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Abstract

White matter hyperintensities (WMHs) of presumed vascular origin are common in ageing population, especially in patients
with acute cerebral infarction and the volume has been reported to be associated with mental impairment and the risk of
hemorrhage from antithrombotic agents. WMHs delineation can be computerized to minimize human bias. However, the
presence of cerebral infarcts greatly degrades the accuracy of WMHs detection and thus limits the application of
computerized delineation to patients with acute cerebral infarction. We propose a computer-assisted segmentation method
to depict WMHs in the presence of cerebral infarcts in combined T1-weighted, fluid attenuation inversion recovery, and
diffusion-weighted magnetic resonance imaging (MRI). The proposed method detects WMHs by empirical threshold and
atlas information, with subtraction of white matter voxels affected by acute infarction. The method was derived using MRI
from 25 hemispheres with WMHs only and 13 hemispheres with both WMHs and cerebral infarcts. Similarity index (SI) and
correlation were utilized to assess the agreement between the new automated method and a gold standard visually guided
semi-automated method done by an expert rater. The proposed WMHs segmentation approach produced average SI,
sensitivity and specificity of 83.142611.742, 84.154616.086 and 99.98860.029% with WMHs only and of 68.826614.036,
74.381618.473 and 99.95660.054% with both WMHs and cerebral infarcts in the derivation cohort. The performance of the
proposed method with an external validation cohort was also highly consistent with that of the experienced rater.
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Introduction

White matter hyperintensities (WMHs), visible in periventricu-

lar and subcortical white matter in T2-weighted magnetic

resonance imaging (MRI), could be a radiological manifestation

in several intracranial diseases, including multiple sclerosis [1],

dementia [2], large [3] and small vascular diseases of hypertensive

vasculopathy and cerebral amyloid angiopathy [4–7]. WMHs of

presumed vascular origin is one of the neuroimaging features of

cerebral small vessels disease, including small subcortical infarcts,

lacunes, perivascular spaces microbleeds and brain atrophy [8].

WMHs are common in patients with acute cerebral infarction [8]

and its presence increases the risk of stroke, cognitive impairment

and death [9]. More severe events of cerebral ischemia were

associated with WMHs [10]. The volumes of WMHs are

associated with cognitive impairment in lobar intracerebral

hemorrhage (ICH) [5] and the progression of WMHs is associated

with cognitive impairment [11] and incident ICH in follow-up

[12]. Higher burden of WMHs is associated with worse outcomes

after ischemic stroke [13].

The severity of WMHs could be accessed by several methods,

from the visual scoring systems [11,14–15] or semi-automated [12]

to automated methods of analysis [16–20]. A semi-automated

method was reported to be better correlated with WMHs

progression than visual scoring systems [21]. However, semi-

automated methods requiring human inputs are subjective, time-

consuming, laborious, error prone, and vulnerable to intra- and

inter-rater variability. An automated method is desirable to
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provide efficient, reproducible, and reliable WMHs segmentation

and volume quantization.

Few automated WMHs quantification techniques have been

reported in the literature for patients with acute cerebral

infarction. Shi et al. proposed an automated computational

method for quantification of the WMHs in the T1-weighted

(T1w), fluid attenuation inversion recovery (FLAIR) and diffusion-

weighted imaging (DWI) with the presence of acute cerebral

infarcts based on mathematical morphological operations [22].

In this study, we emphasize how to avoid the deterioration

caused the presence of acute cerebral infarcts in the development

of the proposed WMHs segmentation method. This method

detects WMHs and cerebral infarcts by their histographic

characteristics in combined T1w, FLAIR, and DWI sequences.

The proposed method is further strengthened by detecting and

eliminating spurious WMHs arising from postischemic edema of

the infarct as well as blurred intensity of the gray/white matter

junction. The performance of this automated segmentation

approach was verified with an external validation cohort with

respect to visually guided semi-automated segmentation by an

experienced neurologist.

