Cache
library function 2-52

Chaining
structure 10-8

Chaining exception handlers
and Angel 5-29

Channels
Angel channel restrictions 5-48

Code image area, flash 6-2
Code portability 6-5
Codewarrior IDE 11-3
Communications

Angel communications architecture
5-46

Context switch
and Angel 5-41

Coprocessor access functions 2-49

D
Data structures, PCI 8-9
Debugging

Angel assertions 5-30
devconf.h 5-35
devconf.h source file 5-10
Device driver layer (Angel) 5-51
devices.c source file 5-10
DHCP

BOOTP 9-2
introduction 9-1

Directories
building libraryies 11-3
naming 11-2

Display system memory command 3-6
Download to flash 6-14

E
Erase system flash command 3-6
Evaluator-7T board

boot monitor D-6
using Flash memory D-6

Exception handlers
and Angel 5-29

Exceptions
and Angel 5-29
chaining 10-1

Extended API functions 2-3
External file translation interface, flash

6-17

F
Feedback xiii
File headers and formats, flash 6-17
Files

devconf.h 5-35
serlasm.s 5-39
serlock.h 5-39

Finding flash 6-47
FIQ

and Angel 5-4, 5-27
Fixed AIF 7-2
Flash 6-14

AAED-2000 board E-6
accessing 6-5
block access 6-15
Evaluator-7T board D-6
executing an image 6-49
file formats 6-17
file processing functions 6-16, 6-35
footer information 6-2
footer structure 6-11
formatted files 6-17
image footers 6-16
image information 6-2
image management 6-10
image structure 6-12
images 6-15
Integrator board A-19
IQ80310 board C-7
library and memory structure 6-2
library functions 6-19
library functions by type 6-14
library specifications 6-5
library usage 3-2
locating 6-14
logical device structure 6-9
management, overview 6-4
physical device structure 6-6

preparing and programming an
image 6-48

ProgCards utility A-24
Prospector board B-6
reading a file into memory 6-47
reading an image to a file 6-48
simple file access 6-16
single word access 6-15
System Information Block 6-40
types 6-10
validate 3-10

Flash Library functions
Flash_Write_Disable() 6-19
Flash_Write_Enable() 6-19
fLib_BuildFooter() 6-34
fLib_ChecksumFooter() 6-29
fLib_ChecksumImage() 6-28
fLib_CloseFile() 6-37
fLib_DefinePlat() 6-20
fLib_DeleteArea() 6-24
fLib_DeleteImage() 6-28
fLib_ExecuteImage() 6-27
fLib_FindFlash() 6-20
fLib_FindFooter() 6-33
fLib_FindImage() 6-27
fLib_GetBlockSize() 6-24
fLib_GetEmptyArea() 6-31
fLib_GetEmptyFlash() 6-30
fLib_initFooter() 6-31
fLib_OpenFile() 6-36
fLib_OpenFlash() 6-21
fLib_ReadArea() 6-23
fLib_ReadFileHead() 6-37
fLib_ReadFileRaw() 6-35
fLib_ReadFile() 6-38
fLib_ReadFlash32() 6-22
fLib_ReadFooter() 6-32
fLib_ReadImage() 6-25
fLib_UpdateChecksum() 6-29
fLib_VerifyFooter() 6-33
fLib_VerifyImage() 6-26
fLib_WriteArea() 6-23
fLib_WriteFileHead() 6-38
fLib_WriteFileRaw() 6-35
fLib_WriteFile() 6-39
fLib_WriteFlash32() 6-22
fLib_WriteFooter() 6-32
fLib_WriteImage() 6-25
quick reference F-10
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. Index-3

Index
SIB_Close() 6-43
SIB_Copy() 6-44
SIB_Erase() 6-46
SIB_GetPointer() 6-43
SIB_GetSize() 6-45
SIB_Open() 6-42
SIB_Program() 6-44
SIB_Verify() 6-45

Footer information, flash 6-2
Formatted file access, flash 6-17
Further reading xi

G
GETSOURCE macro 5-45

H
HAL

Angel 5-9
API 2-2
coprocessor functions, extended

2-49
initialization functions, extended

2-31
interrupt functions 2-8
interrupt handling functions,

extended 2-33
LED functions 2-21
memory functions 2-4
MMU and cache extended API 2-39
MMU and cache, simple API 2-11
parameter types 2-2, F-2
PCI extensions 8-16
PCI functions 8-16
processor execution mode functions

2-43
serial I/O functions 2-25
simple API functions 2-3, 2-4
simple API interrupt functions 2-8
simple API LED control functions

2-21
support functions 2-19
SWI fuction, extended 2-38
timer functions 2-13
timer functions, extended 2-46

HANDLE_INTERRUPTS_ON_FIQ
5-45

Hardware accesses
boot monitor 3-2

Header information, flash 6-2
Heartbeats (Angel) 5-50
Help

AFU 7-18
boot monitor 3-7
BootFU 7-22

Host bridge initialization, PCI 8-11

I
Identify the system command 3-7
Image information, flash 6-2
Initializing

API functions 2-31
memory in boot monitor 3-2
PCI 8-8
simple operating system 4-4

Integrator board
loading Angel A-33
PCI initilization A-2, A-35
using flash memory A-19

integrator.h source file 5-10
Interrupt

and Angel 5-44
assigning PCI 8-13
extended API 2-33
handling functions 2-33
routing PCI 8-16
simple API functions 2-8

