
1

7-1

Chapter 7

Memory and
Programmable Logic

7-2

Outline

! Introduction
! Random-Access Memory
! Memory Decoding
! Error Detection and Correction
! Read-Only Memory
! Programmable Devices
! Sequential Programmable Devices

2

7-3

Mass Memory Elements
! Memory is a collection of binary cells together

with associated circuits needed to transfer
information to or from any desired location

! Two primary categories of memory:
! Random access memory (RAM)
! Read only memory (ROM)

7-4

Programmable Logic Device

! The binary information within the device can be
specified in some fashion and then embedded
within the hardware
! Most of them are programmed by breaking the fuses

of unnecessary connections

! Four kinds of PLD are introduced
! Read-only memory (ROM)
! Programmable logic array (PLA)
! Programmable array logic (PAL)
! Field-programmable gate array (FPGA)

3

7-5

Outline

! Introduction
! Random-Access Memory
! Memory Decoding
! Error Detection and Correction
! Read-Only Memory
! Combinational Programmable Devices
! Sequential Programmable Devices

7-6

Random Access Memory

! A word is the basic unit that
moves in and out of memory
! The length of a word is often

multiples of a byte (=8 bits)

! Memory units are specified
by its number of words
and the number of bits in
each word
! Ex: 1024(words) x 16(bits)
! Each word is assigned a

particular address, starting
from 0 up to 2k � 1
(k = number of address lines)

4

7-7

Write and Read Operations

! Write to RAM
! Apply the binary address of the desired word

to the address lines
! Apply the data bits that must be stored in

memory to the data input lines
! Activate the write control

! Read from RAM
! Apply the binary address of the desired word

to the address lines
! Activate the read control

7-8

Timing Waveforms

! CPU clock = 50 MHz
! cycle time = 20 ns

! Memory access time
= 50 ns
! The time required to

complete a read or write
operation

! The control signals
must stay active for at
least 50 ns
! 3 CPU cycles are required

5

7-9

Types of Memories
! Access mode:

! Random access: any locations can be accessed in any order
! Sequential access: accessed only when the requested word

has been reached (ex: hard disk)

! Operating mode:
! Static RAM (SRAM)
! Dynamic RAM (DRAM)

! Volatile mode:
! Volatile memory: lose stored information when power is

turned off (ex: RAM)
! Non-volatile memory: retain its storage after removal of

power (ex: flash, ROM, hard-disk, �)

7-10

SRAM vs. DRAM
! Static RAM:

! Use internal latch to store
the binary information

! Stored information remains
valid as long as power is on

! Shorter read and write cycles
! Larger cell area and power

consumption

! Dynamic RAM:
! Use a capacitor to store the

binary information
! Need periodically refreshing

to hold the stored info.
! Longer read and write cycles
! Smaller cell area and power

consumption

6

7-11

Outline

! Introduction
! Random-Access Memory
! Memory Decoding
! Error Detection and Correction
! Read-Only Memory
! Combinational Programmable Devices
! Sequential Programmable Devices

7-12

Memory Construction

A SRAM Cell

Large memory
will require
large decoder

7

7-13

Coincident Decoding
! Address decoders are often

divided into two parts
! A two-dimensional scheme

! The total number of gates in
decoders can be reduced

! Can arrange the
memory cells to a
square shape

! EX: 10-bit address
404 = 0110010100
X = 01100 (first five)
Y = 10100 (last five)

7-14

Address Multiplexing
! Memory address lines often

occupy too much I/O pads
! 64K = 16 lines
! 256M = 28 lines

! Share the address lines of
X and Y domains
! Reduce the number of lines

to a half
! An extra register is required

for both domain to store the
address

! Two steps to send address
! RAS=0: send row address
! CAS=0: send column address

8

7-15

Outline

! Introduction
! Random-Access Memory
! Memory Decoding
! Error Detection and Correction
! Read-Only Memory
! Combinational Programmable Devices
! Sequential Programmable Devices

7-16

Error Detection & Correction
! Memory arrays are often very huge

! May cause occasional errors in data access

! Reliability of memory can be improved by
employing error-detecting and correcting codes

! Error-detecting code: only check for the existence
of errors
! Most common scheme is the parity bit

! Error-correcting code: check the existence and
locations of errors
! Use multiple parity check bits to generate a syndrome

that can indicate the erroneous bits
! Complement the erroneous bits can correct the errors

9

7-17

Hamming Code (1/2)
! k parity bits are added to an n-bit data word
! The positions numbered as a power of 2 are

reserved for the parity bits
! Ex: original data is 11000100 (8-bit)
⇒ Bit position: 1 2 3 4 5 6 7 8 9 10 11 12

P1 P2 1 P4 1 0 0 P8 0 1 0 0
! P1 = XOR of bits (3,5,7,9,11) = 0

P2 = XOR of bits (3,6,7,10,11) =0
P4 = XOR of bits (5,6,7,12) = 1
P8 = XOR of bits (9,10,11,12) = 1

! The composite word is 001110010100 (12-bit)

7-18

Hamming Code (2/2)