Materials and Methods

Subjects and MR imaging protocol
Thirty patients with acute ischemic stroke admitted to Landseed

Hospital, a participating teaching hospital in Taiwan Stroke

Registry [23], during January–June, 2011, were recruited in this

study. A written informed consent was obtained from each

participating patient. The protocol of this research had been

approved and monitored by Landseed Hospital Institutional

Review Board. The average interval between reported stroke

onset and MR scanning was 82.19633.35 hours (mean 6

standard deviation) in the derivation cohort. The MRI showed

that all the 30 patients had WMHs.

The 30 patients recruited were divided into a derivation cohort

(20 patients, 8 females and 12 males, 69.9612.2 years old) and a

validation cohort (10 patients, 3 females and 7 males, 63.4611.9

years old). In the derivation cohort, one of the 40 hemispheres was

excluded because it only contained old large infarct without acute

ischemic stroke; another was excluded due to massive cerebral

infarcts on the whole hemisphere to completely mask the WMHs.

We finally had 25 hemispheres with WMHs only and 13

hemispheres with both WMHs and cerebral infarcts. In the

validation cohort, among the 20 hemispheres, 13 had WMHs only

and the other 7 had both WMHs and cerebral infarcts.

All MRI data of the patients were collected using a Signa HDxt

1.5T (GE healthcare Milwaukee, WI) scanner with an eight-

Figure 1. The flow diagram of the automated WMHs segmentation algorithm. Each represents a step that must be performed for each
individual subject; each represents a step that needs to be performed only once for all subjects.
doi:10.1371/journal.pone.0104011.g001

Figure 2. The effect of fusing T1w and FLAIR images. The red contour in these images represents the position of WMHs delineated semi-
automatically by the experienced neurologist. (A) An FLAIR image. (B) The registered T1w image. (C) The probabilistic map representing the gray
matter segmented from B. (D) The probabilistic map representing the white matter segmented from B. (E) The registered T1w image after being
fused with the FLAIR image. (F) The probabilistic map representing the gray matter segmented from E. (G) The probabilistic map representing the
white matter segmented from E. Note that in the probability maps, higher intensity corresponds to higher probability.
doi:10.1371/journal.pone.0104011.g002
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channel phased-array neurovascular coil to obtain the T1w,

FLAIR, and DWI sequences. The parameters for acquiring T1w

sequence were repetition time (TR) = 2400 ms, echo time

(TE) = 24 ms, echo train length (ETL) = 6, field of view

(FOV) = 230 mm, number of excitations (NEX) = 2, matrix

size = 2886192, slice thickness = 5 mm, and slice gap = 1 mm.

The parameters for acquiring FLAIR sequence were

TR = 8000 ms, TE = 151 ms, ETL = 36, FOV = 230 mm,

NEX = 1.5, matrix size = 2886288, slice thickness = 5 mm, and

slice gap = 1 mm. The parameters for acquiring DWI sequence

were TR = 6000 ms, TE = 82.8 ms, ETL = 1, FOV = 230 mm,

NEX = 2, matrix size = 1286128, slice thickness = 5 mm, and slice

gap = 1 mm.

The semi-automated segmentation of WMHs
The neurologist rater (Y.W. Chen) did the semi-automated

WMHs segmentation based on the protocol developed by Stroke

Service, Massachusetts General Hospital. The details of the

procedure were previously described in the articles of related

research [12,24–25]. In brief, the areas and volumes were

determined after the region of interest was created by combination

of appropriate determination of signal intensity threshold and

manual editing. The location of WMHs and acute infarct was

recorded based on the corresponding neuroanatomy in the

imaging.

Histographic characterization of WMHs
The histograms of the semi-automatically demarcated WMHs

were studied. Specifically, the lowest bounds of the normalized

intensity of these semi-automatically demarcated WMHs in the 38

available hemispheres of the derivation cohort, were analyzed.

The automated WMHs segmentation procedure
As depicted in Fig. 1, the automated WMHs segmentation of a

single hemisphere consisted of 11 steps as described below.

Step 1. Registration. To correct for differences due to subject

head movement, the T1w image and DWI were registered to the

FLAIR image by a rigid registration based on normalized mutual

information [26].