IQ80310 board
boot monitor C-7
using Flash memory C-7

IRQ
and Angel 5-4, 5-27
Angel processing of 5-44

L
LED

control code example 2-24
Integrator A-21

Library
generic 11-2

naming 11-2
Licensing

C/OS-II 4-4
Linking

Angel C libraries 5-30
Load S-records into flash command

3-7
Locating flash 6-14

M
Makefile

GNU 11-3
makelo.c source file 5-10
Memory

API functions 2-4
boot monitor initilization 3-2
extended MMU and cache API 2-39
initialization in boot monitor 3-2
MMU and cache example 2-12
MMU library support 2-52
simple MMU and cache API 2-11

Motorola S-record 7-2
loader 3-4

MultiICE and EmbeddedICE
Breakpoints 5-36

O
Operating system

complex 4-2, 4-11
context switching 4-6
C/OS 4-2
efficiency considerations 4-10
Linux 4-2
porting 4-11
simple 4-2

P
PCI

about 8-2
address spaces 8-4
configuration 8-4
configuration header 8-5
configuration space 8-4
Index-4 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

Index
data structures 8-9
definitions 8-15
device driver example 8-23
function descriptions 8-17
HAL extensions 8-16
host bridge 8-3
Host bridge initialization 8-11
host bus 8-3
ISA bridge 8-3
I/O space 8-6
library 8-8
library data structure 8-10
library functions 8-14
memory space 8-6
overview 8-2
PCI bridge 8-3, 8-6
primary bus 8-3
resource allocation 8-16
resources 8-11
scanning 8-11
secondary bus 8-3
subsystem initialization 8-8
Type 0 configuration cycle 8-5
Type 1 configuration cycle 8-6

PCI functions
PCIr_FindDevice 8-14
PCIr_ForEveryDevice() 8-14
PCIr_Init() 8-14
quick reference F-13
uHALir_PCIInit 8-17
uHALir_PCIMapInterrupt 8-22
uHALr_PCICfgRead16 8-18
uHALr_PCICfgRead32 8-19
uHALr_PCICfgRead8 8-18
uHALr_PCICfgWrite16 8-19
uHALr_PCICfgWrite32 8-20
uHALr_PCICfgWrite8 8-19
uHALr_PCIHost 8-17
uHALr_PCIIORead16 8-21
uHALr_PCIIORead32 8-21
uHALr_PCIIORead8 8-20
uHALr_PCIIOWrite16 8-22
uHALr_PCIIOWrite32 8-22
uHALr_PCIIOWrite8 8-21

Prefetch abort
and Angel 5-29, 5-7

Processor execution mode functions
2-43

Processor mode

and Angel stacks 5-43
ProgCards

board description A-25
flash utility A-24
using A-27

Prospector board
boot monitor B-6
image formats B-6
PCI initilization B-2
using Flash memory B-6

R
RB_ Angel register blocks 5-42
Related publications xi
Relocatable AIF 7-2
ROADDR (Angel) 5-33
RTOS

and Angel 5-27
and context switching 5-41

Running
AFU 7-3
boot monitor 3-4
BootFU 7-20

RWADDR (Angel) 5-33

S
Scanning the PCI system 8-11
Semihosting 5-5

enabling and disabling 5-6
and programming restrictions 5-27

Serial port
example 2-26
functions 2-25

serial.c source file 5-10
serlasm.s 5-39
serlock.h 5-39
Set baud rate command 3-5
Set boot image command 3-5
Setting up AFU 7-3
SIB functions

SIB_Close() 6-43
SIB_Copy() 6-44
SIB_Erase() 6-46
SIB_GetPointer() 6-43
SIB_GetSize() 6-45

SIB_Open() 6-42
SIB_Program() 6-44
SIB_Verify() 6-45

Simple API functions 2-3
Simple file access, flash 6-16
Software interrupt (SWI) function 2-38
Source files

Angel 5-9, 5-13
Stacks

Angel 5-43
Starting up flash 6-47
Supervisor mode

and Angel 5-28
Support functions 2-19
SWI

C library support 5-5
SWI interface

chaining 10-3
System information block, see SIB
System self test 3-4

command 3-9
System timer programming example

2-15

T
Task management

Angel 5-37
Task Queue Items 5-41
Terminal emulator

boot monitor 3-2
loading boot monitor with A-22
settings A-22

Thumb
Angel breakpoint instruction 5-36
debug communications channel

5-47
Timer

extended API functions 2-46
simple API functions 2-13

timerdev.c source file 5-10
TQI 5-41, 5-42
Typographical conventions

about x
ARM DUI 0102F Copyright © 1999-2002 ARM Limited. All rights reserved. Index-5

Index
U
uHAL functions

quick reference F-2
uHALir_CacheSupported() 2-52
uHALir_CheckUnifiedCache()

2-53
uHALir_CleanDCacheEntry() 2-41
uHALir_CleanDCache() 2-40, 2-41
uHALir_CpuControlRead() 2-49
uHALir_CpuControlWrite() 2-50
uHALir_CpuIdRead() 2-49
uHALir_DefineIRQ() 2-35
uHALir_DisableDCache() 2-40
uHALir_DisableICache() 2-40
uHALir_DisableTimer() 2-48
uHALir_DisableWriteBuffer()