! When the 12 bits are read from memory, the parity
is checked over the same combination of bits
including the parity bit
! C1 = XOR of bits (1,3,5,7,9,11)

C2 = XOR of bits (2,3,6,7,10,11)
C4 = XOR of bits (4,5,6,7,12)
C8 = XOR of bits (8,9,10,11,12)

! (001110010100) " C = C8C4C2C1 = 0000 : no error
(101110010100) " C = C8C4C2C1 = 0001 : bit 1 error
(001100010100) " C = C8C4C2C1 = 0101 : bit 5 error

viewed as a binary number

10

7-19

General Rules of Hamming Code

! The number of parity bits:
! The syndrome C with k bits can

represent 2k � 1 error locations
(0 indicates no error)

! 2k � 1 ≥ n + k " 2k � 1 � k ≥ n

! The members of each parity bit:
! C1(P1): have a �1� in bit 1 of their location numbers

1(0001), 3(0011), 5(0101), 7(0111), 9(1001), �
! C2(P2): have a �1� in bit 2 of their location numbers

2(0010), 3(0011), 6(0110), 7(0111), 10(1010), �
! C: with parity bit; P: without parity bit itself

58-1207
27-576
12-265
5-114
2-43

Range of
Data Bits, n

Number of
Check Bits, k

7-20

Extension of Hamming Code

! Original Hamming code can detect and correct
only a single error
! Multiple errors are not detected

! Add an extra bit as the parity of total coded word
! Ex: 001110010100P13 (P13=XOR of bits 1 to 12)
! Still single-error correction but double-error detection

! Four cases can occur:
! If C=0 and P=0, no error occurred
! If C≠0 and P=1, single error occurred (can be fixed)
! If C≠0 and P=0, double error occurred (cannot be fixed)
! If C=0 and P=1, an error occurred in the P13 bit

11

7-21

Outline

! Introduction
! Random-Access Memory
! Memory Decoding
! Error Detection and Correction
! Read-Only Memory
! Combinational Programmable Devices
! Sequential Programmable Devices

7-22

Read Only Memory
! A memory device that can permanently keep binary data

! Even when power is turned off and on again

! For a 2k x n ROM,
it consists of
! k inputs (address line)

and n outputs (data)
! 2k words of n-bit each
! A k x 2k decoder

(generate all minterms)
! n OR gates with 2k inputs
! Initially, all inputs of OR gates

and all outputs of the decoder
are fully connected

12

7-23

Programming the ROM
! Each intersection (crosspoint) in the ROM is often

implemented with a fuse
! Blow out

unnecessary
connections
according to
the truth table
! �1� means

connected
(marked as X)

! �0� means unconnected

! Cannot recovered after
programmed

7-24

Design Comb. Circuit with ROM

! Derive the truth
table of the circuit

! Determine minimum
size of ROM

! Program the ROM
49100011111
36001001011
25100110101
16000010001
9100100110
4001000010
1100000100
0000000000

DecimalB0B1B2B3B4B5A0A1A2

OutputsInputs

3 select lines
= 8 minterms

word
length
= 4

13

7-25

Types of ROMs
! Mask programming

! Program the ROM in the semiconductor factory
! Economic for large quantity of the same ROM

! Programmable ROM (PROM)
! Contain all fuses at the factory
! Program the ROM by burning out the undesired fuses

(irreversible process)
! Erasable PROM (EPROM)

! Can be restructured to the initial state under a special ultra-
violet light for a given period of time

! Electrically erasable PROM (EEPROM or E2PROM)
! Like the EPROM except being erased with electrical signals

7-26

Programmable Logic Devices

! ROM provides full decoding of variables
! Waste hardware if the functions are given

! For known combinational functions, Programmable
Logic Devices (PLD) are often used
! Programmable read-only memory (PROM)
! Programmable array logic (PAL)
! Programmable logic array (PLA)

! For sequential functions, we can use
! Sequential (simple) programmable logic device (SPLD)
! Complex programmable logic device (CPLD)
! Field programmable gate array (FPGA)

most popular

14

7-27

Outline

! Introduction
! Random-Access Memory
! Memory Decoding
! Error Detection and Correction
! Read-Only Memory
! Combinational Programmable Devices
! Sequential Programmable Devices

7-28

Configurations of Three PLDs

15

7-29

Programmable Logic Array
! PLA does not provide full decoding

of the variables
! Only generate the terms

you need

! The decoder is replaced
by an array of AND gates
that can be programmed

-10104A�BC�
1-11-3BC
111-12AC
-1-011AB�
F2F1CBAProduct Term

Outputs
(T) (C)Inputs

Generate complemented
outputs (if required)

F1 = AB� + AC + A�BC�
F2 = (AC +BC)�

7-30

Implementation with PLA
! Example 7-2: implement the two

functions with PLA
F1(A, B, C) = ∑ (0, 1, 2, 4)
F2(A, B, C) = ∑ (0, 5, 6, 7)