Figure 3. Determination of an optimal threshold for cerebral infarcts segmentation. A preliminary experiment was conducted on 17
subjects with acute cerebral infarction. Shown here are the average SI and standard deviation versus threshold Ipeak,DWI+n, n ranging from 0 to 30. A
suitable threshold was Ipeak,DWI+19 and the resultant average SI was 92.35266.944%.
doi:10.1371/journal.pone.0104011.g003
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Step 2. Fusing. The registered T1w image was fused with the

FLAIR image to avoid incorrect segmentation due to the similarity

between the intensities of the WMHs and the gray matter. The

fusing formula was Vfusion = kVregistered T1w+(12k)VFLAIR, where k
was the weighting coefficient that was set at 0.8 [22], and Vfusion,

Vregistered T1w and VFLAIR represent the fused image, registered

T1w image and FLAIR image, respectively. The effect of fusing

T1w and FLAIR images is showed in Fig. 2.

Step 3. The New Segment module of Statistical Parametric

Mapping 8 (SPM8, Wellcome Department of Cognitive Neurol-

ogy, London, UK, http://www.fil.ion.ucl.ac.uk/spm/) was ap-

plied on the fused T1w image to create probabilistic maps of gray

and white matter, i.e., the imported gray matter image and the

imported white matter image [27].

Step 4. The imported white matter image and the imported

gray matter image were utilized to create the transformation

parameters through the DARTEL (Diffeomorphic Anatomical

Registration Through Exponential Lie Algebra) module embed-

ded in SPM8 [28].

Figure 4. Histographic characterization of WMHs. The intensity histogram of the whole-brain normalized FLAIR image in (A) the right
hemisphere of patient #1, of which the semi-automatically demarcated WMHs volume was larger (7.954 ml), and (B) the left hemisphere of patient
#20, of which the semi-automatically demarcated WMHs volume was smaller (0.736 ml). The demarcated WMHs in a slice is painted in yellow and
shown in the inlet. The lowest bounds of the normalized intensity of the semi-automatically demarcated WMHs were both 65 in the hypothetical
cerebral WM mask.
doi:10.1371/journal.pone.0104011.g004

Figure 5. Typical examples of WMHs segmentation. Seven successive axial slices taken from patient #2are shown (upper row: FLAIR image;
middle row: yellow regions being the WMHs demarcated by the neurologist; lower row: blue regions being the WMHs demarcated by the proposed
algorithm).
doi:10.1371/journal.pone.0104011.g005
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Step 5. Deformation. Deform the a priori white matter mask

and the a priori ex-brainstem–cerebellum–corpus callosum mask

into the hypothetical white matter mask and the hypothetical ex-

brainstem–cerebellum–corpus callosum mask, respectively, based

on the forward flow field and the backward flow field. The a priori
white matter mask had been obtained from the a priori white

matter probabilistic map through a binarization operation that

kept voxels with probabilities over 0.5. The hypothetical ex-

brainstem–cerebellum–corpus callosum mask had been obtained

by manually selecting from ICBM (International Consortium for

Brain Mapping) template labels (http://www.loni.usc.edu/

ICBM/).

Step 6. AND. Obtain the hypothetical cerebral white matter

mask by an AND operation of the hypothetical ex-brainstem–

cerebellum–corpus callosum mask and the hypothetical white

matter mask.

Step 7. AND. Obtain the FLAIR image within the scope of

the hypothetical cerebral white matter mask by an AND

operation.

Step 8. Normalization. The FLAIR image within the

hypothetical cerebral white matter mask was normalized so that

its intensity distributed in a standardized range [0, 100].

Step 9. Nomination of candidate WMHs. Voxels with

normalized intensity higher than a designated threshold, namely

65, were selected as belonging to the candidate WMHs. This

threshold level was determined based on histographic character-

ization of the semi-automatically demarcated WMHs and it,

however, can be adjusted manually.