2-41
uHALir_DispatchIRQ() 2-36
uHALir_EnableDCache() 2-40
uHALir_EnableICache() 2-39
uHALir_EnableWriteBuffer() 2-41
uHALir_EnterLockedSvcMode()

2-44
uHALir_EnterSvcMode() 2-43
uHALir_ExitSvcMode() 2-44
uHALir_GetTimerIRQ() 2-48
uHALir_InitBSSMemory() 2-32
uHALir_InitTargetMem() 2-32
uHALir_MMUSupported() 2-52
uHALir_MPUSupported() 2-52
uHALir_NewIRQ() 2-35
uHALir_PlatformInit() 2-32
uHALir_ReadCacheMode() 2-42
uHALir_ReadMode() 2-44
uHALir_TimeHandler() 2-47
uHALir_TrapIRQ() 2-34
uHALir_WriteCacheMode() 2-42
uHALir_WriteMode() 2-45
uHALr_CountLEDs() 2-22
uHALr_CountTimers() 2-13
uHALr_DisableCache() 2-12
uHALr_DisableInterrupt() 2-10
uHALr_EnableCache() 2-12
uHALr_EnableInterrupt() 2-10
uHALr_EnableTimer() 2-18
uHALr_EndOfFreeRam() 2-4
uHALr_EndOfRam() 2-5
uHALr_FreeInterrupt() 2-9

uHALr_FreeTimer() 2-16
uHALr_free() 2-6
uHALr_getchar() 2-25
uHALr_GetTimerInterval() 2-16
uHALr_GetTimerState() 2-17
uHALr_HeapAvailable() 2-5
uHALr_InitHeap() 2-5
uHALr_InitInterrupts() 2-8
uHALr_InitLEDs() 2-22
uHALr_InitMMU() 2-11
uHALr_InitTimers() 2-13
uHALr_InstallSystemTimer() 2-14
uHALr_InstallTimer() 2-16
uHALr_LibraryInit() 2-51
uHALr_malloc() 2-5
uHALr_memcmp() 2-19
uHALr_memcpy() 2-20
uHALr_memset() 2-19
uHALr_printf() 2-26
uHALr_putchar() 2-26
uHALr_ReadLED() 2-23
uHALr_RequestInterrupt() 2-9
uHALr_RequestSystemTimer()

2-14
uHALr_RequestTimer() 2-15
uHALr_ResetLED() 2-22
uHALr_ResetMMU() 2-11
uHALr_ResetPort() 2-25
uHALr_SetLED() 2-23
uHALr_SetTimerInterval() 2-17
uHALr_SetTimerState() 2-18
uHALr_StartOfRam() 2-4
uHALr_strlen() 2-20
uHALr_TrapSWI() 2-38
uHALr_WriteLED() 2-23

uHALir_PCIInit 8-17
uHALir_PCIMapInterrupt 8-22
uHALr_PCICfgRead16 8-18
uHALr_PCICfgRead32 8-19
uHALr_PCICfgRead8 8-18
uHALr_PCICfgWrite16 8-19
uHALr_PCICfgWrite32 8-20
uHALr_PCICfgWrite8 8-19
uHALr_PCIHost 8-17
uHALr_PCIIORead16 8-21
uHALr_PCIIORead32 8-21
uHALr_PCIIORead8 8-20
uHALr_PCIIOWrite16 8-22
uHALr_PCIIOWrite32 8-22

uHALr_PCIIOWrite8 8-21
Upload an image command 3-8
User commands, AFU 7-4
Using AFU 7-3

V
Validate flash command 3-10
Variables

$semihosting_enabled 5-6
Vectors

chaining 10-2
VFP

support 11-5

Symbols
$semihosting_enabled variable 5-6
Index-6 Copyright © 1999-2002 ARM Limited. All rights reserved. ARM DUI 0102F

	Contents
	Preface
	About this document
	Intended audience
	Using this book
	Typographical conventions

	Further reading
	ARM publications
	Other publications

	Feedback
	Feedback on this book
	Feedback on the ARM Firmware Suite

	Introduction to the ARM Firmware Suite
	1.1 About the ARM Firmware Suite
	1.2 AFS directories and files
	1.2.1 AFS installation layout
	1.2.2 AFS source code organization

	µHAL Application Programming Interfaces
	2.1 About the µHAL APIs
	2.1.1 µHAL-specific function types
	2.1.2 Simple and extended API functions
	2.1.3 Rebuilding the µHAL library
	PC project files
	Unix makefile

