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Investigation of the Carrier Dynamic in GaN-Based
Cascade Green Light-Emitting Diodes Using the

Very Fast Electrical–Optical Pump–Probe Technique
Jin-Wei Shi, H.-W. Huang, F.-M. Kuo, W.-C. Lai, Ming-Lun Lee, and Jinn-Kong Sheu

Abstract—For the first time, the internal carrier dynamic
inside GaN-based green light-emitting diodes (LEDs) during
operation has been directly observed using the demonstrated
electrical–optical pump–probe technique. Short electrical pulses
(∼100 ps) were pumped into high-speed cascade green LEDs,
and the output optical pulses were probed using high-speed
photoreceiver circuits. Using such a method, the recombination
time constant of the carriers can be directly measured without any
assumption about the recombination process. A high-speed cas-
cade LED structure was adopted in the experiments to eliminate
the influence of the RC delay time on the measured responses.
Our measurement results indicate that both single- and three-LED
cascade structures have the same internal response time due to
current continuity. Furthermore, based on responses measured
under different temperatures (from 25 ◦C to 200 ◦C), the origin
of the efficiency droop in GaN-based green LEDs under a high
bias current density may be attributed to the strong nonradiative
Auger effect rather than device heating or carrier overflow. The
demonstrated measurement scheme and high-speed cascade de-
vice structure offer a novel and simple way to straightforwardly
investigate the internal carrier dynamic inside the active layers of
the LED during forward-bias operation.

Index Terms—Carrier dynamic, cascade, efficiency droop, GaN,
light-emitting diodes (LEDs).

I. INTRODUCTION

THE STUDY of the internal carrier dynamic and the ef-
ficiency droop mechanism in GaN-based blue or violet

light-emitting diodes (LEDs) has attracted a lot of attention
[1]–[3] due to their applications in next-generation solid-state
lighting. The ultrafast optical pump–probe technique is a pow-
erful tool for characterizing the internal carrier dynamic in
GaN-based materials and devices derived therefrom [4], [5].
However, this type of technique adopts the femtosecond optical
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pulse to excite the device under reverse bias, which can elim-
inate the influence of electroluminescent light from the device
on the measurement result. This scheme, thus, does not match
the case of LEDs under forward-bias operation with electrical
signal injection. A number of theoretical and experimental
studies have been carried out in order to better understand the
internal carrier dynamic and the origin of the efficiency droop
during the operation of GaN-based blue LEDs [1]–[3], [6]. In
these works, the internal carrier dynamic is usually analyzed
based on the extracted internal and external quantum efficiency
(EQE) values of the blue LEDs and the technique of differential
carrier lifetime measurement [1]–[3], [7]. However, the internal
carrier dynamic, which occurs during the operation of GaN-
based LEDs, cannot be so straightforwardly characterized with
these approaches. One possible solution to overcome the limita-
tions of the aforementioned techniques is the electrical–optical
(E–O) pump–probe technique, where a short electrical pulse
(around picoseconds) is injected into the LED during operation,
after which we can then measure its output optical pulses by
the use of high-speed photoreceiver circuits. These measured
impulse responses from the LED definitely represent informa-
tion about the carrier dynamic inside it. The major challenge
of such techniques is that the RC-limited bandwidth of a LED
with a large active area (ten thousands of square micrometers)
is usually too low to provide a fast enough time resolution.
Recently, high-speed GaN-based green LEDs have attracted a
lot of attention due to their applications in plastic optical fiber
communication and for communication in harsh environments
[8], [9]. One can expect a much higher RC-limited bandwidth
of such green LEDs compared with the traditional LEDs used
for solid-state lighting. In this paper, we investigated the inter-
nal carrier dynamic of GaN-based green LEDs using the E–O
pump–probe technique. The use of very high speed cascade
LEDs with a negligible RC-limited bandwidth [9], [10] and
high-speed photoreceiver circuits, which provide a fast enough
time resolution, means that such a technique can directly mea-
sure the recombination time τr of carriers in the multiquantum-
well (MQW) layers under different ambient temperatures and
bias currents, without making any assumption about the re-
combination process. Our measurement results indicate that,
due to current continuity, both single- and three-LED cascade
(serial) structures have exactly the same τr inside. In addition,
the measured τr exhibits very different temperature-dependent
behaviors under low and high bias current densities, due to the
influence of the piezoelectric (PZ) field inside the MQW layers
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Fig. 1. (a) Top view of the demonstrated LED arrays and a single LED.
(b) Setup for impulse response measurement.