Step 10.1. Junction map creation. The fused image was

binarized to get a gray/white matter junction map [29,30]. The

rule of the binarization was to assign logic 1 to voxels with intensity

between Iaverage, GM+0.5 Istdev, GM and Iaverage, WM20.5 Istdev, WM,

where Iaverage, GM and Istdev, GM represent the average value and

the standard deviation, respectively, of the voxel intensity of the

gray matter and Iaverage, WM and Istdev, WM represent those of the

white matter.

Step 10.2. Junction elimination. In the resultant candidate

WMHs of Step 9, if a voxel or any of its 8 neighboring voxels was a

junction voxel, this voxel was said to be junction-connected. If

Figure 6. Typical examples of WMHs segmentation with both WMHs and cerebral infarcts. The original FLAIR image, registered DWI,
semi-automated WMHs, semi-automated cerebral infarcts, and automated WMHs and cerebral infarcts (top to bottom) were illustrated using patient
#17 as a typical example with both WMHs and cerebral infarcts. This figure shows 7 continuous slices of the 23 slices in the whole-brain. It was
difficult for the neurologist to recognize the boundary between WMHs and cerebral infarct if they had close contact to each other.
doi:10.1371/journal.pone.0104011.g006
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more than 80% of the voxels in a contiguous region of a candidate

WMHs were junction-connected, this candidate WMHs was said

to be junction-connected and would be disqualified as a WMHs.

Step 11.1. Cerebral infarcts detection. The cerebral infarcts

manifested themselves as hyperintensive regions in the registered

DWI and could be detected. The brain mask was extracted from

the registered whole-brain DWI by using Brain Extraction Tool, a

software package developed at FMRIB Centre, University of

Oxford, Oxford, United Kingdom (http://www.fmrib.ox.ac.uk/)

[31]. The peak of the normalized DWI histogram in a

standardized intensity range [0, 100] within the brain mask was

identified and denoted by Ipeak,DWI. A segmentation of cerebral

infarct lesions was conducted using Ipeak,DWI+19 as the threshold

level, as depicted in Fig. 3 [32].

Step 11.2. Cerebral infarcts subtraction. In the resultant

WMHs of Step 10.2, the portion that overlapped with the detected

cerebral infarcts would be subtracted according to the following

rule: All the voxels of any one among the WMHs labels in the

FLAIR image would be subtracted if at least 80% of the label’s

corresponding DWI voxels belonged to an cerebral infarct label;

any voxel of other FLAIR WMHs labels would be subtracted if it

corresponded to an cerebral infarct voxel; otherwise, it would be

kept in the resultant WMHs.

Quantitative evaluations
The similarity index (SI) was used to evaluate the agreement

between the automated and semi-automated segmentation in 25

hemispheres with WMHs only and 13 hemispheres with both

WMHs and cerebral infarcts in the derivation cohort. The

sensitivity, specificity, and SI [33] were calculated. The Bland–

Altman plot evaluated the systematic dissimilarity [34]. The

volume measurements agreement evaluation of the proposed

algorithm was carried out by calculating the intraclass correlation

coefficient (ICC) [35]. The same parameters were further

examined in the validation cohort.

Results

In the histographic characterization of WMHs in the derivation

cohort, 38 hemispheres were studied. As an example, the blue

curve in Fig. 4(A) is the intensity histogram of the white matter in

the hypothetical cerebral white matter mask in the normalized

FLAIR image of the right hemisphere of patient #1. The yellow

curve is the intensity histogram of the semi-automatically

demarcated WMHs, which was 7.954 ml in volume. Similarly,

Fig. 4(B) shows the intensity histograms of the left hemisphere of

patient #20, of which the semi-automatically demarcated WMHs

volume was 0.736 ml. The lowest bounds of the normalized

intensity of the semi-automatically demarcated WMHs of the 38

hemispheres ranged from 55 to 75 and averaged 65. Based on this

result, the threshold for nominating candidate WMHs was set as

65 in Step 9 of the proposed method.

The accuracy of the WMHs segmentation algorithm has been

evaluated on the 20 patients in the derivation cohort, including 25

hemispheres with WMHs only and 13 hemispheres with both

WMHs and cerebral infarcts. The ICC of WMHs delineation was

0.905 for the hemisphere group with WMHs only and 0.784 for

the hemisphere group with both WMHs and cerebral infarcts.