	2.2 Simple API memory functions
	2.2.1 uHALr_StartOfRam()
	Syntax
	Return value

	2.2.2 uHALr_EndOfFreeRam()
	Syntax
	Return value

	2.2.3 uHALr_EndOfRam()
	Syntax
	Return value

	2.2.4 uHALr_HeapAvailable()
	Syntax
	Return value

	2.2.5 uHALr_InitHeap()
	Syntax

	2.2.6 uHALr_malloc()
	Syntax
	Return value

	2.2.7 uHALr_free()
	Syntax

	2.2.8 Example of heap allocation and de-allocation

	2.3 Simple API interrupt functions
	2.3.1 uHALr_InitInterrupts()
	Syntax

	2.3.2 uHALr_RequestInterrupt()
	Syntax
	Return value

	2.3.3 uHALr_FreeInterrupt()
	Syntax
	Return value

	2.3.4 uHALr_EnableInterrupt()
	Syntax

	2.3.5 uHALr_DisableInterrupt()
	Syntax

	2.4 Simple API MMU and cache functions
	2.4.1 uHALr_ResetMMU()
	Syntax

	2.4.2 uHALr_InitMMU()
	Syntax

	2.4.3 uHALr_EnableCache()
	Syntax

	2.4.4 uHALr_DisableCache()
	Syntax

	2.4.5 Memory management and cache code example

	2.5 Simple API timer functions
	2.5.1 uHALr_CountTimers()
	Syntax
	Return value

	2.5.2 uHALr_InitTimers()
	Syntax

	2.5.3 uHALr_RequestSystemTimer()
	Syntax
	Return value

	2.5.4 uHALr_InstallSystemTimer()
	Syntax

	2.5.5 System timer programming example
	2.5.6 uHALr_RequestTimer()
	Syntax
	Return value

	2.5.7 uHALr_InstallTimer()
	2.5.8 uHALr_FreeTimer()
	Syntax
	Return value

	2.5.9 uHALr_GetTimerInterval()
	Syntax
	Return value

	2.5.10 uHALr_SetTimerInterval()
	Syntax
	Return value

	2.5.11 uHALr_GetTimerState()
	Syntax
	Return value

	2.5.12 uHALr_SetTimerState()
	Syntax
	Return value

	2.5.13 uHALr_EnableTimer()
	Syntax

	2.6 Simple API support functions
	2.6.1 uHALr_memset()
	Syntax
	Return value

	2.6.2 uHALr_memcmp()
	Syntax
	Return value

	2.6.3 uHALr_memcpy()
	Syntax
	Return value

	2.6.4 uHALr_strlen()
	Syntax
	Return value

	2.7 Simple API LED control functions
	2.7.1 LED states and addresses
	2.7.2 uHALr_CountLEDs()
	Syntax
	Return value

	2.7.3 uHALr_InitLEDs()
	Syntax
	Return value

	2.7.4 uHALr_ResetLED()
	Syntax

	2.7.5 uHALr_SetLED()
	Syntax

	2.7.6 uHALr_ReadLED()
	Syntax
	Return value

	2.7.7 uHALr_WriteLED()
	Syntax
	Return value

	2.7.8 LED control code example

	2.8 Serial input/output functions, definitions, and macros
	2.8.1 uHALr_ResetPort()
	Syntax

	2.8.2 uHALr_getchar()
	Syntax
	Return value

	2.8.3 uHALr_putchar()
	Syntax

	2.8.4 uHALr_printf()
	Syntax

	2.8.5 uHALir_InitSerial()
	Syntax

	2.8.6 Serial input/output code example
	2.8.7 Serial input output board-specific definitions and macros

	2.9 Extended API initialization functions
	2.9.1 uHALir_InitTargetMem()
	Syntax
	Return value

	2.9.2 uHALir_InitBSSMemory()
	Syntax

	2.9.3 uHALir_PlatformInit()
	Syntax

	2.10 Extended API interrupt handling functions
	2.10.1 uHALir_TrapIRQ()
	Syntax

	2.10.2 uHALir_NewVector()
	Syntax
	Return values

	2.10.3 uHALir_NewIRQ()
	Syntax

	2.10.4 uHALir_DefineIRQ()
	Syntax
	Usage

	2.10.5 uHALir_DispatchIRQ()
	Syntax

	2.10.6 uHALir_UnexpectedIRQ()
	Syntax

	2.11 Extended API software interrupt (SWI) function
	2.11.1 uHALir_TrapSWI()
	Syntax

	2.12 Extended API MMU and cache functions
	2.12.1 uHALir_EnableICache()
	Syntax

	2.12.2 uHALir_DisableICache()
	Syntax

	2.12.3 uHALir_EnableDCache()
	Syntax

	2.12.4 uHALir_DisableDCache()
	Syntax

	2.12.5 uHALir_CleanCache()
	Syntax

	2.12.6 uHALir_CleanDCache()
	Syntax

	2.12.7 uHALir_CleanDCacheEntry()
	Syntax

	2.12.8 uHALir_EnableWriteBuffer()
	Syntax

	2.12.9 uHALir_DisableWriteBuffer()
	Syntax

	2.12.10 uHALir_ReadCacheMode()
	Syntax
	Return value

	2.12.11 uHALir_WriteCacheMode()
	Syntax
	Example

	2.13 Extended API processor execution mode functions
	2.13.1 uHALir_EnterSvcMode()
	Syntax
	Return value

	2.13.2 uHALir_ExitSvcMode()
	Syntax

	2.13.3 uHALir_EnterLockedSvcMode()
	Syntax
	Return value

	2.13.4 uHALir_ReadMode()
	Syntax
	Return value

	2.13.5 uHALir_WriteMode()
	Syntax

	2.14 Extended API timer functions
	2.14.1 uHALir_TimeHandler()
	Syntax

	2.14.2 uHALir_DisableTimer()
	Syntax

	2.14.3 uHALir_GetTimerInterrupt()
	Syntax
	Return value

	2.14.4 uHALir_GetSystemTimer()
	Syntax
	Return value

	2.15 Extended API coprocessor access functions
	2.15.1 uHALir_CpuIdRead()
	Syntax
	Return value

	2.15.2 uHALir_CpuControlRead()
	Syntax
	Return value

	2.15.3 uHALir_CpuControlWrite()
	Syntax

	2.16 Library support functions
	2.16.1 uHALr_LibraryInit()
	Syntax

	2.16.2 uHALir_MMUSupported()
	Syntax
	Return value

	2.16.3 uHALir_MPUSupported()
	Syntax
	Return value

	2.16.4 uHALir_CacheSupported()
	Syntax
	Return value

	2.16.5 uHALir_CheckUnifiedCache()
	Syntax
	Return value

	ARM Boot Monitor
	3.1 About the boot monitor
	3.1.1 Hardware accesses
	3.1.2 Setting up a serial connection
	3.1.3 Boot monitor functions
	Board-specific extensions to the boot monitor