[11], [12]. Furthermore, under high injection levels, when there
is serious efficiency droop, the measured impulse responses
show negligible changes even when the ambient temperature
increases from room temperature to 200 ◦C. This result implies
that it is likely the strong nonradiative Auger effect that is the
origin of the observed efficiency droop of GaN-based green
LEDs [13], [14] rather than carrier heating or overflow.

II. DEVICE STRUCTURE

The epitaxial layer structures were grown on a (0001)
sapphire substrate. The thicknesses of the six-period
InxGa1−xN/GaN green MQW region, the bottom n-type
GaN (n-GaN) layer, and the topmost p-type GaN layer were
about 100, 4000, and 210 nm, respectively. The n-type doping
density in some of the GaN barrier layers near the n-type
cladding layer was around 7 × 1017 cm−3.

Such n-type barrier doping was used to enhance the modula-
tion speed and output power of the LEDs (for more information,
see [12]). A 100-nm-thick n-type (with a doping density of
1 × 1018 cm−3) InxGa1−xN layer with a mole fraction x (x =
6%−8%), much less than that of the green MQW layers, was
inserted between the bottom n-GaN layer and active MQW lay-
ers. This is of benefit to bottom current spreading and improved
current–voltage (I–V ) characteristics in the fabricated LEDs,
which can be attributed to the narrower bandgap, high doping
density, and possibly lower resistivity of the inserted InGaN
layer than those of the bottom n-GaN layer [15]. Fig. 1(a)
shows a top view of the demonstrated three-LED cascade array
connected in series. Each LED has an active diameter of around
250 μm. We also fabricated a single LED of the same geometric
size as the cascade unit for use as a control device. For details
of the cascade LED array fabrication processes, please refer to
[9] and [10].

III. MEASUREMENT RESULTS AND DISCUSSION

The three-LED cascade array exhibits around three times
higher output power and EQE than does the single-LED con-
trol, at the expense of a threefold increase in the required bias

Fig. 2. (a) Measured output power and EQE of single- and three-LED cascade
arrays versus bias current. (b) Variation of the measured output power for the
same two devices versus bias current under two different ambient temperatures
(100 ◦C and 200 ◦C).

voltage [9], [10]. Fig. 2(a) shows the measured output power
and EQE of the single- and three-LED cascade arrays versus
bias current. The diameter of the measured LED unit is around
250 μm. As can be seen, the three-LED cascade array exhibits
around three times higher output power and external efficiency
under the same bias current. High-temperature high-speed oper-
ation is an important merit of GaN-based green LEDs. Fig. 2(b)
shows the variation of measured output power versus bias
current under two different ambient temperatures (100 ◦C and
200 ◦C). The values of variation in the output power under
different bias currents are normalized to the output power under
the corresponding bias currents at room temperature. As can be
seen, there is an optimum range (40–80 mA) of bias currents
for minimizing the variation in the output power versus tem-
perature. This phenomenon is very different from the behavior
of typical semiconductor-based light emitters, which usually
exhibit a monotonic increase in the degree of output power
degradation with an increase in the bias current, particularly
under high-temperature operation. This is due to an increase in
the junction temperature (device heating) itself. Our measure-
ment results may be attributed to the influence of defect-related
nonradiative recombination or the strong PZ field inside the
GaN/InGaN MQW region. Due to the fact that, under a low bias
current (< 40 mA), the strong PZ field inside the GaN/InGaN
MQW region cannot be completely screened by the space-
charge field induced by the external injected current, such an
unscreened PZ field consequently lowers the effective barrier
height in the MQW region [11], [16]. We thus expect that the
effective barrier height increases with the bias current. This
should be accompanied by a lower probability of carrier es-
cape and less output power degradation under high-temperature
operation. On the other hand, when the bias current exceeds a
certain value (> 80 mA), the PZ field is completely screened.
The typical temperature-dependent behavior of the light emitter
means that the degradation of the output power under high-
temperature operation becomes more serious with an increase
in the bias current, as is observed in our device. With regard to
defect-related nonradiative recombination in the active layers,
it usually becomes faster and more serious with an increase
in the ambient temperature and leads to the E–O bandwidth
enhancement and degradation in EQE of high-speed LEDs un-
der high-temperature operation [17]. In the case of III-nitride-
based LEDs, this mechanism usually results in the degradation
in EQE under an extremely low bias current density (less than
∼10 A/cm2) [18], [19]. This phenomenon can be minimized
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Fig. 3. (a) Measured E–O and extracted RC-limited frequency responses for
the single-LED control and the three-LED cascade array under a bias current
of 100 mA. (b) Measured and fitted S11 parameters (from 20 MHz to 1 GHz)
for the three-LED cascade array under forward-bias (a 100-mA bias current)
and reverse-bias (−5 V) operations. (Arrowhead) Increase in the sweeping
frequency.