Fig. 5 and 6, respectively, shows a typical example of automated

segmentation for patients with WMHs only and with both WMHs

and cerebral infarction. In the image presentation in this paper,

the semi-automatically demarcated WMHs and cerebral infarcts

by the neurologist are painted yellow and red, respectively; the

automatically demarcated WMHs and cerebral infarcts are

painted blue and green, respectively. Linear regression analyses

resulted in a regression coefficient value of R2 = 0.848 and a

regression slope of 0.797 for the hemisphere group with WMHs

only, whereas R2 = 0.676 and slope of 1.021 for the hemisphere

group with both WMHs and cerebral infarcts, as shown in

Fig. 7(A). Bland and Altman plot in Fig. 7(B) shows a slight

overestimation (bias of 0.799 ml) for the hemisphere group with

WMHs only, and a larger underestimation (bias of 21.248 ml) for

the hemisphere group with both WMHs and cerebral infarcts.

We used the SI to indicate the degree of agreement between the

WMHs demarcated by the semi-automated and the proposed

Figure 7. Evaluation of WMHs segmentation results. (A) Linear regression (B) Bland & Altman plot. The blue lines and dots are for the
hemisphere with WMHs only; the red lines and dots are for the hemisphere with both WMHs and cerebral infarcts.
doi:10.1371/journal.pone.0104011.g007
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segmentation methods. It is considered to have high agreement if

SI is higher than 0.7 [36,37]. The SI, sensitivity, and specificity of

the WMHs segmentation of each hemisphere in the derivation and

validation cohorts were calculated and are shown in Tables 1 and

2, respectively. The average performance of the WMHs segmen-

tation of hemispheres with WMHs only and that of hemispheres

with both WMHs and infarcts in the derivation and validation

cohorts are also shown in Tables 1 and 2, respectively. The latter

has lower SI because of unclear boundary definition due to the

coexistence of WMHs and cerebral infarcts. Verified with the

semi-automated WMHs delineation as the gold standard, the

proposed method has higher SI, sensitivity, and specificity for

hemisphere with WMHs only; the SI was (83.142611.742)%

(mean 6 standard deviation), the sensitivity was

(84.154616.086)%, and the specificity was (99.98860.029)% in

the derivation cohort. For the hemisphere with both WMHs and

cerebral infarct, the SI was (68.826614.036)%, the sensitivity was

(74.381618.473)%, and the specificity was (99.95660.054)% in

the derivation cohort. For the entire derivation cohort, the SI was

(78.244614.167)%, the sensitivity was (80.811617.338)%, and

the specificity was (99.97760.042)%.

The performance of our algorithm was further evaluated with

the validation cohort. For the hemispheres with WMHs only, the

SI was (83.20668.756)% (mean 6 standard deviation), the

sensitivity (81.515615.588)%, and the specificity (99.9936

0.012)%. For the hemispheres with both WMHs and cerebral

infarcts, the SI was (76.45768.845)%, the sensitivity (76.1416

17.082)%, and the specificity (99.99360.014)%. For the entire

validation cohort, the SI was (80.84469.167)%, the sensitivity

(79.634615.891)%, and the specificity (99.99360.012)%.

The proposed automated WMHs segmentation method was

developed on a personal computer with Intel Core i5 CPU,

2.67 GHz processor speed, and 4GB RAM. The WMHs

segmentation procedure was carried out mainly with a MATLAB

program (The MathWorks, Inc., Natick, MA). It took our personal

computer less than 90 seconds to execute from Step 1 through

Step 11, excluding Step 4. Involving the creation of the

transformation parameters with DARTEL module program, Step

4 took nearly 15 minutes.

Discussion

Automated segmentation of WMHs has been reported by many

research teams [16–20,22,38–46]. However, our literature survey

found that, so far, Shi et al. [22] are the only team that has

considered the presence of cerebral infarcts in addition to WMHs.