	3.2 Common commands for the boot monitor
	3.2.1 B, Set baud rate
	3.2.2 BI, Set default flash boot image number
	3.2.3 D, Display system memory
	3.2.4 E, Erase application flash
	3.2.5 H or ?, Display help
	3.2.6 I, Identify the system
	3.2.7 L, Load S-records into flash
	3.2.8 M, Download an image into RAM
	3.2.9 T, System self tests
	3.2.10 V, Validate flash
	3.2.11 X, Enter board-specific command mode

	3.3 Rebuilding the boot monitor

	Operating Systems and µHAL
	4.1 About porting operating systems
	4.2 Simple operating systems
	4.2.1 About µC/OS-II
	4.2.2 Initializing the operating system
	4.2.3 Context Switching
	4.2.4 Efficiency considerations

	4.3 Complex operating system
	4.3.1 Reusing definitions
	4.3.2 µHAL-based loader application

	Angel
	5.1 About Angel
	5.1.1 Angel system resource requirements
	System resources
	ROM and RAM requirements
	Exception vectors
	Interrupts
	Stacks
	Angel and cache memory

	5.1.2 Thumb support
	5.1.3 Angel system features
	Debug support
	C library semihosting support
	Communications support
	Task management
	Exception handling

	5.1.4 Using Angel with a debugger
	5.1.5 Downloading Angel to a development board

	5.2 µHAL-based Angel
	5.2.1 Source directory for Angel
	5.2.2 Angel sources and definitions

	5.3 Building a µHAL-based Angel
	5.3.1 Angel project and makefiles
	PC project files
	Unix makefile
	Output formats

	5.4 Source file descriptions
	5.4.1 banner.h
	5.4.2 devices.c
	5.4.3 makelo.c
	5.4.4 timerdev.c
	5.4.5 serial.c
	5.4.6 target.s
	5.4.7 devconf.h

	5.5 Device drivers
	5.5.1 The SerialControl structure
	5.5.2 angel_DeviceControlFn()
	Syntax
	Return value

	5.5.3 Transmit control (ControlTx)
	5.5.4 Receive control (ControlRx)
	5.5.5 Transmit kickstart (KickStart)
	5.5.6 Interrupt handler

	5.6 Developing applications with Angel
	5.6.1 Planning your development project
	5.6.2 Programming restrictions
	5.6.3 Using Angel with an RTOS
	5.6.4 Using Supervisor mode
	5.6.5 Chaining exception handlers
	5.6.6 Linking Angel C library functions
	5.6.7 Using assertions when debugging
	5.6.8 Setting breakpoints
	5.6.9 Changing from little-endian to big-endian Angel
	5.6.10 Application communications
	Angel serial drivers
	Using the Debug Communication Channel

	5.7 Angel in operation
	5.7.1 Initialization
	5.7.2 Waiting for debug communications
	5.7.3 Angel debugger functions
	Reporting processor and memory status
	Download
	Setting breakpoints

	5.7.4 Angel task management
	Task priorities
	Angel_SerialiseTask
	Angel_NewTask
	Angel_QueueCallback
	Angel_BlockApplication
	Angel_NextTask
	Angel_Yield
	Angel_Wait
	Angel_Signal
	Angel_TaskID
	Angel_TaskIDof

	5.7.5 Context switching
	The global register blocks: angel_GlobalRegBlock
	The Angel task queue: angel_TQ_Pool
	Overview of Angel stacks for each mode

	5.7.6 Example of Angel processing: a simple IRQ

	5.8 Angel communications architecture
	5.8.1 Overview of the Angel communications layers
	5.8.2 Boot support
	5.8.3 Channels layer and buffer management
	Channel restrictions
	Buffer management
	Long buffers
	Limited RAM
	Buffer life cycle
	Channel packet format
	Heartbeat mechanism

	5.8.4 Device driver layer
	Support for callback across all devices
	Transmit queueing
	Angel interrupt handlers
	Control calls

	5.8.5 Transmit sequence
	5.8.6 Receive sequence

	Flash Library Specification
	6.1 About the flash library
	6.2 About flash management
	6.3 ARM flash library specifications
	6.3.1 Code portability
	6.3.2 Accessing flash
	6.3.3 flashPhysicalType structure
	6.3.4 flashType structure
	6.3.5 Flash types
	6.3.6 Image management
	Footer structure
	ImageInfo structure

	6.3.7 Porting the Flash Library

	6.4 Functions listed by type
	6.4.1 Flash library functions, listed by type
	Platform-specific routines
	Locating flash
	Single word access
	Block access
	Images in flash
	Image footers

	6.4.2 File processing functions, listed by type
	Simple file access
	File headers and formats
	Formatted file access
	External file translation interface