by further increasing the bias current to a moderate range
(∼20 A/cm2), and the LED should exhibit the highest value
of EQE [18], [19] due to the saturation of the defect states by
the external injected carriers. However, for our device, with its
small active area, which corresponds to a very high bias current
density (> 100 A/cm2) even under a low bias current (10 mA),
defect-related nonradiative recombination may not be the dom-
inant mechanism for the recombination process in the measured
impulse responses, as will be discussed later in Figs. 4–6.
Furthermore, as shown in Fig. 2(a), the measured EQE of our
device monotonically degrades as the bias current increases
from low to high (10–200 mA). Such static measurement results
are very different from those reported for large-area III-nitride-
based LEDs (over 300 × 300 μm2) [18], [19], which implies
saturation of defect states, even under a low bias current, for
our device with a small active area. These static measurement
results are consistent with our dynamic measurement results,
as will be discussed later. Fig. 1(b) shows a conceptual di-
agram of our E–O pump–probe measurement setup. During
measurement, the device under test (DUT) is mounted on a
hot plate for temperature-dependent measurement, where the
DUT is injected with different direct-current (dc) bias currents.
An electrical pulse train with a full-width at half-maximum of
around 100 ps, a 1/64 duty cycle, and a fixed 2-V peak output
voltage, which is generated by the programmable pulse pattern
generator (Anritsu MP1800 A series), is injected into our device
for impulse response measurement. During our experiments, we
tried to inject our device with an even shorter electrical pulse.
The measured impulse response showed no significant change.
This result indicates that the injected electrical pulsewidth
is much faster than the internal response time of the LED
inside. The optical pulse generated from the DUT was collected
by high-speed photoreceiver circuits with a 3-dB bandwidth
of approximately 1.5 GHz (New Focus, 1601-AC). This was
connected to a 1.5-GHz 3-dB low-noise amplifier (Miteq AM-
1309, LNA) and a high-speed sampling scope to record the
impulse response. Each cascade unit in the three-LED cascade
array used for all dynamic and impulse response measurements
(to be discussed later) had an active diameter of 100 μm.
Fig. 3(a) shows the measured E–O frequency responses for the
single-LED control and the three-LED cascade array under a
bias current of 100 mA. As can be seen, although our three-
LED cascade structure can have an active area and differential

Fig. 4. Measured impulse responses (after normalization) for the single- and
three-LED cascade arrays under different bias currents at 200 ◦C.

quantum efficiency around three times larger than those of
the single control device, both of them have exactly the same
3-dB bandwidth. Under a 100-mA bias current, the measured
3-dB E–O bandwidth is around 250 MHz. Such a result can
be attributed to the fact that the cascade structure does not
cause the degradation of the RC-limited bandwidth due to
the serial connection and the reduction of junction capacitance
[9], [10]. The RC-limited bandwidth of the measured cas-
cade LED is extracted by measuring the microwave reflection
scattering parameters S11 of the three-LED cascade array and
then performing the equivalent-circuit modeling technique [20].
Fig. 3(b) shows the measured and fitted S11 parameters (from
20 MHz to 1 GHz) for the DUT under forward-bias (a 100-mA
bias current) and reverse-bias (−5 V) operations. We can
clearly see that the measured and fitted traces match well in the
frequency range of interest as obtained using the established
equivalent-circuit model. Furthermore, in contrast to the device
under reverse-bias operation with a capacitive trace, under
forward-bias operation, the device exhibits an inductive trace
with a small resistance of around 25 Ω. This result is similar
to the reported microwave reflection (S11) parameter of high-
speed semiconductor lasers under forward-bias operation [21].
We can now obtain the frequency response under forward-
bias operation, as shown by the fitted trace in Fig. 3(a), by
using the established inductive-type equivalent-circuit model.
The extracted external RC frequency response under forward
bias shows a resonant frequency at around 2.8 GHz with a 3-dB
bandwidth of around 4 GHz. These numbers are much larger
than for the 3-dB bandwidth of the measured E–O frequency
response (0.25 GHz). Such a result clearly indicates that the
RC-limited frequency response should not have any significant
influence on the speed performance of the device or the mea-
sured impulse responses (to be discussed later). Fig. 4 shows
the measured impulse responses of the single and cascade LEDs
under different bias currents. Each trace is normalized to its
own maximum values. The traces for the cascade LED are
much less noisy and have a better signal-to-noise (S/N) ratio
than those of the single LED, particularly under a low bias
current (10 mA). This is due to the improvement in EQE of the
cascade structure, as discussed in Fig. 2(a). Furthermore, both
structures reveal exactly the same internal carrier response time
for low to high bias currents (10–150 mA). This is consistent
with the results reported for high-speed cascade semiconductor
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Fig. 5. (a) Measured impulse responses for the three-LED array under differ-
ent bias currents at 200 ◦C. (b) Same traces after normalization.