Our proposed WMHs segmentation method also emphasizes

coexistence of acute cerebral infarcts, the associated surrounding

edema and WMHs; moreover, our method can eliminate spurious

WMHs in gray/white matter junction.

Separation of gray and white matter of the registered T1w in

Step 3 could be degraded by WMHs, which had lower intensities

than the surrounding white matter and could be wrongly

categorized into gray matter. As shown in Fig. 2 (C) and (D),

the segmentation of gray and white matter, respectively, from the

registered T1w image Fig. 2 (B) was not satisfactory so that the

segmented gray matter overran the WMHs region delineated by

the neurologist rater. The effect of the fusing operation in Step 2

was to offset the intensity of the WMHs so that they would not be

wrongly categorized. In Fig. 2 (F) and (G), it is evident that the

gray and white matter segmented from the fused image Fig. 2 (E)

were much more consistent with the WMHs delineated by the

neurologist rater.T
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The consistency between the automated and the semi-

automated lesions segmentation on the hemispheres with WMHs

only indicates a high reliability of the method in the absence of

cerebral infarct lesions. The linear regression analyses and Bland

and Altman plot shown in Fig. 7 indicate an excellent volume and

spatial agreement for different lesion sizes of from 0.412 to

27.383 ml. As shown in Table 1, the mean SI value was 83% in

the derivation cohort with WMHs only, indicating outstanding

voxel agreement between the automated and semi-automated

segmentations. The automated and semi-automated segmentation

had a lower volume and spatial agreement if the hemispheres had

both WMHs and cerebral infarcts. That was due to the rater’s

variation in WMHs delineation with the influence of cerebral

infarcts.

This research focused on supratentorial WMHs. The WMHs in

brainstem and cerebellum were excluded and corpus callosum was

conventionally not included in the segmentation of WMHs. The

proposed algorithm used the hypothetical white matter mask and

the hypothetical ex-brainstem–cerebellum–corpus callosum mask

to conceal these regions in Step 7. These masks must be

personalized to be anatomically accurate. They were obtained

by inversely deforming (in Step 5) the a priori white matter mask

and the a priori ex-brainstem–cerebellum–corpus callosum mask

to match the individual brain shapes using the SPM plus

DARTEL.

In view of interrater variability and subjectiveness, the selection

of a proper threshold value in Step 9 is critical to the performance

of the proposed method. Since there won’t be a universal

threshold value to suit all raters in any scanning circumstance,

the proposed method allows for manual adjustment of the

threshold value. This flexibility also helps attain higher volume

and spatial agreement in WMHs segmentation with different MR

scanners or protocols.

The proposed method used a constant threshold, namely 65 of

the normalized intensity in the FLAIR image, in Step 9 for

nominating candidate WMHs. On the contrary, the threshold

level used by the neurologist to demarcate the WMHs was not

constant, as shown in Table 2.

Biological variance and varying image quality, such as contrast-

to-noise ratio (CNR), have been the main causes of low SI. For

example, the neurologist’s threshold in demarcating the right

hemisphere of patient #6, 75 in terms of normalized FLAIR

intensity, resulting in the second lowest SI (61.475%) among the

25 hemispheres with WMHs only, despite of good sensitivity of

86.112%. The threshold value 75 used was higher than 65 used for

our automated segmentation. This higher threshold may be

attributed to a low CNR between the WMHs and surrounding

white matter of the FLAIR intensity of patient #6 compared to

those of other patients. For another example, the neurologist’s

threshold in demarcating the left hemisphere of patient #11 was

55 to result in the lowest SI (55.008%) and the lowest sensitivity

(37.939%) among the 25 hemispheres with WMHs only. This

lower threshold may be attributed to a high CNR between the

WMHs and surrounding white matter of the FLAIR intensity of

patient #11 compared to those of other patients.

In the resultant candidate WMHs of Step 9, some were not real

WMHs; instead, they were just hyperintensive regions belonging

in the gray/white matter junction and should be removed from the

candidate WMHs, which would be done in Step 10.2. In Step

10.1, a gray/white matter junction map was created from the

fused image to represent the brain regions with blurred gray/white

matter transition. In Step 10.2, junction-connected hyperinten-

sities were identified and eliminated. Fig. 8 shows an example of

this action.