	6.4.3 SIB functions

	6.5 Flash library functions
	6.5.1 Flash_Write_Enable()
	Syntax
	Return value

	6.5.2 Flash_Write_Disable()
	Syntax
	Return value

	6.5.3 fLib_DefinePlat()
	Syntax
	Return value

	6.5.4 fLib_FindFlash()
	Syntax
	Return value

	6.5.5 fLib_OpenFlash()
	Syntax
	Return value

	6.5.6 fLib_CloseFlash()
	Syntax
	Return value

	6.5.7 fLib_ReadFlash32()
	Syntax
	Return value

	6.5.8 fLib_WriteFlash32()
	Syntax
	Return value

	6.5.9 fLib_ReadArea()
	Syntax
	Return value

	6.5.10 fLib_WriteArea()
	Syntax
	Return value

	6.5.11 fLib_DeleteArea()
	Syntax
	Return value

	6.5.12 fLib_GetBlockSize()
	Syntax
	Return value

	6.5.13 fLib_ReadImage()
	Syntax
	Return value

	6.5.14 fLib_WriteImage()
	Syntax
	Return value

	6.5.15 fLib_VerifyImage()
	Syntax
	Return value

	6.5.16 fLib_FindImage()
	Syntax
	Return value

	6.5.17 fLib_ExecuteImage()
	Syntax
	Return value

	6.5.18 fLib_DeleteImage()
	Syntax
	Return value

	6.5.19 fLib_ChecksumImage()
	Syntax
	Return value

	6.5.20 fLib_ChecksumFooter()
	Syntax
	Return value

	6.5.21 fLib_UpdateChecksum()
	Syntax
	Return value

	6.5.22 fLib_GetEmptyFlash()
	Syntax
	Return value

	6.5.23 fLib_GetEmptyArea()
	Syntax
	Return value

	6.5.24 fLib_initFooter()
	Syntax
	Return value

	6.5.25 fLib_ReadFooter()
	Syntax
	Return value

	6.5.26 fLib_WriteFooter()
	Syntax
	Return value

	6.5.27 fLib_VerifyFooter()
	Syntax
	Return value

	6.5.28 fLib_FindFooter()
	Syntax
	Return value

	6.5.29 fLib_BuildFooter()
	Syntax
	Return value

	6.6 File processing functions
	6.6.1 fLib_ReadFileRaw()
	Syntax
	Return value

	6.6.2 fLib_WriteFileRaw()
	Syntax
	Return value

	6.6.3 fLib_OpenFile()
	Syntax
	Return value

	6.6.4 fLib_CloseFile()
	Syntax
	Return value

	6.6.5 fLib_ReadFileHead()
	Syntax
	Return value

	6.6.6 fLib_WriteFileHead()
	Syntax
	Return value

	6.6.7 fLib_ReadFile()
	Syntax
	Return value

	6.6.8 fLib_WriteFile()
	Syntax
	Return value

	6.7 SIB functions
	6.7.1 The SIB flash block
	6.7.2 SIB_Open()
	Syntax
	Return value

	6.7.3 SIB_Close()
	Syntax
	Return value

	6.7.4 SIB_GetPointer()
	Syntax
	Return value

	6.7.5 SIB_Copy()
	Syntax
	Return value

	6.7.6 SIB_Program()
	Syntax
	Return value

	6.7.7 SIB_GetSize()
	Syntax
	Return value

	6.7.8 SIB_Verify()
	Syntax
	Return value

	6.7.9 SIB_Erase()
	Syntax
	Return value

	6.8 Using the library
	6.8.1 Starting up and finding flash
	6.8.2 Reading a file into memory
	6.8.3 Preparing and programming an image
	6.8.4 Reading an image to a file
	6.8.5 Executing an image

	Using the ARM Flash Utilities
	7.1 About the AFU
	7.2 Starting the AFU
	7.3 AFU commands
	7.3.1 User command explanation
	7.3.2 List
	Syntax
	Output
	Example

	7.3.3 DiagnosticList
	Syntax
	Examples

	7.3.4 TestBlock
	Syntax

	7.3.5 Delete
	Syntax

	7.3.6 DeleteBlock
	Syntax

	7.3.7 DeleteAll
	Syntax

	7.3.8 Program
	Syntax
	Examples

	7.3.9 Read
	Syntax

	7.3.10 Quit
	Syntax

	7.3.11 Help
	Syntax

	7.3.12 Identify
	Syntax

	7.4 The Boot Flash Utility
	7.4.1 File Types
	7.4.2 Setup

	7.5 BootFU commands
	7.5.1 Help
	Syntax

	7.5.2 List
	Syntax

	7.5.3 DiagnosticList
	Syntax

	7.5.4 Program
	Syntax
	Examples

	7.5.5 Read
	Syntax

	7.5.6 Quit
	Syntax

	7.5.7 Identify
	Syntax

	7.5.8 ClearBackup
	Syntax

	7.5.9 BootFU Warning messages

	PCI Management Library
	8.1 About PCI
	8.2 PCI configuration
	8.2.1 PCI address spaces
	Configuration space
	I/O space
	Memory space

	8.2.2 PCI-PCI bridges

	8.3 The PCI library
	8.3.1 Initializing the PCI subsystem
	8.3.2 Data structures
	8.3.3 Host bridge initialization
	8.3.4 Scanning the PCI system
	8.3.5 Assigning resources to PCI devices
	Assigning PCI I/O and Memory areas
	Assigning interrupt numbers