Fig. 6. Measured impulse responses for three-LED cascade arrays (after
normalization) under different bias currents (10 and 150 mA) and different
ambient temperatures (25 ◦C, 100 ◦C, and 200 ◦C).

lasers [22] and can be attributed to the fact that the bias current
is led from one emitter to the next in the cascade arrays with
serial connections. Each unit in the cascade array should have
the same internal response time and bias current as those of the
single device under the same constant current bias. Fig. 5(a)
shows the typical measured impulse responses of a three-
LED array under different bias currents at 200 ◦C. Fig. 5(b)
shows the same traces after normalization. As can be seen, the
measured impulse response greatly shortens with the increase
in the dc bias current, accompanied by a significant increase
in the peak amplitude under low bias currents (10–50 mA).
Although our device is driven under a constant amplitude of
the injected voltage pulse (2-V peak to peak), the amplitude
of the corresponding current swing should increase with an
increase in the dc bias current (output optical power) due to the
reduction of the device’s differential resistance under forward
bias. The increase in the amplitude of the output optical pulse
with the increase in the dc bias current (10–50 mA) can thus
be measured. However, when the bias current exceeds 50 mA,
significant saturation of the peak amplitude can be observed.
Such saturation can be attributed not only to the reduction in
EQE under a high bias current, as shown in Fig. 2(a), but also
to the insignificant reduction in resistance under an extremely
high dc bias current (> 100 mA). Based on these measurement
results, we can thus conclude that the shortening of the impulse
response, particularly under a high bias current (> 100 mA),
is due to the enhancement of the nonradiative recombination
process (degradation in EQE) with the increase in the bias
current. We will discuss this issue in more detail later. Fig. 6
shows the measured impulse responses for a three-LED cascade
array (after normalization) under different bias currents (10 and
150 mA) and different ambient temperatures (25 ◦C, 100 ◦C,

Fig. 7. Extracted τr (fall time constants) of measured impulse responses
versus bias currents under 25 ◦C and 200 ◦C operations.

and 200 ◦C). We can clearly see that, under high bias currents
(150 mA), the measured impulse responses are exactly the
same, from low (25 ◦C) to high ambient temperatures (200 ◦C).
On the other hand, under low bias currents (10 mA), the impulse
response significantly shortens with an increase in the ambient
temperature. This is consistent with the temperature-dependent
measurement results shown in Fig. 2(b).

Under a low bias current (∼10 mA), the strong PZ field in
the GaN/InGaN MQW region cannot be completely screened
by the external injected current induced space-charge field;
therefore, the effective barrier height in the MQW region should
be lower [11], [12]. We can thus expect an improvement in
device speed with an increase in the ambient temperature due
to the increase in the carrier-escaping probability. On the other
hand, when the bias current is large enough (> 80 mA) to screen
the PZ field inside the MQW region, the effective barrier height
should increase, effectively preventing carrier escape from the
InGaN wells, even under a high ambient temperature (200 ◦C).