WMHs and acute cerebral infarcts appear similar in the FLAIR

image so that there is no clear borderline between them when they

adjoin each other. As a result, the semi-automated segmentation

usually fails to produce a reliable demarcation of WMHs if there is

a concomitant cerebral infarct region. The automated segmenta-

tion is advantageous in that the cerebral infarcts can be

demarcated separately from the DWI and be subtracted from

the demarcated WMHs from the FLAIR image. However, a

complete elimination of cerebral infarcts from demarcated WMHs

can be hindered by postischemic peri-infarct edema of acute

cerebral infarcts. The edema reduces the peripheral intensity of

the cerebral infarcts in the DWI. Hence, the detected size of acute

cerebral infarcts in the DWI is usually smaller than its actual size

Figure 8. Removal of hyperintensive junction-connected regions from candidate WMHs. (A) The three arrows point to three
hyperintensities on a FLAIR image; (B) Shown in purple is the gray/white matter junction created in Step 10.1. This figure shows that the two
hyperintensities pointed to by the red arrows were junction-connected, whereas that pointed to by the yellow arrow was not junction-connected; (C)
The three hyperintensities were all nominated as candidate WMHs in Step 9. However, in Step 10.2, the two pointed to by the red arrows would be
eliminated from the candidate WMHs and only the one pointed to by the yellow arrow would remain in the candidate WMHs.
doi:10.1371/journal.pone.0104011.g008
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and its corresponding area in the FLAIR. Consequently, directly

subtracting the demarcated cerebral infarct of Step 11.1 from the

demarcated WMHs of Step 10.2 will lead to spurious WMHs

labels.

An example to illustrate how Step 11.2 in our algorithm dealt

with this spurious WMHs problem is shown in Fig. 9. In the

FLAIR image shown in Fig. 9 (A), the yellow and red arrows point

to the areas of WMHs and a cerebral infarct, respectively. As

shown in Fig. 9(C), the two were both detected as WMHs in Step

10.2. In the corresponding DWI shown in Fig. 9(B), the cerebral

infarct pointed to by the red arrow had high intensity and was

detected as a cerebral infarct in Step 11.1, as shown in Fig. 9(D).

Note that the detected cerebral infarct, represented by the green

region in Fig. 9(D), was smaller than the actual cerebral infarct

because its peripheral intensity had been reduced due to

postischemic peri-infarct edema. In Fig. 9(F), the region pointed

to by the yellow arrow was the detected WMHs. The crescent-

shaped region pointed to by the red arrow was actually part of the

cerebral infarct. It was generated there because the detected

cerebral infarct region in Step 11.1 was smaller than the real

infarct size. It was at last successfully eliminated according to the

rule established in Step 11.2. Fig. 9(E) represents a hypothetical

result of directly subtracting the detected infarct region of Step

11.1 from the detected WMHs regions of Step 10.2 and it does not

represent a result of any step in our method.

Conclusions

In this study, we developed a computer-assisted segmentation

method for quantification of WMHs with or without the influence

of cerebral infarctions in the T1w, FLAIR, and DWI images. The

proposed automated method detects WMHs from a hypothetical

cerebral white matter region based on the image intensity

histogram. This approach attains high SI and correlation between

the automated and semi-automated segmentation of WMHs for

the hemispheres with WMHs only. In the presence of cerebral

infarcts in addition to WMHs, a reliable algorithm is adopted to

demarcate the cerebral infarcts to be subtracted from the WMHs.

Thus, the proposed algorithm is suitable for segmentation of

WMHs in acute ischemic stroke patients with or without cerebral

infarction. Moreover, the threshold for WMHs detection can be

adjusted to accommodate to different MRI scanners and

sequences and to systemically decrease the variation from the

patients, machines, and raters. It could provide both real-time

information in the scenario of emergent medicine and a subjective,

reliable basis of longitudinal and cross-sectional imaging study.
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