	8.3.6 Rebuilding the PCI library

	8.4 PCI library functions and definitions
	8.4.1 PCIr_Init
	Syntax

	8.4.2 PCIr_ForEveryDevice
	Syntax

	8.4.3 PCIr_FindDevice
	Syntax
	Return value

	8.4.4 PCI definitions

	8.5 About µHAL PCI extensions
	8.6 µHAL PCI function descriptions
	8.6.1 uHALir_PCIInit
	Syntax

	8.6.2 uHALr_PCIHost
	Syntax
	Returns

	8.6.3 uHALr_PCICfgRead8
	Syntax
	Returns

	8.6.4 uHALr_PCICfgRead16
	Syntax
	Returns

	8.6.5 uHALr_PCICfgRead32
	Syntax
	Returns

	8.6.6 uHALr_PCICfgWrite8
	Syntax

	8.6.7 uHALr_PCICfgWrite16
	Syntax

	8.6.8 uHALr_PCICfgWrite32
	Syntax

	8.6.9 uHALr_PCIIORead8
	Syntax
	Returns

	8.6.10 uHALr_PCIIORead16
	Syntax
	Returns

	8.6.11 uHALr_PCIIORead32
	Syntax
	Returns

	8.6.12 uHALr_PCIIOWrite8
	Syntax-

	8.6.13 uHALr_PCIIOWrite16
	Syntax

	8.6.14 uHALr_PCIIOWrite32
	Syntax

	8.6.15 uHALir_PCIMapInterrupt
	Syntax
	Returns

	8.7 Example PCI device driver

	Using the DHCP Utility
	9.1 DHCP overview
	9.1.1 Requirements

	9.2 Using DHCP
	9.3 Configuration files

	Chaining Library
	10.1 About exception chaining
	10.2 The SWI interface
	10.2.1 0x35, SYS_AGENTINFO
	Entry
	Return

	10.2.2 0x36, SYS_VECTORCHAIN
	Entry
	Return
	Adding a vector element
	Removing a vector element
	Updating a vector element
	Initializing the chain

	10.3 Chain structure
	10.4 Owners and users
	10.4.1 Element owners
	Angel initialization
	Angel and chaining
	µHAL initialization
	µHAL and chaining
	Handling exceptions

	10.4.2 Element users

	10.5 Rebuilding the chaining library
	10.5.1 PC project files
	10.5.2 Unix makefile

	Libraries and Support Code
	11.1 Library naming
	11.2 Rebuilding libraries
	11.2.1 Using the CodeWarrior IDE
	11.2.2 Using makefiles
	11.2.3 Output formats

	11.3 Support for VFP
	11.3.1 Introduction
	11.3.2 Implementation in µHAL
	Initialization
	Exception handler

	11.3.3 Library support for VFP
	VFP routines

	11.3.4 VFP images
	Semihosted
	Standalone

	11.3.5 User trap handlers

	11.4 Support for the ADS C library
	11.4.1 Introduction
	11.4.2 Build variants
	11.4.3 Retargetting
	Initialization
	Memory model
	I/O
	Trap handling
	Program exit

	ARM Firmware Suite on Integrator
	A.1 About Integrator
	A.1.1 Integrator/AP
	Motherboard
	Core modules

	A.1.2 Integrator/CP
	A.1.3 Logic modules
	A.1.4 Build variants
	Boot monitor and Angel variants

	A.2 Integrator-specific commands for boot monitor
	A.2.1 I, Initialize or re-initialize the PCI subsystem
	Integrator/AP
	Integrator/CP

	A.2.2 V, Display V3 chip setup
	Integrator/AP
	Integrator/CP

	A.2.3 P, Display PCI topology
	Integrator/AP
	Integrator/CP

	A.2.4 DPI, Display PCI I/O space
	Integrator/AP
	Integrator/CP

	A.2.5 DPM, Display PCI memory space
	Integrator/AP
	Integrator/CP

	A.2.6 DPC, Display PCI configuration space
	Integrator/AP
	Integrator/CP

	A.2.7 CC, Set clocks from SIB
	A.2.8 DC, Display clock frequencies
	A.2.9 SC, Set clock frequencies in SIB
	A.2.10 DH, Display hardware
	A.2.11 G, Go to address
	A.2.12 X, Exit board-specific command mode
	A.2.13 PEEK, Display memory at address
	A.2.14 POKE, Write memory at address
	A.2.15 MEM, Enable on-chip memory
	A.2.16 ESIB, Erase SIB
	A.2.17 R, Run image from flash
	A.2.18 H or ?, Display help

	A.3 Using the boot monitor on Integrator
	A.3.1 Flash on Integrator
	Integrator/AP Application flash
	Integrator/AP Boot flash
	Location of images in flash

	A.3.2 Boot switcher
	A.3.3 Safe mode
	A.3.4 Integrator clocks
	A.3.5 LEDs
	A.3.6 Multiple core modules with the Integrator/AP
	A.3.7 Loading images using the boot monitor

	A.4 The ProgCards Utility
	A.4.1 The data files
	A.4.2 The board description file