The invariant impulse responses under a high ambient tem-
perature and a high bias current (density) can thus be measured,
as shown in Fig. 6. From these measurement results, we can
conclude that it is not carrier heating (escaping) or carrier
overflow [2], [3] that induces the shortening of the measured
impulse response, particularly under high-temperature oper-
ation, leading to the origin of the efficiency droop in our
demonstrated GaN-based green LEDs under a high bias current
(> 100 mA). Other nonradiative recombination processes, per-
haps the Auger effect or defect-related recombination, may be
the reasons for the efficiency droop [6], [7], [13], [14]. Although
defect-related nonradiative recombination in the active layers
usually becomes faster (more serious) with an increase in the
ambient temperature [17] and can shorten the measured impulse
responses, as what we have measured in Fig. 6, it may not be
a major issue for the recombination process in our device, as
discussed in Fig. 2. By analyzing the fall time constants of
these measured impulse responses, we can further distinguish
whether the Auger effect is the dominant mechanism in all the
recombination processes. The fall time constants, which can
be extracted from these measured impulse responses, definitely
represent the recombination time constant τr of the internal
carrier inside the active MQW layers. This is due to the fact
that the RC delay time is not an issue in our cascade LEDs,
as shown in Fig. 3. Fig. 7 shows the extracted τr versus bias
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current (10–150 mA) under 25 ◦C and 200 ◦C operations. The
corresponding bias current density ranges between 127 and
1900 A/cm2. As can be seen, under a low bias current (10 mA),
we must use two time constants to fit the measured impulse
responses. The extracted slow τr (> 10 ns) under a low bias
current density (127 A/cm2) can be treated as the time constant
for the spontaneous recombination process inside the active
MQW layers and is close to the reported value (∼5 ns) for
GaN-based blue LEDs operated under the same bias current
density (∼100 A/cm2) at room temperature, as measured by
the differential lifetime technique [7]. The observed significant
increase in this time constant (20–150 ns) with the increase
in the ambient temperature from 25 ◦C to 200 ◦C can thus
be attributed to the reduction of the radiative (spontaneous)
recombination rate under a high ambient temperature [23].
The traces measured under high bias currents (> 30 mA) fit
well, just by using a single time constant. Such a fast single
time constant can be treated as the Auger recombination time
[6], [7], [13], [14], which dominates the total recombination
process in InGaN/GaN MQWs operated under such a high
bias current density (> 300 A/cm2) [7]. The τr (∼0.8 ns)
obtained under a high bias current density (150 mA and
1.9 kA/cm2) is very close to the reported Auger recombination
time constant (less than 1 ns when the bias current density is
over 1 kA/cm2 [7]) in the InGaN/GaN blue MQW regions [7],
[14]. On the other hand, in such a high bias current density
regime (> 300 A/cm2), the spontaneous recombination rate
tends to be saturated due to the phase-space filling effect [7],
leading to it having much less influence on the measured time
constant than the Auger effect does [7]. From these static
and dynamic measurement results, we can conclude that the
dominant mechanism for the efficiency droop in our GaN-
based green LEDs operating under high current injection (as
well as a high junction temperature) is the Auger recombi-
nation process rather than the carrier-heating or the carrier-
overflow phenomenon [2], [3]. Contrary to the efficiency droop
mechanism reported for GaAs or InP light emitters, which is
usually dominated by the carrier-heating effect accompanying
the increase in junction temperature [23], the III-nitride-based
green LEDs should be less sensitive to this effect. They should
have superior high-temperature performance in terms of speed
and power [9], due to the much larger bandgap offsets in the
InGaN/GaN active MQW regions.

IV. CONCLUSION

In this paper, we have directly characterized the internal
carrier dynamic inside InGaN/GaN-based green LEDs during
operation using a very fast E–O pump–probe technique. The
influence of the RC delay time on the measured responses is
eliminated by adopting a high-speed cascade LED structure in
our experiments, as has been verified by the equivalent-circuit
modeling technique. Our measurement results indicate that
the three-LED cascade structure has exactly the same internal
response time but provides a better S/N ratio for the measured
traces compared with the single LED. This is due to current
continuity through the serial connection and improvement in
its power performance, respectively. Furthermore, the measured

impulse responses show very different temperature-dependent
behaviors under low (∼10 mA) and high bias currents
(∼100 mA), which can be attributed to the influence of the
strong PZ field inside the InGaN/GaN MQW layers. These
dynamic measurement results are consistent with the static
temperature-dependent measurement results and indicate that
the origin of the efficiency droop in GaN-based green LEDs
operating under high bias current densities (> 1 kA/cm2) can
be attributed to the significant nonradiative Auger effect rather
than device heating or carrier overflow. The demonstrated
measurement scheme and high-speed cascade device structure
offer a novel and simple way to straightforwardly investigate
the internal carrier dynamic inside the active layers of the LED
during forward-bias operation.
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