! Goal: minimize the number of
distinct product terms between
two functions

16

7-31

Programmable Array Logic

! PAL has a fixed OR array and
a programmable AND array
! Easier to program but not as

flexible as PLA

! Each input has a buffer-
inverter gate

! One of the outputs is fed back
as two inputs of the AND gates

! Unlike PLA, a product term
cannot be shared among gates
! Each function can be simplified by

itself without common terms

7-32

Implementation with PAL

+ A�B�C�D-100012
+ AC�D�-00-111

z = w1----10
+ B�D�-0-0-9
+ CD-11--8

y = A�B---107
-----6

+ BCD-111-5
x = A----14

-----3
+ A�B�CD�-01002

w = ABC�--0111
OutputsWDCBATerm

AND InputsProduct

w=∑(2,12,13) x=∑(7,8,9,10,11,12,13,14,15)
y=∑(0,2,3,4,5,6,7,8,10,11,15) z=∑(1,2,8,12,13)

17

7-33

Outline

! Introduction
! Random-Access Memory
! Memory Decoding
! Error Detection and Correction
! Read-Only Memory
! Combinational Programmable Devices
! Sequential Programmable Devices

7-34

Sequential PLD

! The most simple sequential PLD = PLA (PAL) + Flip-Flops

! The mostly used
configuration for SPLD
is constructed with
8 to 10 macrocells
as shown right

18

7-35

Complex PLD
! Complex digital systems often require the connection

of several devices to produce the complex specification
! More economical to use a complex PLD (CPLD)

! CPLD is a collection of individual PLDs on a single IC
with programmable interconnection structure

7-36

Field Programmable Gate Array

! Gate array: a VLSI circuit with some pre-fabricated
gates repeated thousands of times
! Designers have to provide the desired interconnection

patterns to the manufacturer (factory)

! A field programmable gate array (FPGA) is a VLSI
circuit that can be programmed in the user�s location
! Easier to use and modify
! Getting popular for fast and reusable prototyping

! There are various implementations for FPGA
! More introductions are adopted from �Logic and Computer

Design Fundamentals�, 2nd Edition Updated, by M. Morris
Mano and Charles R. Kime, Prentice-Hall, 2001

19

7-37

FPGA Structure (Altera)

7-38

FPGA Structure (Xilinx)
Fig. 6-29:
Xilinx® XC4000� FPGA Structure
(Adapted with Permission of Xilinx, Inc.)

20

7-39

Store the Programming Info.

! SRAM technology is
used
! M = 1-bit SRAM
! Loaded from the

PROM after power on

! Store control values
! Control pass transistor
! Control multiplexer

! Store logic functions
! Store the value of

each minterm in the
truth table

7-40

Xilinx FPGA Routing
! Fast direct interconnect

! Adjacent CLBs

! General purpose
interconnect
! CLB � CLB or CLB � IOB
! Through switch matrix

! Long lines
! Across whole chip
! High fan-out, low skew
! Suitable for global signals

(CLK) and buses
! 2 tri-states per CLB for

busses

21

7-41

Xilinx Switch Matrix
! Six pass transistors to control each switch node
! The two lines at point 1 are joined together
! At point 2, two distinct signal paths pass through one

switch node

7-42

Configurable Logic Block (CLB)

! Combinational logic via lookup table
! Any function(s) of available inputs

! Output registered and/or combinational

22

7-43

Simplified CLB Structure

7-44

Internal Functions of a CLB

! Two 4-input tables implement two distinct
functions (F � and G �)

! F� and G� with another control (H1) feed into
a third lookup table (H �)

! Two arbitrary functions of up to four variables
and selected functions of up to nine variables
can be implemented

! Properly setting the two MUXes can assign
any pair of F �, G �, and H � to the two
combinational outputs (X and Y)

23

7-45

Internal Functions of a CLB

! Two D flip-flops directly drive outputs XQ and YQ
! Each of the D inputs can be selected from F �, G �,

H � and input DIN
! Two XORs select each flip-flop individually to be

positive or negative edge triggered
! Two SR controls select the signal S/R to be an

asynchronous Set or Reset for the flip-flops
! Two multiplexers allow the input EC to optionally

act as a clock ENABLE signal for each flip-flop

7-46

I/O Block (IOB)
! Periphery of identical I/O blocks

! Input, output, or bidirectional
! Registered, latched, or combinational
! Three-state output
! Programmable output slew rate

24

7-47

Input/Output Mode of an IOB

! Input
! 3-state control places

the output buffer into
high impedance

! Direct in and/or
registered in

! Output
! 3-state driver should be

enabled by TS signal
! Direct output or

registered output

7-48

Design with FPGA

! Using HDL, schematic editor, SM chart or FSM
diagram to capture the design

! Simulate and debug the design
! Work out detail logic and feed the logic into

CLBs and IOBs
! Completed by a CAD tool

! Generate bit pattern for programming the
FPGA and download into the internal
configurable memory cells

! Test the operations

25

7-49

FPGA Design Flow

! Advantages: Fast and reusable prototyping
! Can be reprogrammed and reused
! Implementation time is very short

! Disadvantages: Expensive and high volume

logic + layout synthesis

7-50

Download to a FPGA Demo Board

Source: CIC training manual