	A.5 Using ProgCards
	A.5.1 Upgrade procedure
	A.5.2 Example programming sequence
	A.5.3 Manually configuring Multi-ICE
	A.5.4 Troubleshooting
	DONE or FPGA_OK LED does not light
	Platform does not show S or H in alphanumeric display
	Code will not run on upgraded boards
	The debugger (AXD, ADW) can not find the processor
	The boot monitor hangs
	The ARM Flash Utility does not work on an upgraded board
	Error on CM966E-S
	ARM966E-S not supported

	A.6 Angel on Integrator
	A.6.1 Location in memory
	angIntegrator.axf (Integrator/AP only)
	angIntegrator_SDRAM.axf (Integrator/AP and Integrator/CP)

	A.6.2 Caches
	A.6.3 Line speed
	A.6.4 Downloading Angel

	A.7 PCI initialization on Integrator (Integrator/AP only)
	A.7.1 Integrator PCI subsystem overview
	A.7.2 Initializing the host bridge
	A.7.3 PCI configuration cycles
	A.7.4 Interrupt routing

	ARM Firmware Suite on Prospector
	B.1 About Prospector
	B.2 Prospector-specific commands for boot monitor
	B.2.1 D, Display memory at address
	B.2.2 G, Go to address
	B.2.3 H or ?, Display help
	B.2.4 P, Poke memory at address
	B.2.5 R, Run image from flash
	B.2.6 V, View images in flash
	B.2.7 X, Exit board-specific command mode

	B.3 Using boot monitor on Prospector
	B.3.1 Connecting to boot monitor
	B.3.2 Flash on Prospector
	Application flash
	Boot flash

	B.3.3 Image formats
	Location of images in flash

	B.3.4 Start-up sequence
	B.3.5 Prospector system-specific boot monitor
	B.3.6 Loading images using boot monitor

	B.4 Angel on Prospector
	B.4.1 Image format
	B.4.2 Location in memory
	B.4.3 Caches
	B.4.4 Line speed

	ARM Firmware Suite on the Intel IQ80310 and IQ80321
	C.1 About the IQ80310 development kit
	C.1.1 AFS support

	C.2 About the IQ80321 development kit
	C.2.1 AFS support

	C.3 IQ-specific commands for boot monitor
	C.3.1 D, Display memory at address
	C.3.2 G, Go to address
	C.3.3 H or ?, Display help
	C.3.4 P, Poke memory at address
	C.3.5 R, Run image from flash
	C.3.6 V, View images in flash
	C.3.7 X, Exit board-specific command mode

	C.4 Using boot monitor on the Intel IQ systems
	C.4.1 Connecting to boot monitor
	C.4.2 Flash memory
	Application flash
	Boot flash

	C.4.3 Boot switcher
	C.4.4 Start-up sequence
	C.4.5 System-specific boot monitor
	C.4.6 Loading images using boot monitor

	C.5 Angel on the Intel IQ systems
	C.5.1 Image format
	C.5.2 Location in memory
	C.5.3 Caches
	C.5.4 Line speed
	C.5.5 Initial loading of Angel into flash

	C.6 Flash recovery
	C.6.1 IQ80310 Coyanosa
	C.6.2 IQ80321 Worcester

	ARM Firmware Suite on the ARM Evaluator-7T
	D.1 About Evaluator-7T
	D.1.1 AFS on the Evaluator-7T

	D.2 Evaluator-7T-specific commands for boot monitor
	D.2.1 D, Display memory at address
	D.2.2 G, Go to address
	D.2.3 H or ?, Display help
	D.2.4 P, Poke memory at address
	D.2.5 R, Run image from flash
	D.2.6 V, View images in flash
	D.2.7 X, Exit board-specific command mode

	D.3 Using boot monitor on the Evaluator-7T
	D.3.1 Connecting to boot monitor
	D.3.2 Flash memory
	Application flash
	Boot flash

	D.3.3 Boot switcher
	D.3.4 Start-up sequence
	D.3.5 System-specific boot monitor

	D.4 Angel on the Evaluator-7T
	D.4.1 Image format
	D.4.2 Caches
	D.4.3 Location in memory
	D.4.4 Line speed
	D.4.5 Setting up Angel

	D.5 Manufacturing image

	ARM Firmware Suite on the Agilent AAED-2000
	E.1 About AAED-2000
	E.2 AAED-2000-specific commands for boot monitor
	E.2.1 D, Display memory at address
	E.2.2 G, Go to address
	E.2.3 H or ?, Display help
	E.2.4 P, Poke memory at address
	E.2.5 R, Run image from flash
	E.2.6 V, View images in flash
	E.2.7 X, Exit board-specific command mode

	E.3 Using boot monitor on AAED-2000
	E.3.1 Connecting to boot monitor
	E.3.2 Flash on AAED-2000
	Application flash
	Boot flash

	E.3.3 Image formats
	Location of images in flash

	E.3.4 Start-up sequence
	E.3.5 AAED-2000 system-specific boot monitor
	E.3.6 Loading images

	E.4 Angel on the AAED-2000
	E.4.1 Image format
	E.4.2 Location in memory
	E.4.3 Caches
	E.4.4 Line speed
	E.4.5 Initial loading of Angel into flash

	API Quick Reference
	F.1 µHAL
	F.1.1 µHAL-specific function types
	F.1.2 µHAL APIs

	F.2 Flash APIs
	F.3 PCI APIs

	Glossary
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	O
	P
	R
	S
	T
	U
	V
	Symbols

